首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells eventually exit from mitosis during sustained arrest at the spindle checkpoint, without sister chromatid separation and cytokinesis. The resulting tetraploid cells are arrested in the subsequent G1 phase in a p53-dependent manner by the regulatory function of the postmitotic G1 checkpoint. Here we report how the nucleolus plays a critical role in activation of the postmitotic G1 checkpoint. During mitosis, the nucleolus is disrupted and many nucleolar proteins are translocated from the nucleolus into the cytoplasm. Among the nucleolar factors, Myb-binding protein 1a (MYBBP1A) induces the acetylation and accumulation of p53 by enhancing the interaction between p300 and p53 during prolonged mitosis. MYBBP1A-dependent p53 activation is essential for the postmitotic G1 checkpoint. Thus, our results demonstrate a novel nucleolar function that monitors the prolongation of mitosis and converts its signal into activation of the checkpoint machinery.  相似文献   

2.
Plant cells have a variety of shapes crucial for their functions, yet the mechanisms that generate these shapes are poorly understood. Genetic dissection of the trichome (plant hair) branching pathway in Arabidopsis, has uncovered mechanisms and identified genes that control plant cell morphogenesis. The recent identification of one of these genes, ZWICHEL (ZWI), as a novel member of the kinesin superfamily of microtubule motors provides a starting point for the analysis of the plant cytoskeleton's role in a specific morphogenetic event.  相似文献   

3.
CHO1 is a kinesin-like protein of the mitotic kinesin-like protein (MKLP)1 subfamily present in central spindles and midbodies in mammalian cells. It is different from other subfamily members in that it contains an extra approximately 300 bp in the COOH-terminal tail. Analysis of the chicken genomic sequence showed that heterogeneity is derived from alternative splicing, and exon 18 is expressed in only the CHO1 isoform. CHO1 and its truncated isoform MKLP1 are coexpressed in a single cell. Surprisingly, the sequence encoded by exon 18 possesses a capability to interact with F-actin, suggesting that CHO1 can associate with both microtubule and actin cytoskeletons. Microinjection of exon 18-specific antibodies did not result in any inhibitory effects on karyokinesis and early stages of cytokinesis. However, almost completely separated daughter cells became reunited to form a binulceate cell, suggesting that the exon 18 protein may not have a role in the formation and ingression of the contractile ring in the cortex. Rather, it might be involved directly or indirectly in the membrane events necessary for completion of the terminal phase of cytokinesis.  相似文献   

4.
Whereas somatic cell cytokinesis resolves with abscission of the midbody, resulting in independent daughter cells, germ cell cytokinesis concludes with the formation of a stable intercellular bridge interconnecting daughter cells in a syncytium. While many proteins essential for abscission have been discovered, until recently, no proteins essential for mammalian germ cell intercellular bridge formation have been identified. Using TEX14 as a marker for the germ cell intercellular bridge, we show that TEX14 co-localizes with the centralspindlin complex, mitotic kinesin-like protein 1 (MKLP1) and male germ cell Rac GTPase-activating protein (MgcRacGAP) and converts these midbody matrix proteins into stable intercellular bridge components. In contrast, septins (SEPT) 2, 7 and 9 are transitional proteins in the newly forming bridge. In cultured somatic cells, TEX14 can localize to the midbody in the absence of other germ cell-specific factors, suggesting that TEX14 serves to bridge the somatic cytokinesis machinery to other germ cell proteins to form a stable intercellular bridge essential for male reproduction.  相似文献   

5.
Cytokinesis is under active investigation in each of the dominant experimental model systems. During 1996 and 1997, several developments necessitated the reassessment of the prevailing model for cytokinesis. In addition, the inventory of proteins required for cytokinesis has grown considerably. However, a molecular understanding of cytokinesis still remains elusive.  相似文献   

6.
Plant cytokinesis requires an orchestrated interplay of membrane and cytoskeleton dynamics, which results in the formation of the membrane that partitions the cytoplasm of the dividing cell. Until recently, phragmoplast-assisted cytokinesis of somatic cells was regarded as mechanistically different from 'non-conventional' modes of cytokinesis, such as endosperm cellularisation or male meiotic cytokinesis. However, features that are similar among these diverse modes of cytokinesis have now been revealed by electron tomography, suggesting common underlying mechanisms that are also supported by genetic and molecular studies. Further insight into the complex process of cytokinesis has been gained from the identification of new components and from the analysis of known components.  相似文献   

7.
The mitotic kinesin-like protein (Mklp-1) localizes in the nucleus during interphase due to the presence of nuclear localization signal(s) [NLS(s)] within its sequence. Here, we mapped two NLSs to be 899SRKRRSST906 and 949KRKKP953 in the tail domain of Mklp-1, and showed that ectopic expression of a mutant Mklp-1 without the NLSs leads to cell cycle arrest at cytokinesis, indicating that the NLSs are necessary for Mklp-1 to execute its normal function during cell division. Furthermore, mutation of two serine residues in the first NLS to aspartic acid, which mimics phosphorylation, attenuated its nuclear localization function, suggesting that the function of this NLS might be regulated by phosphorylation.  相似文献   

8.
Liprins have been known for years to play an essential role in setting up functional synapses in the nervous system. On the other hand, these proteins had been first identified in non-neuronal cells as multivalent proteins that may affect the integrin-mediated interactions of the cells with extracellular matrix ligands. Although the research on the function of liprins in non-neuronal cells has been quiescent for several years, a number of recent findings are putting them back on stage again as important players also in the regulation of non-neuronal cell motility, and possibly of tumor cell behavior. The aim of this review is to highlight the findings supporting the importance of liprins as central regulators of cell adhesion and motility, making them an interesting family of proteins to be considered for future studies on the mechanisms regulating cell migration.  相似文献   

9.
Membranes of eukaryotic cells contain high lipid‐order sterol‐rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher‐plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell‐plate formation in Arabidopsis relies on sterol‐ and DYNAMIN‐RELATED PROTEIN1A (DRP1A)‐dependent endocytosis. However, functional relationships between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cytokinesis have not been elucidated. Using ratiometric live imaging of lipid order‐sensitive fluorescent probes, we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid‐order membrane domain. The cell‐plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol composition. Sterols co‐localize with DRP1A at the cell plate, and DRP1A accumulates in detergent‐resistant membrane fractions. Modifications of sterol concentration or composition reduce cell‐plate membrane order and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate. Our findings provide evidence that the cell plate represents a high lipid‐order domain, and pave the way to explore potential feedback between lipid order and function of dynamin‐related proteins during cytokinesis.  相似文献   

10.
Plant cytokinesis involves the formation of a cell plate. This is accomplished with the help of the phragmoplast, a plant-specific cytokinetic apparatus that consists of microtubules and microfilaments. During centrifugal growth of the cell plate, the phragmoplast expands to keep its microtubules at the leading edge of the cell plate. Recent studies have revealed potential regulators of phragmoplast microtubule dynamics and the involvement of a mitogen-activated protein kinase cascade in the control of phragmoplast expansion. These studies provide new insights into the molecular mechanisms of plant cytokinesis.  相似文献   

11.
Functional analysis of a Bcl-xL phosphorylation mutant series has revealed that cells expressing Bcl-xL(Ser49Ala) mutant are less stable at G2 checkpoint after DNA damage and enter cytokinesis more slowly after microtubule poisoning, than cells expressing wild-type Bcl-xL. These effects of Bcl-xL(Ser49Ala) mutant seem to be separable from Bcl-xL function in apoptosis. Bcl-xL(Ser49) phosphorylation is cell cycle-dependent. In synchronized cells, phospho-Bcl-xL(Ser49) appears during the S phase and G2, whereas it disappears rapidly in early mitosis during prometaphase, metaphase and early anaphase, and re-appears during telophase and cytokinesis. During DNA damage-induced G2 arrest, an important pool of phospho-Bcl-xL(Ser49) accumulates in centrosomes which act as essential decision centers for progression from G2 to mitosis. During telophase/cytokinesis, phospho-Bcl-xL(Ser49) is found with dynein motor protein. In a series of in vitro kinase assays, specific small interfering RNA and pharmacological inhibition experiments, polo kinase 3 (PLK3) was implicated in Bcl-xL(Ser49) phosphorylation. These data indicate that, during G2 checkpoint, phospho-Bcl-xL(Ser49) is another downstream target of PLK3, acting to stabilize G2 arrest. Bcl-xL phosphorylation at Ser49 also correlates with essential PLK3 activity and function, enabling cytokinesis and mitotic exit.  相似文献   

12.
Aurora-C, a member of the Aurora kinase family, is implicated in the regulation of mitosis. In contrast to Aurora-A and Aurora-B its cellular localization and functions are poorly characterized. TACC1 protein belongs to the transforming acidic coiled-coil family shown to interact with the Aurora kinases. In the present study we analyzed the interaction between Aurora-C and TACC1 by means of immunofluorescence (IF), co-immunoprecipitation (IP) and in vitro phosphorylation experiments. We demonstrated that Aurora-C and TACC1 proteins co-localize to the midbody of HeLa cells during cytokinesis. Immunoprecipitated TACC1 from HeLa cell extracts was associated with Aurora-C. In addition, the interaction of the two proteins was tested by analyzing the phosphorylation of TACC1 in vitro. The results demonstrated that TACC1 is phosphorylated by Aurora-C on a serine at position 228. In conclusion, the study demonstrated that TACC1 localizes at the midbody during cytokinesis and interacts with and is a substrate of Aurora-C, which warrant further investigation in order to elucidate the functional significance of this interaction.  相似文献   

13.
In Myxococcus xanthus morphogenetic cell movements constitute the basis for the formation of spreading vegetative colonies and fruiting bodies in starving cells. M. xanthus cells move by gliding and gliding motility depends on two polarly localized engines, type IV pili pull cells forward, and slime extruding nozzle-like structures appear to push cells forward. The motility behaviour of cells provides evidence that the two engines are localized to opposite poles and that they undergo polarity switching. Several proteins involved in regulating polarity switching have been identified. The cell surface-associated C-signal induces the directed movement of cells into nascent fruiting bodies. Recently, the molecular nature of the C-signal molecule was elucidated and the motility parameters regulated by the C-signal were identified. From the effect of the C-signal on cell behaviour it appears that the C-signal inhibits polarity switching of the two motility engines. This establishes a connection between cell polarity, signalling by an intercellular signal and morphogenetic cell movements during fruiting body formation.  相似文献   

14.
Several different cytokinetic mechanisms operate in flowering plants. During 'conventional' somatic cytokinesis, the mitotic spindle remnants give rise to a phragmoplast that serves as a framework for the assembly of the cell plate. Cell plates fuse with the parental plasma membrane at specific cortical sites previously defined by the preprophase band of microtubules. In nuclear endosperms, meiocytes, and gametophytic cells, cytokinesis occurs without preprophase bands. The position of the new cell walls is determined instead by interacting arrays of microtubules that radiate from the nuclear envelope surfaces. The nuclear cytoplasmic domains defined by these microtubule arrays demarcate the boundaries of the future cells. Recent studies have provided new insights into the ultrastructural similarities and dissimilarities between conventional and non-conventional cytokinesis. Numerous proteins have also been localized to cytokinesis-related cytoskeletal arrays and cell plates but the functions of most of them have yet to be elucidated.  相似文献   

15.
Drosophila cellularization and animal cell cytokinesis rely on the coordinated functions of the microfilament and microtubule cytoskeletal systems. To identify new proteins involved in cellularization and cytokinesis, we have conducted a biochemical screen for microfilament/microtubule-associated proteins (MMAPs). 17 MMAPs were identified; seven have been previously implicated in cellularization and/or cytokinesis, including KLP3A, Anillin, Septins, and Dynamin. We now show that a novel MMAP, Lava Lamp (Lva), is also required for cellularization. Lva is a coiled-coil protein and, unlike other proteins previously implicated in cellularization or cytokinesis, it is Golgi associated. Our functional analysis shows that cellularization is dramatically inhibited upon injecting anti-Lva antibodies (IgG and Fab) into embryos. In addition, we show that brefeldin A, a potent inhibitor of membrane trafficking, also inhibits cellularization. Biochemical analysis demonstrates that Lva physically interacts with the MMAPs Spectrin and CLIP190. We suggest that Lva and Spectrin may form a Golgi-based scaffold that mediates the interaction of Golgi bodies with microtubules and facilitates Golgi-derived membrane secretion required for the formation of furrows during cellularization. Our results are consistent with the idea that animal cell cytokinesis depends on both actomyosin-based contraction and Golgi-derived membrane secretion.  相似文献   

16.
KEULE is required for cytokinesis in Arabidopsis thaliana. We have positionally cloned the KEULE gene and shown that it encodes a Sec1 protein. KEULE is expressed throughout the plant, yet appears enriched in dividing tissues. Cytokinesis-defective mutant sectors were observed in all somatic tissues upon transformation of wild-type plants with a KEULE-green fluorescent protein gene fusion, suggesting that KEULE is required not only during embryogenesis, but at all stages of the plant's life cycle. KEULE is characteristic of a Sec1 protein in that it appears to exist in two forms: soluble or peripherally associated with membranes. More importantly, KEULE binds the cytokinesis-specific syntaxin KNOLLE. Sec1 proteins are key regulators of vesicle trafficking, capable of integrating a large number of intra- and/or intercellular signals. As a cytokinesis-related Sec1 protein, KEULE appears to represent a novel link between cell cycle progression and the membrane fusion apparatus.  相似文献   

17.
During cytokinesis, global and equatorial pathways deform the cell cortex in a stereotypical manner, which leads to daughter cell separation. Equatorial forces are largely generated by myosin-II and the actin crosslinker, cortexillin-I. In contrast, global mechanics are determined by the cortical cytoskeleton, including the actin crosslinker, dynacortin. We used direct morphometric characterization and laser-tracking microrheology to quantify cortical mechanical properties of wild-type and cortexillin-I and dynacortin mutant Dictyostelium cells. Both cortexillin-I and dynacortin influence cytokinesis and interphase cortical viscoelasticity as predicted from genetics and biochemical data using purified dynacortin proteins. Our studies suggest that the regulation of cytokinesis ultimately requires modulation of proteins that control the cortical mechanical properties that establish the force-balance that specifies the shapes of cytokinesis. The combination of genetic, biochemical, and biophysical observations suggests that the cell's cortical mechanical properties control how the cortex is remodeled during cytokinesis.  相似文献   

18.
Present in organisms ranging from yeast to man, homologues of the Drosophila Polo kinase control multiple stages of cell division. At the onset of mitosis, Polo-like kinases (Plks) function in centrosome maturation and bipolar spindle formation, and they contribute to the activation of cyclin-dependent kinase (Cdk)1—cyclin B. Subsequently, they are required for the inactivation of Cdk1 and exit from mitosis. In the absence of Plk function, mitotic cyclins fail to be destroyed, indicating that Plks are important regulators of the anaphase-promoting complex/cyclosome (APC/C), a key component of the ubiquitin-dependent proteolytic degradation pathway. Finally, recent evidence implicates Plks in the temporal and spatial coordination of cytokinesis.  相似文献   

19.
An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1−l). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1−1) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N6-benzyladenine (BAP, 0.75 mg 1−l) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1−l) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further.  相似文献   

20.
Regulation of the meiotic cell cycle in oocytes   总被引:20,自引:0,他引:20  
The mitotic and meiotic cell cycle share many regulators, but there are also important differences between the two processes. The meiotic maturation of Xenopus oocytes has proved useful for understanding the regulation of Cdc2-cyclin-B, a key activator of G2/M progression. New insights have been made recently into the signalling mechanisms that induce G2-arrested oocytes to resume and complete the meiotic cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号