首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compared the effects of supplementing the normal diets of six trained cyclists [maximal oxygen uptake O2max) 4.5 (0.36)l · min−1; values are mean (SD)] with additional carbohydrate (CHO) on muscle glycogen utilisation during a 1-h cycle time-trial (TT). Using a randomised crossover design, subjects consumed either their normal diet (NORM) for 3 days, which consisted of 426 (137) g · day−1 CHO [5.9 (1.4) g · kg−1 body mass (BM)], or additional CHO (SUPP) to increase their intake to 661 (76) g · day−1 [9.3 (0.7) g · kg−1 BM]. The SUPP diet elevated muscle glycogen content from 459 (83) to 565 (62) mmol · kg−1 dry weight (d.w.) (P < 0.05). However, despite the increased pre-exercise muscle glycogen stores, there was no difference in the distance cycled during the TT [40.41 (1.44) vs 40.18 (1.76) km for NORM and SUPP, respectively]. With NORM, muscle glycogen declined from 459 (83) to 175 (64) mmol · kg−1 d.w., whereas with SUPP the corresponding values were 565 (62) and 292 (113) mmol · kg−1 d.w. Accordingly, both muscle glycogen utilisation [277 (64) vs 273 (114) mmol · kg−1 d.w.] and total CHO oxidation [169 (20) vs 165 (30) g · h−1 for NORM and SUPP, respectively] were similar. Neither were there any differences in plasma glucose or lactate concentrations during the two experimental trials. Plasma glucose concentration averaged 5.5 (0.5) and 5.6 (0.6) mmol · l−1, while plasma lactate concentration averaged 4.4 (1.9) and 4.4 (2.3) mmol · l−1 for NORM and SUPP, respectively. The results of this study show that when well-trained subjects increase the CHO content of their diet for 3 days from 6 to 9 g · kg−1 BM there is only a modest increase in muscle glycogen content. Since supplementary CHO did not improve TT performance, we conclude that additional CHO provides no benefit to performance for athletes who compete in intense, continuous events lasting 1 h. Furthermore, the substantial muscle CHO reserves observed at the termination of exercise indicate that whole-muscle glycogen depletion does not determine fatigue at this exercise intensity and duration. Accepted: 25 November 1996  相似文献   

2.
The aims of the present study were: (1) to assess aerobic metabolism in paraplegic (P) athletes (spinal lesion level, T4–L3) by means of peak oxygen uptake (O2peak) and ventilatory threshold (VT), and (2) to determine the nature of exercise limitation in these athletes by means of cardioventilatory responses at peak exercise. Eight P athletes underwent conventional spirographic measurements and then performed an incremental wheelchair exercise on an adapted treadmill. Ventilatory data were collected every minute using an automated metabolic system: ventilation (l · min−1), oxygen uptake (O2, l · min−1, ml · min−1 · kg−1), carbon dioxide production (CO2, ml · min−1), respiratory exchange ratio, breathing frequency and tidal volume. Heart rate (HR, beats · min−1) was collected with the aid of a standard electrocardiogram. O2peak was determined using conventional criteria. VT was determined by the breakpoint in the CO2O2 relationship, and is expressed as the absolute VT (O2, ml · min−1 · kg−1) and relative VT (percentage of O2peak). Spirometric values and cardioventilatory responses at rest and at peak exercise allowed the measurement of ventilatory reserve (VR), heart rate reserve (HRr), heart rate response (HRR), and O2 pulse (O2 P). Results showed a O2peak value of 40.6 (2.5) ml · min−1 · kg−1, an absolute VT detected at 23.1 (1.5) ml · min−1 · kg−1 O2 and a relative VT at 56.4 (2.2)% O2peak. HRr [15.8 (3.2) beats · min−1], HRR [48.6 (4.3) beat · l−1], and O2 P [0.23 (0.02) ml · kg−1 · beat−1] were normal, whereas VR at peak exercise [42.7 (2.4)%] was increased. As wheelchair exercise excluded the use of an able-bodied (AB) control group, we compared our O2peak and VT results with those for other P subjects and AB controls reported in the literature, and we compared our cardioventilatory responses with those for respiratory and cardiac patients. The low O2peak values obtained compared with subject values obtained during an arm-crank exercise may be due to a reduced active muscle mass. Absolute VT was somewhat comparable to that of AB subjects, mainly due to the similar muscle mass involved in wheelchair and arm-crank exercise by P and AB subjects, respectively. The increased VR, as reported in patients with chronic heart failure, suggested that P athletes exhibited cardiac limitation at peak exercise, and this contributed to the lower O2peak measured in these subjects. Accepted: 22 April 1997  相似文献   

3.
The aim of the present study was to examine the physiological and mechanical factors which may be concerned in the increase in energy cost during running in a fatigued state. A group of 15 trained triathletes ran on a treadmill at velocities corresponding to their personal records over 3000m [mean 4.53 (SD 0.28) m · s−1] until they felt exhausted. The energy cost of running (C R) was quantified from the net O2 uptake and the elevation of blood lactate concentration. Gas exchange was measured over 1 min firstly during the 3rd–4th min and secondly during the last minute of the run. Blood samples were collected before and after the completion of the run. Mechanical changes of the centre of mass were quantified using a kinematic arm. A significant mean increase [6.9 (SD 3.5)%, P < 0.001] in C R from a mean of 4.4 (SD 0.4) J · kg−1 · m−1 to a mean of 4.7 (SD 0.4) J · kg−1 · m−1 was observed. The increase in the O2 demand of the respiratory muscles estimated from the increase in ventilation accounted for a considerable proportion [mean 25.2 (SD 10.4)%] of the increase in CR. A mean increase [17.0 (SD 26.0)%, P < 0.05] in the mechanical cost (C M) from a mean of 2.36 (SD 0.23) J · kg−1 · m−1 to a mean of 2.74 (SD 0.55) J · kg−1 · m−1 was also noted. A significant correlation was found between C R and C M in the non-fatigued state (r = 0.68, P < 0.01), but not in the fatigued state (r = 0.25, NS). Furthermore, no correlations were found between the changes (from non-fatigued to fatigued state) in C R and the changes in C M suggesting that the increase in C R is not solely dependent on the external work done per unit of distance. Since step frequency decreased slightly in the fatigued state, the internal work would have tended to decrease slightly which would not be compatible with an increase in C R. A stepwise regressions showed that the changes in C R were linked (r = 0.77, P < 0.01) to the changes in the variability of step frequency and in the variability of potential cost suggesting that a large proportion of the increase in C R was due to an increase in the step variability. The underlying mechanisms of the relationship between C R and step variability remains unclear. Accepted: 15 September 1997  相似文献   

4.
The energy cost per unit of distance (C s, kilojoules per metre) of the front-crawl, back, breast and butterfly strokes was assessed in 20 elite swimmers. At sub-maximal speeds (v), C s was measured dividing steady-state oxygen consumption (O2) by the speed (v, metres per second). At supra-maximal v, C s was calculated by dividing the total metabolic energy (E, kilojoules) spent in covering 45.7, 91.4 and 182.9 m by the distance. E was obtained as: E = E an+O2max t pO2max(1−e−( t p/)), where E an was the amount of energy (kilojoules) derived from anaerobic sources, O2max litres per second was the maximal oxygen uptake, α (=20.9 kJ · l O2 −1) was the energy equivalent of O2, τ (24 s) was the time constant assumed for the attainment of O2max at muscle level at the onset of exercise, and t p (seconds) was the performance time. The lactic acid component was assumed to increase exponentially with t p to an asymptotic value of 0.418 kJ · kg−1 of body mass for t p ≥ 120 s. The lactic acid component of E an was obtained from the net increase of lactate concentration after exercise (Δ[La]b) assuming that, when Δ[La]b = 1 mmol · l−1 the net amount of metabolic energy released by lactate formation was 0.069 kJ · kg−1. Over the entire range of v, front crawl was the least costly stroke. For example at 1 m · s−1, C s amounted, on average, to 0.70, 0.84, 0.82 and 0.124 kJ · m−1 in front crawl, backstroke, butterfly and breaststroke, respectively; at 1.5 m · s−1, C s was 1.23, 1.47, 1.55 and 1.87 kJ · m−1 in the four strokes, respectively. The C s was a continuous function of the speed in all of the four strokes. It increased exponentially in crawl and backstroke, whereas in butterfly C s attained a minimum at the two lowest v to increase exponentially at higher v. The C s in breaststroke was a linear function of the v, probably because of the considerable amount of energy spent in this stroke for accelerating the body during the pushing phase so as to compensate for the loss of v occurring in the non-propulsive phase. Accepted: 14 April 1998  相似文献   

5.
This study examined the thermoregulatory responses of men (group M) and women (group F) to uncompensable heat stress. In total, 13 M [mean (SD) age 31.8 (4.7) years, mass 82.7 (12.5) kg, height␣1.79␣(0.06) m, surface area to mass ratio 2.46␣(0.18) m2 · kg−1 · 10−2, Dubois surface area 2.01 (0.16) m2, %body fatness 14.6 (3.9)%, O2peak 49.0 (4.8) ml · kg−1 · min−1] and 17 F [23.2 (4.2) years, 62.4 (7.7) kg, 1.65 (0.07) m, 2.71 (0.14) m2 · kg−1 · 10−2, 1.68 (0.13) m2, 20.2 (4.8)%, 43.2 (6.6) ml · kg−1 · min−1, respectively] performed light intermittent exercise (repeated intervals of 15 min of walking at 4.0 km · h−1 followed by 15 min of seated rest) in the heat (40°C, 30% relative humidity) while wearing nuclear, biological, and chemical protective clothing (0.29 m2 ·°C · W−1 or 1.88 clo, Woodcock vapour permeability coefficient 0.33 i m). Group F consisted of eight non-users and nine users of oral contraceptives tested during the early follicular phase of their menstrual cycle. Heart rates were higher for F throughout the session reaching 166.7 (15.9) beats · min−1 at 105 min (n = 13) compared with 145.1 (14.4) beats · min−1 for M. Sweat rates and evaporation rates from the clothing were lower and average skin temperature () was higher for F. The increase in rectal temperature (T re) was significantly faster for the F, increasing 1.52 (0.29)°C after 105 min compared with an increase of 1.37 (0.29)°C for M. Tolerance times were significantly longer for M [142.9 (24.5) min] than for F [119.3 (17.3) min]. Partitional calorimetric estimates of heat storage (S) revealed that although the rate of S was similar between genders [42.1 (6.6) and 46.1 (9.7) W · m−2 for F and M, respectively], S expressed per unit of total mass was significantly lower for F [7.76 (1.44) kJ · kg−1] compared with M [9.45 (1.26) kJ · kg−1]. When subjects were matched for body fatness (n = 8 F and 8 M), tolerance times [124.5 (14.7) and 140.3 (27.4) min for F and M, respectively] and S [8.67 (1.44) and 9.39 (1.05) kJ · kg−1 for F and M, respectively] were not different between the genders. It was concluded that females are at a thermoregulatory disadvantage compared with males when wearing protective clothing and exercising in a hot environment. This disadvantage can be attributed to the lower specific heat of adipose versus non-adipose tissue and a higher percentage body fatness. Accepted: 31 October 1997  相似文献   

6.
The present experiment was designed to study the importance of strength and muscle mass as factors limiting maximal oxygen uptake (O2 max ) in wheelchair subjects. Thirteen paraplegic subjects [mean age 29.8 (8.7) years] were studied during continuous incremental exercises until exhaustion on an arm-cranking ergometer (AC), a wheelchair ergometer (WE) and motor-driven treadmill (TM). Lean arm volume (LAV) was estimated using an anthropometric method based upon the measurement of various circumferences of the arm and forearm. Maximal strength (MVF) was measured while pushing on the rim of the wheelchair for three positions of the hand on the rim (−30°, 0° and +30°). The results indicate that paraplegic subjects reached a similar O2 max [1.23 (0.34) l · min−1, 1.25 (0.38) l · min−1, 1.22 (0.18) l · min−1 for AC, TM and WE, respectively] and O2 max /body mass [19.7 (5.2) ml · min−1 · kg−1, 19.5 (6.14) ml · min−1 · kg−1, 19.18 (4.27) ml · min−1 · kg−1 for AC, TM and WE, respectively on the three ergometers. Maximal heart rate f c max during the last minute of AC (173 (17) beats · min−1], TM [168 (14) beats · min−1], and WE [165 (16) beats · min−1], were correlated, but f c max was significantly higher for AC than for TM (P<0.03). There were significant correlations between MVF and LAV (P<0.001) and between the MVF data obtained at different angles of the hand on the rim [311.9 (90.1) N, 313.2 (81.2) N, 257.1 (71) N, at −30°, 0° and +30°, respectively]. There was no correlation between O2 max and LAV or MVF. The relatively low values of f c max suggest that O2 max was, at least in part, limited by local aerobic factors instead of central cardiovascular factors. On the other hand, the lack of a significant correlation between O2 max and MVF or muscle mass was not in favour of muscle strength being the main factor limiting O2 max in our subjects. Accepted: 31 January 1997  相似文献   

7.
We used tritium-labeled water to measure total body water, water influx (which approximated oxidative water production) and water efflux in free-flying tippler pigeons (Columba livia) during flights that lasted on average 4.2 h. At experimental air temperatures ranging from 18 to 27 °C, mean water efflux by evaporation and excretion [6.3 ± 1.3 (SD) ml · h−1, n = 14] exceeded water influx from oxidative water and inspired air (1.4 ± 0.7 ml · h−1, n = 14), and the birds dehydrated at 4.9 ± 0.9 ml · h−1. This was not significantly different from gravimetrically measured mass loss of 6.2 ± 2.1 g · h−1 (t = 1.902, n = 14, P>0.05). This flight-induced dehydration resulted in an increase in plasma osmolality of 4.3 ± 3.0 mosmol · kg−1 · h−1 during flights of 3–4 h. At 27 °C, the increase in plasma osmolality above pre-flight levels (ΔP osm = 7.6±4.29 mosmol · kg−1 · h−1, n = 6) was significantly higher than that at 18 °C (ΔP osm = 0.83±2.23 mosmol · kg−1 · h−1, (t = 3.43, n = 6, P < 0.05). Post-flight haematocrit values were on average 1.1% lower than pre-flight levels, suggesting plasma expansion. Water efflux values during free flight were within 9% of those in the one published field study (Gessaman et al. 1991), and within the range of values for net water loss determined from mass balance during wind tunnel experiments (Biesel and Nachtigall 1987). Our net water loss rates were substantially higher than those estimated by a simulation model (Carmi et al. 1992) suggesting some re-evaluation of the model assumptions is required. Accepted: 8 April 1997  相似文献   

8.
Fifteen young adult Singaporean male physical education students maximum oxygen consumption [(O2max) = 56 (4.7) ml · kg−1 · min−1] performed three prolonged runs in a counterbalanced design. The running bouts varied in time (40 vs 60 min) and intensity (70% vs 80% O2 max ). Each prolonged run was separated by 7 days. The running economy (RE) at 10.8 km · h−1 during 10-min running bouts was measured before (RE1) and after (RE2) each prolonged run. A control study involved monitoring RE at 10.8 km · h−1 before and after 60 min rest. There were no differences between RE1 and RE2 values during the control run. However, there were differences between RE1 and RE2 values when separated by a prolonged run. For example, the mean (SD) changes in oxygen consumption (ml · kg−1 · min−1) values were 38.2 (2.5) versus 40.1 (2.6) (40 min at 80% O2 max ), 38.9 (2.8) versus 41.5 (2.6) (60 min at 70% O2 max ), and 39.0 (3.1) versus 42.7 (2.9) (60 min at 80% O2 max ; P < 0.01). The results of this investigation support the hypothesis that RE deteriorates during prolonged running, and that the magnitude of the deterioration in RE increases with both increasing exercise intensity and duration. Accepted: 14 July 1997  相似文献   

9.
Repair effects of rutin and quercetin on purine deoxynucleotide radical cations were studied using pulse radiolysis technique. On electron pulse irradiation of N2 saturated deoxynucleotide aqueous solution containing 20 mmol/L K2S2O8, 200 mmol/Lt-BuOH and rutin or quercetin, the transient absorption spectra of the deoxynucleotide radical cations decayed quickly. At the same time, the spectra of flavonoid phenoxyl radicals formed within several dozen microseconds. The results indicated that deoxynucleotide radical cations can be repaired by flavonoids. The rate constants of the repair reactions were 3.8 ×108-4.4 ×108 mol−1 · L · s−1 and 1.3×108-1.8×108 mol−1 · L · s−1 for dAMP and dGMP radical cations, respectively.  相似文献   

10.
Repair effects of rutin and quercetin on purine deoxynucleotide radical cations were studied using pulse radiolysis technique. On electron pulse irradiation of N2 saturated deoxynucleotide aqueous solution containing 20 mmol/L K2S2O8, 200 mmol/L f-BuOH and rutin or quercetin, the transient absorption spectra of the deoxynucleotide radical cations decayed quickly. At the same time, the spectra of flavonoid phenoxyl radicals formed within several dozen microseconds. The results indicated that deoxynucleotide radical cations can be repaired by flavonoids. The rate constants of the repair reactions were 3.8 × 108-4.4×108 mol-1 · L · s-1 and 1.3×108-1.8×108 mol-1 · L · s-1 for dAMP and dGMP radical cations, respectively.  相似文献   

11.
The purposes of this study were to determine whether running economy (RE) is adversely affected following intense interval bouts of 10 × 400-m running, and whether there is an interaction effect between RE and recovery duration during the workouts. Twelve highly trained male endurance athletes [maximal oxygen consumption; O2 max =72.5 (4.3) ml·kg−1·min−1; mean (SD)] performed three interval running workouts of 10 × 400 m with a minimum of 4 days between runs. Recovery duration between the repetitions was randomly assigned at 60, 120 or 180 s. The velocity for each 400-m run was determined from a treadmill O2 max test. The average running velocity was 357.9 (9.0) m · min−1. Following the workout, the rating of perceived exertion (RPE) increased significantly (P < 0.01) as recovery duration between the 400-m repetitions decreased (14.4, 16.1, and 17.7 at 180s, 120s, and 60 s recovery, respectively). Prior to and following each workout, RE was measured at speeds of 200 and 268 m · min−1. Changes in RE from pre- to post-workout, as well as heart rate (HR) and respiratory exchange ratio (R) were similar for the three recovery conditions. When averaged across conditions, oxygen consumption (O2) increased significantly (P < 0.01) from pre- to post-test (from 38.5 to 40.5 ml · kg−1 · min−1 at 200 m · min−1, and from 53.1 to 54.5 ml · kg−1 · min−1 at 268 m · min−1, respectively). HR increased (from 124 to 138, and from 151 to 157 beats · min−1 respectively) and R decreased (from 0.90 to 0.78, and from 0.93 to 0.89, respectively) at 200 and 268 m · min−1, respectively (P < 0.01). This study showed that RE can be perturbed after a high-intensity interval workout and that the changes in O2, HR and R were independent of the recovery duration between the repetitions. Accepted: 23 June 1997  相似文献   

12.
 To investigate the role of fluid shifts during the short-term adjustment to acute hypobaric hypoxia (AHH), the changes in lower limb (LV) and forearm volumes (FV) were measured using a strain-gauge plethysmograph technique in ten healthy volunteers exposed to different altitudes (450 m, 2500 m, 3500 m, 4500 m) in a hypobaric chamber. Arterial blood pressure, heart rate, arterial oxygen saturation (S aO2), endtidal gases, minute ventilation and urine flow were also determined. A control experiment was performed with an analogous protocol under normobaric normoxic conditions. The results showed mean decreases both in LV and FV of −0.52 (SD 0.39) ml · 100 ml−1 and −0.65 (SD 0.32) ml · 100 ml−1, respectively, in the hypoxia experiments [controls: LV −0.28 (SD 0.37), FV −0.41 (SD 0.47) ml · 100 ml−1]. Descent to normoxia resulted in further small but not significant decreases in mean LV [−0.02 (SD 0.11) ml · 100 ml−1], whereas mean FV tended to increase slightly [ + 0.02 (SD 0.14) ml · 100 ml−1]; in the control experiments mean LV and FV decreased continuously during the corresponding times [−0.19 (SD 0.31), −0.18 (SD 0.10) ml · 100 ml−1, respectively]. During the whole AHH, mean urine flow increased significantly from 0.84 (SD 0.41) ml · min−1 to 3.29 (SD 1.43) ml · min−1 in contrast to the control conditions. We concluded that peripheral fluid volume shifts form a part of the hypoxia-induced acute cardiovascular changes at high altitude. In contrast to the often reported formation of peripheral oedema after prolonged exposure to hypobaric hypoxia, the results provided no evidence for the development of peripheral oedema during acute induction to high altitude. However, the marked increase in interindividual variance in S aO2 and urine flow points to the appearance of the first differences in the short-term adjustment even after 2 h of acute hypobaric hypoxia. Accepted: 27 August 1996  相似文献   

13.
Using 23 elite male athletes (8 cyclists, 7 kayakists, and 8 swimmers), the contribution of the anaerobic energy system to the time to exhaustion (t lim) at the minimal exercise intensity (speed or power) at which maximal oxygen uptake (O2 max) occurs (I V˙O2 max) was assessed by analysing the relationship between the t lim and the accumulated oxygen deficit (AOD). After 10-min warming up at 60% of O2 max, the exercise intensity was increased so that each subject reached his I V˙O2max in 30 s and then continued at that level until he was exhausted. Pre-tests included a continuous incremental test with 2 min steps for determining the I V˙O2max and a series of 5-min submaximal intensities to collect the data that would allow the estimation of the energy expenditure at I V˙O2max . The AOD for the t lim exercise was calculated as the difference between the above estimation and the accumulated oxygen uptake. The mean percentage value of energy expenditure covered by anaerobic metabolism was 15.2 [(SD 6)%, range 8.9–24.1] with significant differences between swimmers and kayakists (16.8% vs 11.5%, P≤0.05) and cyclists and kayakists (16.4% vs 11.5%, P≤0.05). Absolute AOD values ranged from 26.4 ml · kg−1 to 83.6 ml · kg−1 with a mean value of 45.9 (SD 18) ml · kg−1. Considering all the subjects, the t lim was found to have a positive and significant correlation with AOD (r = 0.62, P≤0.05), and a negative and significant correlation with O2 max (r = −0.46, P≤0.05). The data would suggest that the contribution of anaerobic processes during exercise performed at I V˙O2max should not be ignored when t lim is used as a supplementary parameter to evaluate specific adaptation of athletes. Accepted: 17 December 1996  相似文献   

14.
The purpose of this study was to compare various methods and criteria used to identify the anaerobic threshold (AT), and to correlate the AT obtained with each other and with running performance. Furthermore, a number of additional points throughout the entire range of lactate concentrations [La] were obtained and correlated with performance. A group of 19 runners [mean age 33.7 (SD 9.6) years, height 173 (SD 6.3) cm, body mass 68.3 (SD 5.4) kg, maximal O2 uptake (O2 max ) 55.2 (SD 5.9) ml · kg−1 · min−1] performed a maximal multistage treadmill test (1 km · h−1 every 3.5 min) with blood sampling at the end of each stage while running. All AT points selected (visual [La], 4 mmol · l−1 [La], 1 mmol · l−1 above baseline, log-log breakpoint, and 45° tangent to the exponential regression) were highly correlated one with another and with performance (r > 0.90) even when there were many differences among the AT (P < 0.05). The additional points (ranging from 3 to 8 mmol · l−1 [La], 1 to 6 mmol · l−1 [La] above the baseline, and 30 to 70° tangent to the exponential curve of [La]) were also highly correlated with performance (r > 0.90). These results failed to demonstrate a distinct AT because many points of the curve provided similar information. Intercorrelations and correlations between AT and performance were, however, reduced when AT were expressed as the percentage of maximal treadmill speed obtained at AT or percentage of O2 max . This would indicate that different attributes of aerobic performance (i.e. maximal aerobic power, running economy and endurance) are measured when manipulating units. Thus, coaches should be aware of these results when they prescribe an intensity for training and concentrate more on the physiological consequences of a chosen [La] rather than on a “threshold”. Accepted: 22 October 1997  相似文献   

15.
Nitrogen (N) and energy (E) requirements of the phyllostomid fruit bat, Artibeus jamaicensis, and the pteropodid fruit bat Rousettus aegyptiacus, were measured in adults that were fed on four experimental diets. Mean daily food intake by A. jamaicensis and R. aegyptiacus ranged from 1.1–1.6 times body mass and 0.8–1.0 times body mass, respectively. Dry matter digestibility and metabolizable E coefficient were high (81.1% and 82.4%, respectively) for A. jamaicensis and (77.5% and 78.0%, respectively) for R. aegyptiacus. Across the four diets, bats maintained constant body mass with mean metabolizable E intakes ranging from 1357.3 kJ · kg−0.75 · day−1 to 1767.3 kJ · kg−0.75 · day−1 for A. jamaicensis and 1282.6–1545.2 kJ · kg−0.75 · day−1 for R. aegyptiacus. Maintenance E costs were high, in the order of 3.6–5.4 times the basal metabolic rate (BMR). It is unlikely that the E intakes that we observed represent a true measure of maintenance E requirements. All evidence seems to indicate that fruit bats are E maximizers, ingesting more E than required and regulating storage by adjusting metabolic output. We suggest that true maintenance E requirements are substantially lower than what we observed. If it follows the eutherian norm of two times the BMR, fruit bats must necessarily over-ingest E on low-N fruit diet. Dietary E content did affect N metabolism of A. jamaicensis. On respective low- and high-E diets, metabolic fecal N were 0.492 mg N · g−1 and 0.756 mg N · g−1 dry matter intake and endogenous urinary N losses were 163.31 mg N · kg−0.75 · day−1 and 71.54 mg N · kg−0.75 · day−1. A. jamaicensis required 332.3 mg · kg−0.75 · day−1 and 885.3 mg · kg−0.75 · day−1 of total N on high- and low-E diets, respectively, and 213.7 mg · kg−0.75 · day−1 of truly digestible N to achieve N balance. True N digestibilities were low (29% and 49%) for low- and high-E diets, respectively. For R. aegyptiacus, metabolic fecal N and endogenous urinary N losses were 1.27 mg N · g−1 dry matter intake and 96.0 mg N · kg−0.75 · day−1, respectively, and bats required 529.8 mg · kg−0.75 · day−1 (total N) or 284.0 mg · kg−0.75 · day−1 (truly digestible N). True N digestibility was relatively low (50%). Based on direct comparison, we found no evidence that R. aegyptiacus exhibits a greater degree of specialization in digestive function and N retention than A. jamaicensis. When combined with results from previous studies, our results indicate that all fruit bats appear to be specialized in their ability to retain N when faced with low N diet. Accepted: 24 November 1998  相似文献   

16.
The purpose of the present study was to investigate the effect of exercise induced hyperventilation and hypocapnia on airway resistance (R aw), and to try to answer the question whether a reduction of R aw is a mechanism contributing to the increase of endurance time associated with a reduction of exercise induced hyperventilation as for example has been observed after respiratory training. Eight healthy volunteers of both sexes participated in the study. Cycling endurance tests (CET) at 223 (SD 47) W, i.e. at 74 (SD 5)% of the subject's peak exercise intensity, breathing endurance tests and body plethysmograph measurements of pre- and postexercise R aw were carried out before and after a 4-week period of respiratory training. In one of the two CET before the respiratory training CO2 was added to the inspired air to keep its end-tidal concentration at 5.4% to avoid hyperventilatory hypocapnia (CO2-test); the other test was the control. The pre-exercise values of specific expiratory R aw were 8.1 (SD 2.8), 6.8 (SD 2.6) and 8.0 (SD 2.1) cm H2O · s and the postexercise values were 8.5 (SD 2.6), 7.4 (SD 1.9) and 8.0 (SD 2.7) cm H2O · s for control CET, CO2-CET and CET after respiratory training, respectively, all differences between these tests being nonsignificant. The respiratory training significantly increased the respiratory endurance time during breathing of 70% of maximal voluntary ventilation from 5.8 (SD 2.9) min to 26.7 (SD 12.5) min. Mean values of the cycling endurance time (t cend) were 22.7 (SD 6.5) min in the control, 19.4 (SD 5.4) min in the CO2-test and 18.4 (SD 6.0) min after respiratory training. Mean values of ventilation ( E) during the last 3␣min of CET were 123 (SD 35.8) l · min−1 in the control, 133.5 (SD 35.1) l · min−1 in the CO2-test and 130.9 (SD 29.1) l · min−1 after respiratory training. In fact, six subjects ventilated more and cycled for a shorter time, whereas two subjects ventilated less and cycled for a longer time after the respiratory training than in the control CET. In general, the subjects cycled longer the lower the E, if all three CET are compared. It is concluded that R aw measured immediately after exercise is independent of exercise-induced hyperventilation and hypocapnia and is probably not involved in limiting t cend, and that t cend at a given exercise intensity is shorter when E is higher, no matter whether the higher E occurs before or after respiratory training or after CO2 inhalation. Accepted: 11 September 1996  相似文献   

17.
The assumption that working on board ship is more strenuous than comparable work ashore was investigated in this study. Various physiological parameters (O2, CO2, E and HR) have been measured to determine the energy expenditure of subjects walking slowly on a moving platform (ship motion simulator). Twelve subjects (eight men and four women) walked either freely on the floor or on a treadmill at a speed of 1 m · s−1. Platform motion was either in a heave, pitch or roll mode. These three conditions were compared with a control condition in which the platform remained stationary. The results showed that during pitch and roll movements of the platform, the energy expenditure for the same walking task was about 30% higher than under the stationary control condition (3.6 J · kg−1 · m−1 vs 2.5 J · kg−1 · m−1, P < 0.05) for both walking on a treadmill and free walking. The heart rate data supported the higher energy expenditure results with an elevation of the heart rate (112 beats · min−1 vs 103 beats · min−1, P < 0.05). The heave condition did not differ significantly from the stationary control condition. Pitch and roll were not significantly different from each other. During all experimental conditions free walking resulted in a higher energy cost of walking than treadmill walking (3.5 J · kg−1 · m−1 vs 2.7 J · kg−1 · m−1, P < 0.05) at the same average speed. The results of this experiment were interpreted as indicating that the muscular effort, needed for maintaining balance when walking on a pitching or rolling platform, resulted in a significantly higher work load than similar walking on a stable or a heaving floor, independent of the mode of walking. These results explain in part the increased fatigue observed when a task is performed on a moving platform. Accepted: 3 October 1997  相似文献   

18.
Summary Capture by angling was used to induce burst exercise in northern pike. By 3 h after exercise blood lactate had risen to levels of 15.2 mmol l−1 (Fig. 2), which greatly exceeded the maximum post-exercise levels (4.0 mmol l−1) previously reported for muskellunge, a close relative of pike. White muscle lactate level was high, 41.8 mmol kg−1, immediately after capture but declined to 23.2 mmol kg−1 by 6 h (Fig. 2). Blood glucose level more than doubled after exercise and remained elevated even after 96 h of recovery (Fig. 2). During the first 6 h after angling, pike disposed of 9.57 mmol (861 mg) of lactate per kg body weight. A whole body metabolic rate of 153 mg O2 kg−1 h−1 is sufficient to account for this rate of lactate removal through oxidation (Table 3). However, the metabolic rate of the highly oxidative organs and tissues (red muscle, gills, liver, kidney, heart, and spleen) must be very high (>1,000 mg O2 kg−1 h−1) to oxidize even 60% of the lactate that disappeared from pike after exercise (Fig. 5). Mortality of pike from angling stress was less than 3%.  相似文献   

19.
The aim of this research was to investigate the physiological responses and, in particular, the participation of lactic acid anaerobic metabolism in aerobic dance, which is claimed to be pure aerobic exercise. In contrast to previous studies, that have put subjects in very unfamiliar situations, the parameters were monitored in the familiar context of gymnasium, practice routine and habitual instructor. A group of 30 skilled fairly well-trained women performed their usual routine,␣a combination of the two styles: low (LI) and high impact (HI), and were continuously monitored for heart rate (HR) and every 8 min for blood lactate concentration ([La]b). Of the group, 15 were tested to determine their maximal aerobic power (O2max) using a cycleergometer. They were also monitored during the routine for oxygen uptake (O2) by a light telemetric apparatus. The oxygen pulses of the routine and of the corresponding exercise intensity in the incremental test were not statistically different. The mean values in the exercise session were: peak HR 92.8 (SD 7.8)% of the subject's maximal theoretical value, peak O2 99.5 (SD 12.4)% of O2max, maximal [La]b 6.1 (SD 1.7) mmol · l−l, and mean 4.8 (SD 1.3) mmol · l−l. Repeated measures ANOVA found statistically significant differences between the increasing [La]b values (P < 0.001). In particular, the difference between the [La]b values at the end of the mainly LI phase and those of the LI-HI combination phase, and the difference between the samples during the combination LI-HI phase were both statistically significant (both P= 0.002 and P= 0.002). The similar oxygen pulses confirmed the validity of the present experiment design and the reliability of HR monitoring in this activity. The HR, O2 and, above all, the increase of [La]b to quite high values, showing a non steady state, demonstrated the high metabolic demand made by this activity that involved lactic acid metabolism at a much higher level than expected. Accepted: 23 September 1997  相似文献   

20.
The influx of glucose into the brain and plasma glucose disappearance were estimated in rainbow trout (Oncorhynchus mykiss) intravenously injected (1 ml · kg−1 body weight) with a single dose (15 μCi · kg−1 body weight) of 3-O-methyl-D-[U-14C]glucose ([U-14C]-3-OMG) at different times (2–160 min), and after intravenous injection at 15 min of increased doses (10–60 μCi · kg−1 body weight) of [U-14C]-3-OMG. Brain and plasma radiotracer concentrations were measured, and several kinetic parameters were calculated. The apparent brain glucose influx showed a maximum after 15–20 min of injection then decreased to a plateau after 80 min. Brain distribution space of 3-OMG increased from 2 min to 20 min reaching equilibrium from that time onwards at a value of 0.14 ml · g−1. The unidirectional clearance of glucose from blood to brain (k1) and the fractional clearance of glucose from brain to blood (k2) were estimated to be 0.093 ml · min−1 · g−1, and 0.867 min−1, respectively. A linear increase was observed in brain and plasma radiotracer concentrations when increased doses of [U-14C]-3-OMG were used. All these findings support a facilitative transport of glucose through the blood-brain barrier of rainbow trout with characteristics similar to those observed in mammals. The injection of different doses of melatonin (0.25–1.0 mg · kg−1) significantly increased brain glucose influx suggesting a possible role for melatonin in the regulation of glucose transport into the brain. Accepted: 26 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号