首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Embryogenic cultures were initiated from mature zygotic embryos of Picea abies. The somatic embryos in the embryogenic cultures were first stimulated to mature and then either to develop further into plantlets or to differentiate new embryogenic cultures. The procedure was repeated three times during two years. The ability to give rise to new embryogenic cultures or to develop into plantlets was similar for all somatic embryos irrespective of how long they had been cultured in vitro. The nuclear DNA content, measured in a flow cytometer, was estimated at 32 pg/G1 nuclei in seedings developed from zygotic embryos. Nuclei isolated from embryogenic cultures and from plantlets regenerated from somatic embryos had the same DNA content as those isolated from seedlings.Abbreviations N6-benzyladenine BA - 2,4-dichlorophenoxyacetic acid 2,4-D - abscisic acid ABA  相似文献   

3.
Propagation of Norway spruce via somatic embryogenesis   总被引:5,自引:0,他引:5  
Somatic embryogenesis combined with cryopreservation is an attractive method to propagate Norway spruce (Picea abies) vegetatively both as a tool in the breeding programme and for large-scale clonal propagation of elite material. Somatic embryos are also a valuable tool for studying regulation of embryo development. Embryogenic cell lines of Norway spruce are established from zygotic embryos. The cell lines proliferate as proembryogenic masses (PEMs). Somatic embryos develop from PEMs. PEM-to-somatic embryo transition is a key developmental switch that determines the yield and quality of mature somatic embryos. Withdrawal of plant growth regulators (PGRs) stimulates PEM-to-somatic embryo transition accompanied by programmed cell death (PCD) in PEMs. This PCD is mediated by a marked decrease in extracellular pH. If the acidification is abolished by buffering the culture medium, PEM-to-somatic embryo transition together with PCD is inhibited. Cell death, induced by withdrawal of PGRs, can be suppressed by extra supply of lipo-chitooligosaccharides (LCOs). Extracellular chitinases are probably involved in production and degradation of LCOs. During early embryogeny, the embryos form an embryonal mass surrounded by a surface layer. The formation of a surface layer is accompanied by a switch in the expression pattern of an Ltp-like gene (Pa18) and a homeobox gene (PaHB1), from ubiquitous expression in PEMs to surface layer-specific in somatic embryos. Ectopic expression of Pa18 and PaHB1 leads to an early developmental block. Transgenic embryos and plants of Norway spruce are routinely produced by using a biolistic approach. The transgenic material is used for studying the importance of specific genes for regulating plant development, but transgenic plants can also be used for identification of candidate genes for use in the breeding programme.  相似文献   

4.
Summary Embryogenic callus developed in 55% of the mature embryo explants of Norway spruce (Picea abies L.) growing on a LP medium minus the amino acids and sugars (except sucrose). This is the highest reported yield of embryogenic callus from mature embryos of P. abies that has ever been reported. Callus induction from either the middle or the end of the hypocotyl of the embryos began after 2–3 weeks. Three types of calli were recovered: (a) globular, (b) light green-compact, (c) white mucilaginous. Only the white mucilaginous calli were embryogenic. The globular and light green-compact calli never become embryogenic, even after several subcultures. The development of somatic embryos was accomplished on half-strength macro-elements of NSIII medium containing 1 M -naphthaleneacetic acid, 1 M abscisic acid, and 3% sucrose. The addition of 10–7 M buthionine sulfoximine to the medium increased the development of somatic embryos by three fold. These results suggest that there is a great potential for increasing the frequency and development of somatic embryos in P. abies. Careful selection of the genotype and modification of the culture medium is required.  相似文献   

5.
PaHB1 (for Picea abies Homeobox1), an evolutionarily conserved HD-GL2 homeobox gene, specifically expressed in the protoderm during somatic embryogenesis in the gymnosperm Norway spruce has been reported previously. An additional HD-GL2 gene designated PaHB2 is reported here. During somatic embryogenesis, the PaHB2 gene is uniformly ex pressed in proembryogenic masses and in early somatic embryos, but it is not detectably transcribed at the beginning of maturation. In mature embryos, PaHB2 expression was essentially detected in the outermost layer of the cortex and the root cap. A similar PaHB2 expression is detected post-embryonically in both the primary root and the hypocotyl. Phylogenetic reconstructions and intron pattern analyses revealed that the PAHB proteins fall within two distinct subclasses comprising highly similar angiosperm homologues. The PAHB1 subclass consists of protoderm/epiderm-specific members. By contrast, the PAHB2 subclass gathers homologues with a subepidermal and protodermal/epidermal activity. This study suggests that at least two distinct HD-GL2 genes with a layer-specific expression already existed in the last common ancestor of angiosperms and gymnosperms. The conserved protodermal/epidermal and subepidermal expression of HD-GL2 genes could be used to study embryo radial pattern formation across seed plants.  相似文献   

6.
Detailed expression analysis of the Norway spruce (Picea abies [L.] Karst) Viviparous 1 (Pavp1) and p34cdc2 (cdc2Pa) genes was carried out during somatic embryogenesis. Pavp1, a gene associated with embryo development, was expressed in proliferating embryogenic suspension cultures in the absence of exogenous ABA. When somatic embryo formation was promoting by blocking proliferation, Pavp1 expression was reduced. During maturation, exogenous ABA induced increased Pavp1 expression, which peaked at the early cotyledonary stage of somatic embryogenesis. Following partial desiccation of mature somatic embryos at high relative humidity, Pavp1 expression persisted under germination conditions. Pavp1 expression was also detected in non-dormant immature male strobili and dormant terminal buds. These data confirm the functional conservation of Pavp1 during the evolution of seed plants and extend its function beyond the embryo. Cdc2Pa, a gene associated with the cell cycle, was up-regulated when the proliferation of embryogenic cells was blocked. Expression was again up-regulated in early embryogeny and again during germination. The implications of this up-regulation of cdc2Pa are discussed.  相似文献   

7.
Somatic embryogenesis is used for vegetative propagation of conifers. Embryogenic cultures can be established from zygotic embryos; however, the embryogenic potential decreases during germination. In Arabidopsis, LEAFY COTYLEDON (LEC) genes are expressed during the embryonic stage, and must be repressed to allow germination. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) causes de-repression of LEC genes. ABSCISIC ACID3 (ABI3) and its Zea mays ortholog VIVIPAROUS1 (VP1) act together with the LEC genes to promote embryo maturation. In this study, we have asked the question whether TSA treatment in a conifer affects the embryogenic potential and the expression of embryogenesis-related genes. We isolated two conifer LEC1-type HAP3 genes, HAP3A and HAP3B, from Picea abies and Pinus sylvestris. A comparative phylogenetic analysis of plant HAP3 genes suggests that HAP3A and HAP3B are paralogous genes originating from a duplication event in the conifer lineage. The expression of HAP3A is high, in both somatic and zygotic embryos, during early embryo development, but decreases during late embryogeny. In contrast, the expression of VP1 is initially low but increases during late embryogeny. After exposure to TSA, germinating somatic embryos of P. abies maintain the competence to differentiate embryogenic tissue, and simultaneously the germination progression is partially inhibited. Furthermore, when embryogenic cultures of P. abies are exposed to TSA during embryo maturation, the maturation process is arrested and the expression levels of PaHAP3A and PaVP1 are maintained, suggesting a possible link between chromatin structure and expression of embryogenesis-related genes in conifers.  相似文献   

8.
The differentiation of a surface layer on the embryonal mass is one ofthe first markers for normal embryo development in Norway spruce. We havepreviously shown that this differentiation is closely interlinked with a switchin the expression pattern of Pa18, a putative lipidtransfer protein (LTP) gene. In transgenic embryos ofNorway spruce under- or overexpressing the Pa18 gene under the maize ubiquitin promoter, there is no switch in the expression pattern ofthe Pa18 gene and the embryos are blocked in theirdevelopment early during maturation. In this work, we describe how under- andoverexpression of Pa18 affect sequential developmentalstages during somatic embryogenesis. The differentiation of somatic embryosfromproembryogenic masses is not affected, but the morphology of early somaticembryos is changed. Both under and overexpressing somatic embryos can gothrougha maturation process, although at a much lower frequency than the controlembryos. Germination is not affected by altered Pa18expression. However, plants regenerated from under and highly overexpressingsomatic embryos cannot survive prolonged culture.  相似文献   

9.
10.
The bar gene conferring resistance to the herbicide Basta (containing phosphinothricin) was transferred to embryogenic cultures of Picea abies by particle bombardment and transformants were selected on Basta medium. In total, 83 9-month-old transgenic plants of Picea abies from six transformed sublines were analysed for continued tolerance to Basta. PCR analysis showed that the bar gene was present in all transformed plants but not in the control plants. Northern blot analysis showed differences in expression level among plants from the same subline as well as among sublines. A simple biotest for screening for Basta tolerance based on the colour change of detached needles induced by Basta was developed. The tolerance to Basta varied among the plants from different sublines. Needles from four of the sublines were resistant to 100 mg l−1 phosphinothricin, a concentration inducing yellowing in control needles, while plants from the other two sublines were on average two to four times as resistant as untransformed control plants. The biotest enables rapid semi-quantitative monitoring for continued transgene expression in long-lived tree species. Received: 21 October 1999 / Revision received: 24 January 2000 / Accepted: 24 January 2000  相似文献   

11.
12.
Embryogeny of gymnosperms: advances in synthetic seed technology of conifers   总被引:26,自引:0,他引:26  
Synthetic seed technology requires the inexpensive production of large numbers of high-quality somatic embryos. Proliferating embryogenic cultures from conifers consist of immature embryos, which undergo synchronous maturation in the presence of abscisic acid and elevated osmoticum. Improvements in conifer somatic embryo quality have been achieved by identifying the conditions in vitro that resemble the conditions during in ovulo development of zygotic embryos. One normal aspect of zygotic embryo development for conifers is maturation drying, which allows seeds to be stored and promotes normal germination. Conditions of culture are described that yield mature conifer somatic embryos that possess normal storage proteins and fatty acids and which survive either partial drying, or full drying to moisture contents similar to those achieved by mature dehydrated zygotic embryos. Large numbers of quiescent somatic embryos can be produced throughout the year and stored for germination in the spring, which simplifies production and provides plants of uniform size. This review focuses on recent advances in conifer somatic embryogenesis and synthetic seed technology, particularly in areas of embryo development, maturation drying, encapsulation and germination. Comparisons of conifer embryogeny are made with other gymnosperms and angiosperms.Abbreviations ABA abscisic acid - LEA late embryogenesis abundant - PEG polyethylene glycol - PGR plant growth regulator - RH relative humidity - TAG triacylglycerol  相似文献   

13.
Many plant species contain a seed-specific tonoplast intrinsic protein (TIP) in their protein storage vacuoles (PSVs). Although the function of the protein is not known, its structure implies it to act as a transporter protein, possibly during storage nutrient accumulation/breakdown or during desiccation/imbibition of seeds. As mature somatic embryos of Picea abies (L.) Karst. (Norway spruce) contain PSVs, we examined the presence of TIP in them. Both the megagametophyte and seed embryo accumulate storage nutrients, but at different times and we therefore studied the temporal accumulation of TIP during seed development. Antiserum against the seed-specific a-TIP of Phaseolus vulgaris recognized an abundant 27 kDa tonoplast protein in mature seeds of P. abies. By immunogold labeling of sectioned mature megagametophytes we localized the protein to the PSV membrane. We also isolated the membranes of the PSVs from mature seeds and purified an integral membrane protein that reacted heavily with the antiserum. A sequence of 11 amino acid residues [AEEATHPDSIR], that was obtained from a polypeptide after in-gel trypsin digestion of the purified membrane protein, showed high local identity to a-TIP of Arabidopsis thaliana and to a-TIP of P. vulgaris. The greatest accumulation of TIP in the megagametophytes occurred at the time of storage protein accumulation. A lower molecular mass band also stained from about the time of fertilization until early embryo development. The staining of this band disappeared as the higher molecular mass (27 kDa) band accumulated in the megagametophyte during seed development. Total protein was also extracted from developing zygotic embryos and from somatic embryos. In zygotic embryos low-levels of TIP were seen at all stages investigated, but stained most at the time of storage protein accumulation. The protein was also present in mature somatic embryos but not in proliferating embryogenic tissues in culture. In addition to the seed tissue material, the antiserum also reacted with proteins present in extracts from roots and hypocotyls but not cotyledons from 13-day-old seedlings.  相似文献   

14.
Summary The development of somatic embryos in an embryogenic suspension culture ofPicea sitchensis was followed every day for two weeks after thawing from liquid nitrogen (LN2). Only a few cells, primarily located at the periphery of the embryonic region of the embryos, survived cryopreservation in LN2. Surviving cells were classified into two groups: embryogenic cells (EC) and non-embryogenic cells (NEC), based on their morphology and embryogenic competence. The dense cytoplasmic EC underwent organized growth and differentiation with first divisions occurring after 24 h, and embryo formation 6–8 days after thawing from LN2. No evidence of asymmetrical divisions or free-nuclear stages was found during somatic embryo formation. NEC had less dense cytoplasm with numerous small vacuoles. One to five days after thawing the NEC became progressively more vacuolated and elongated. Histological examination revealed no mitotic activity in NEC, and six days after thawing NECs were seen as single cells or unorganized cell aggregates. Two weeks after thawing the appearance of the cryopreserved cultures was comparable to that of the untreated cultures.Abbreviations EC embryogenic cells - ECC embryogenic cell clusters - FDA fluorescein diacetate - GMA glycol methacrylate - LN2 liquid nitrogen (–196°C) - NEC non-embryogenic cells  相似文献   

15.
Summary The influence of light quality on the proliferation of embryogenic tissue of three genotypes of Norway spruce (Picea abies [L.] Karst), with different capacities for mature somatic embryo production, was studied. The proliferating tissues were subjected to light from commercially available light sources: Philips TLD Warm White 36W/29, Philips TLD Blue 18W/18, Philips TLD Red 36W/15, Osram L Fluora 36W/77 and Sylvania Far Red 7080, for 18 h a day with the photon flux (PAR) at 30 μmol m−2s−1. The effect of light quality on the growth of embryogenic tissue was strongly genotype dependent. In genotype 164-4 tissue proliferation was strongly inhibited by blue and red light. Genotype 86∶52 reacted in a similar way, but not as strongly as 164-4, whereas the tissue of genotype 186-3 was almost insensitive to light quality and grew fast in all light conditions.  相似文献   

16.
Summary Proliferative somatic embryogenesis is a regeneration system suitable for mass propagation and genetic transformation of soybean [Glycine max (L.) Merr.]. The objective of this study was to examine genotypic effects on induction and maintenance of proliferative embryogenic cultures, and on yield, germination, and conversion of mature somatic embryos. Somatic embryos were induced from eight genotypes by explanting 100 immature cotyledons per genotype on induction medium. Differences in frequency of induction were observed among genotypes. However, this step was not limiting for plant regeneration because induction frequency in the least responding genotype was sufficient to initiate and maintain proliferative embryogenic cultures. Six genotypes selected for further study were used to initiate embryogenic cultures in liquid medium. Cultures were evaluated for propagation of globular-stage tissue in liquid medium, yield of cotyledon-stage somatic embryos on differentiation medium, and plant recovery of cotyledon-stage embryos. Genotypes also differed for weight and volume increase of embryogenic tissue in liquid cultures, for yield of cotyledon-stage embryos on differentiation medium, and for plant recovery from cotyledon-stage embryos. Rigorous selection for a proliferative culture phenotype consisting of nodular, compact, green spheres increased embryo yield over that of unselected cultures, but did not affect the relative ranking of genotypes. In summary, the genotypes used in this study differed at each stage of plant regeneration from proliferative embryogenic cultures, but genotypic effects were partially overcome by protocol modifications.  相似文献   

17.
Vegetatively propagated material offers many advantages over seed material in forest tree breeding research and in reforestation programmes. Evidence is accumulating to suggest that using somatic embryos in forestry is a viable option. However, before somatic embryos can be used optimally in forestry, basic research aimed at increasing the number of responsive genotypes as well as the age of the primary explant is needed. This in turn requires the establishment of a basic understanding of the physiological and molecular processes that underlie the development of somatic embryos. The functions of genes and their developmental and tissue specific regulation are studied using transient and stable transformation techniques.The process of somatic embryogenesis can be divided into different steps: (1) initiation of somatic embryos from the primary explant, (2) proliferation of somatic embryos, (3) maturation of somatic embryos and (4) plant regeneration. Cortical cells in the primary explant are stimulated to go through repeated divisions so that dense nodules are formed from which somatic embryos differentiate. The first formed somatic embryos continue to proliferate and give rise to embryogenic cell lines. Embryogenic cell lines of Picea abies can be divided into two main groups A and B, based on morphology, growth pattern and secretion of proteins. Our results suggest that extracellular proteins play a crucial role in embryogenesis of Picea abies. Somatic embryos from group A can be stimulated to go through a maturation process when treated with abscisic acid. Mature somatic embryos can develop into plants.Abbreviations ABA abscisic acid - BA N6-benzyladenine - 2,4-D dichlorophenoxy acetic acid  相似文献   

18.
Embryogenic cell-lines of Picea abies were initiated from maturezygotic embryos and cultured on medium containing 2,4-D andBA The cell-lines were categorized into two main groups (solar/polarand undeveloped embryos), based on the morphology of the somaticembryos and their ability to go through a maturation processwhen treated with ABA The cell-lines were transferred to mediacontaining (1) 2,4-D and BA, (2) only BA, (3) only 2,4-D or(4) no growth regulators When cultured on a medium containingboth 2,4-D and BA new somatic embryos were continually formedIn contrast, when they were cultured without one or both ofthe growth regulators no new somatic embryos were formed Solar/polarand undeveloped embryos responded in the same way On a mediumcontaining only BA the somatic embryos already present increasedin size and developed an extremely large embryonic region Ona medium containing only 2,4-D the embryos already present becamedisorganized into loose aggregates When transferred from a mediumcontaining both 2,4-D and BA to one containing ABA, mature somaticembryos developed from the solar/polar type but not from theundeveloped type The ability of the solar/polar somatic embryosto go through a maturation process decreased when they wereprecultured on a medium lacking auxin and was lost when theywere precultured on medium lacking cytokinin The cell-linescontaining undeveloped somatic embryos produced mature somaticembryos in one cell-line out of three that had been culturedon the medium containing only BA Auxin, cytokinin, embryogenic cultures, Norway spruce, somatic embryos, Picea abies (L.) Karst  相似文献   

19.
Summary Zygotic embryos from open-pollinated seeds of 20 black spruce (Picea mariana) families were used to investigate the proportion of genotypes that would give rise to embryogenic tissue (ET) and mature somatic embryos. Eighty-five percent of the maternal genotypes gave rise to embryogenic tissue. Within-family rates of ET induction ranged from 0 to 17%, with an average of 8%. The largest proportion of variation was among families, indicating the additive nature of the genetic variation. On a medium with 6% sucrose and 3.7 M ABA, 90% of the embryogenic lines gave rise to abundant (>100/100 mg of ET), well-formed, mature somatic embryos. A medium with 2% sucrose, without 2,4-D, was used to germinate the mature somatic embryos. These were grown in the greenhouse and have now been established in field trials.  相似文献   

20.
Kurczyńska EU  Gaj MD  Ujczak A  Mazur E 《Planta》2007,226(3):619-628
In Arabidopsis the in vitro culture of immature zygotic embryos (IZEs) at a late stage of development, on the solid medium containing synthetic auxin, leads to formation of somatic embryos via direct somatic embryogenesis (DSE). The presented results provide evidence that in IZE cells competent for DSE are located in the protodermis and subprotodermis of the adaxial side of cotyledons and somatic embryos displayed a single- or multicellular origin. Transgenic Arabidopsis lines expressing the GUS reporter gene, driven by the DR5 and LEC2 promoters, were used to analyse the distribution of auxin to mark embryogenic cells in cultured explants and develop somatic embryos. The analysis showed that at the start of the culture auxin was accumulated in all explant tissues, but from the fourth day onwards its location shifted to the protodermis and subprotodermis of the explant cotyledons. In globular somatic embryos auxin was detected in all cells, with a higher concentration in the protodermis, and in the heart stage its activity was mainly displayed in the shoot, root pole and cotyledon primordia. The embryogenic nature of dividing protodermal and subprotodermal cells accumulating auxin was confirmed by high expression of promoter activity of LEC2 in these cells. Analysis of symplasmic tracer (CFDA) distribution indicated symplasmic isolation between tissues engaged in DSE and other parts of an explant. Symplasmic isolation of somatic embryos from the explant was also detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号