首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
beta-1,4-Galactosyltransferase-I (beta4Gal-T1) transfers galactose from UDP-galactose to N-acetylglucosamine (GlcNAc) residues of the branched N-linked oligosaccharide chains of glycoproteins. In an N-linked biantennary oligosaccharide chain, one antenna is attached to the 3-hydroxyl-(1,3-arm), and the other to the 6-hydroxyl-(1,6-arm) group of mannose, which is beta-1,4-linked to an N-linked chitobiose, attached to the aspargine residue of a protein. For a better understanding of the branch specificity of beta4Gal-T1 towards the GlcNAc residues of N-glycans, we have carried out kinetic and crystallographic studies with the wild-type human beta4Gal-T1 (h-beta4Gal-T1) and the mutant Met340His-beta4Gal-T1 (h-M340H-beta4Gal-T1) in complex with a GlcNAc-containing pentasaccharide and several GlcNAc-containing trisaccharides present in N-glycans. The oligosaccharides used were: pentasaccharide GlcNAcbeta1,2-Manalpha1,6 (GlcNAcbeta1,2-Manalpha1,3)Man; the 1,6-arm trisaccharide, GlcNAcbeta1,2-Manalpha1,6-Manbeta-OR (1,2-1,6-arm); the 1,3-arm trisaccharides, GlcNAcbeta1,2-Manalpha1,3-Manbeta-OR (1,2-1,3-arm) and GlcNAcbeta1,4-Manalpha1,3-Manbeta-OR (1,4-1,3-arm); and the trisaccharide GlcNAcbeta1,4-GlcNAcbeta1,4-GlcNAc (chitotriose). With the wild-type h-beta4Gal-T1, the K(m) of 1,2-1,6-arm is approximately tenfold lower than for 1,2-1,3-arm and 1,4-1,3-arm, and 22-fold lower than for chitotriose. Crystal structures of h-M340H-beta4Gal-T1 in complex with the pentasaccharide and various trisaccharides at 1.9-2.0A resolution showed that beta4Gal-T1 is in a closed conformation with the oligosaccharide bound to the enzyme, and the 1,2-1,6-arm trisaccharide makes the maximum number of interactions with the enzyme, which is in concurrence with the lowest K(m) for the trisaccharide. Present studies suggest that beta4Gal-T1 interacts preferentially with the 1,2-1,6-arm trisaccharide rather than with the 1,2-1,3-arm or 1,4-1,3-arm of a bi- or tri-antennary oligosaccharide chain of N-glycan.  相似文献   

3.
On a way of structural analysis of total N-glycans linked to glycoproteins in royal jelly (Kimura, Y. et al., Biosci. Biotechnol. Biochem., 64, 2109-2120 (2000), Kimura, M. et al., Biosci. Biotechnol. Biochem., 66, 1985-1989 (2002)), we found that some complex type N-glycans containing a beta1-3galactose residue occur on the insect glycoproteins. Up to date, it has been considered that naturally occurring insect glycoproteins do not bear the galactose-containing N-glycans, therefore, in this report we describe the structural analysis of the complex type N-glycans of royal jelly glycoproteins.By a combination of endo- and exo-glycosidase digestions, IS-MS analysis, and 1H-NMR spectroscopy, the structures of the beta1-3 galactose-containing N-glycan were identified as the following; GlcNAcbeta1-2Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc, Manalpha1-3Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc, and Manalpha1-6(Manalpha1-3)Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc. To our knowledge, this is the first report showing that the Galbeta1-3GlcNAcbeta1-4Man unit occurs in N-glycans of insect glycoproteins, indicating a beta1-3 galactosyl transferase and beta1-4GlcNAc transferase (GNT-IV) are expressed in the honeybee cells.  相似文献   

4.
Seko A  Yamashita K 《Glycobiology》2005,15(10):943-951
We characterized a novel member of the beta1,3-N-acetylglucosaminyltransferase (beta3Gn-T) gene family, beta3Gn-T8. A recombinant soluble form of beta3Gn-T8 was expressed in Pichia pastoris (P. pastoris), and its substrate specificity was compared with that of beta3Gn-T2. The two enzymes had similar substrate specificities and recognized tetraantennary N-glycans and 2,6-branched triantennary glycans in preference to 2,4-branched triantennary glycans, biantennary glycans, and lacto-N-neotetraose (LNnT), indicating their specificity for 2,6-branched structures such as [Galbeta1-->4GlcNAcbeta1-->2(Galbeta1-->4GlcNAcbeta1-->6)Manalpha1--> 6Man]. Interestingly, when soluble recombinant beta3Gn-T2 and beta3Gn-T8 were mixed, the Vmax/Km value of the mixture was 9.3- and 160-fold higher than those of individual beta3Gn-T2 and -T8, respectively. Sephacryl S-300 gel filtration of the enzymes revealed that apparent molecular weights of each beta3Gn-T2, beta3Gn-T8, and the mixture were 90-160, 45-65, and 110-210 kDa, respectively, suggesting that beta3Gn-T2 and -T8 can form a complex with enhanced enzymatic activity. This is the first report demonstrating that in vitro mixed glycosyltransferases show enhanced enzymatic activity through the formation of a heterocomplex. These results suggested that beta3Gn-T8 and beta3Gn-T2 are cooperatively involved in the elongation of specific branch structures of multiantennary N-glycans.  相似文献   

5.
Poly-N-acetyllactosamine is a unique carbohydrate that can carry various functional oligosaccharides, such as sialyl Lewis X. It has been shown that the amount of poly-N-acetyllactosamine is increased in N-glycans, when they contain Galbeta1-->4GlcNAcbeta1-->6(Galbeta1-->4GlcNAcbeta1 -->2)Manalpha1-->6 branched structure. To determine how this increased synthesis of poly-N-acetyllactosamines takes place, the branched acceptor was incubated with a mixture of i-extension enzyme (iGnT) and beta1, 4galactosyltransferase I (beta4Gal-TI). First, N-acetyllactosamine repeats were more readily added to the branched acceptor than the summation of poly-N-acetyllactosamines formed individually on each unbranched acceptor. Surprisingly, poly-N-acetyllactosamine was more efficiently formed on Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chain than in Galbeta1-->4GlcNAcbeta1-->6Manalpha-->R, due to preferential action of iGnT on Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chain. On the other hand, galactosylation was much more efficient on beta1,6-linked GlcNAc than beta1,2-linked GlcNAc, preferentially forming Galbeta1-->4GlcNAcbeta1-->6(GlcNAcbeta1-->2)Manalph a1-->6Manbeta -->R. Starting with this preformed acceptor, N-acetyllactosamine repeats were added almost equally to Galbeta1-->4GlcNAcbeta1-->6Manalpha-->R and Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chains. Taken together, these results indicate that the complemental branch specificity of iGnT and beta4Gal-TI leads to efficient and equal addition of N-acetyllactosamine repeats on both side chains of GlcNAcbeta1-->6(GlcNAcbeta1-->2)Manalpha1-->6Manbet a-->R structure, which is consistent with the structures found in nature. The results also suggest that the addition of Galbeta1-->4GlcNAcbeta1-->6 side chain on Galbeta1-->4GlcNAcbeta1-->2Man-->R side chain converts the acceptor to one that is much more favorable for iGnT and beta4Gal-TI.  相似文献   

6.
7.
The serine/threonine O-linked carbohydrates GalNAc alpha and Gal beta 1-3GalNAc alpha, referred to as Tn and T antigens, respectively, appear to be more prevalent in some human carcinomas than in surrounding tissues. Tn/T antigens may represent incomplete synthesis of O-linked oligosaccharides, due to decreased activity of specific glycosyltransferases, or alternatively, increased glycosidases activity in tumors which may expose these internal O-linked oligosaccharide sequences. To explore these possibilities, we measured UDP-Gal:GalNAc alpha-R beta 1-3 galactosyltransferase (beta 3Gal-T) and Gal beta 1-3GalNAc alpha-R beta 1-3 galactosidase in a series of human breast tumors. In addition, glycoproteins extracted from the tumors were separated by SDS-PAGE and stained with the lectins HPA (GalNAc alpha-R reactive) and PNA (Gal beta-3GalNAc alpha-R reactive). The relative levels of HPA- to PNA-reactive glycoproteins in the carcinomas correlated inversely with beta 3Gal-T activities. The results suggest that Tn antigen expression in human breast carcinoma is due in part to low beta 3Gal-T activity, a situation similar to that observed previously in haematopoietic cells of individuals with a condition called Tn syndrome.  相似文献   

8.
Synthesis of parasite specific IgE plays a critical role in the defence against helminth infections. We report here that IgE from serum from Schistosoma mansoni infected mice and Haemonchus contortus infected sheep recognizes complex-type N-glycans from Arabidopsis thaliana, which contain R-GlcNAcbeta1-->4(Fucalpha1-->3)GlcNAcbeta1-Asn (core alpha1-->3-Fuc) and Xylbeta1-->2Manbeta1-->4GlcNAcbeta1-R (core beta1-->2-Xyl) modifications, and honeybee phospholipase A2, which carries N-glycans that contain the core alpha1-->3-Fuc epitope. Evidence is presented that core alpha1-->3-fucosylated N-glycans bind a substantial part of the parasite specific IgE in serum of H. contortus infected sheep. These results suggest that the core alpha1-->3-Fuc antigen may contribute to induction of a Th2 response leading to the production of IgE. In addition we show here that N-glycans carrying core alpha1-->3-Fuc and beta1-->2-Xyl antigens are synthesized by many parasitic helminths and also by the free living nematode Caenorhabditis elegans. Since N-glycans containing the core alpha1-->3-Fuc have also been implicated in honeybee and plant induced allergies, this conserved glycan might represent an important common IgE epitope.  相似文献   

9.
The HNK-1 glycan, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->R, is highly expressed in neuronal cells and apparently plays critical roles in neuronal cell migration and axonal extension. The HNK-1 glycan synthesis is initiated by the addition of beta1,3-linked GlcA to N-acetyllactosamine followed by sulfation of the C-3 position of GlcA. The cDNAs encoding beta1,3-glucuronyltransferase (GlcAT-P) and HNK-1 sulfotransferase (HNK-1ST) have been recently cloned. Among various adhesion molecules, the neural cell adhesion molecule (NCAM) was shown to contain HNK-1 glycan on N-glycans. In the present study, we first demonstrated that NCAM also bears HNK-1 glycan attached to O-glycans when NCAM contains the O-glycan attachment scaffold, muscle-specific domain, and is synthesized in the presence of core 2 beta1,6-N-acetylglucosaminyltransferase, GlcAT-P, and HNK-1ST. Structural analysis of the HNK-1 glycan revealed that the HNK-1 glycan is attached on core 2 branched O-glycans, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->6(Galbeta1-->3)GalNAc. Using synthetic oligosaccharides as acceptors, we found that GlcAT-P and HNK-1ST almost equally act on oligosaccharides, mimicking N- and O-glycans. By contrast, HNK-1 glycan was much more efficiently added to N-glycans than O-glycans when NCAM was used as an acceptor. These results are consistent with our results showing that HNK-1 glycan is minimally attached to O-glycans of NCAM in fetal brain, heart, and the myoblast cell line, C2C12. These results combined together indicate that HNK-1 glycan can be synthesized on core 2 branched O-glycans but that the HNK-1 glycan is preferentially added on N-glycans over O-glycans of NCAM, probably because N-glycans are extended further than O-glycans attached to NCAM containing the muscle-specific domain.  相似文献   

10.
Poly-N-acetyllactosamines are attached to N-glycans, O-glycans, and glycolipids and serve as underlying glycans that provide functional oligosaccharides such as sialyl Lewis(X). Poly-N-acetyllactosaminyl repeats are synthesized by the alternate addition of beta1,3-linked GlcNAc and beta1,4-linked Gal by i-extension enzyme (iGnT) and a member of the beta1,4-galactosyltransferase (beta4Gal-T) gene family. In the present study, we first found that poly-N-acetyllactosamines in N-glycans are most efficiently synthesized by beta4Gal-TI and iGnT. We also found that iGnT acts less efficiently on acceptors containing increasing numbers of N-acetyllactosamine repeats, in contrast to beta4Gal-TI, which exhibits no significant change. In O-glycan biosynthesis, N-acetyllactosamine extension of core 4 branches was found to be synthesized most efficiently by iGnT and beta4Gal-TI, in contrast to core 2 branch synthesis, which requires iGnT and beta4Gal-TIV. Poly-N-acetyllactosamine extension of core 4 branches is, however, less efficient than that of N-glycans or core 2 branches. Such inefficiency is apparently due to competition between a donor substrate and acceptor in both galactosylation and N-acetylglucosaminylation, since a core 4-branched acceptor contains both Gal and GlcNAc terminals. These results, taken together, indicate that poly-N-acetyllactosamine synthesis in N-glycans and core 2- and core 4-branched O-glycans is achieved by iGnT and distinct members of the beta4Gal-T gene family. The results also exemplify intricate interactions between acceptors and specific glycosyltransferases, which play important roles in how poly-N-acetyllactosamines are synthesized in different acceptor molecules.  相似文献   

11.
A prominent lectin in the root tubers of Trichosanthes japonica was purified by affinity chromatography on a porcine stomach mucin-Sepharose column and termed TJA-II. The molecular mass of the native lectin was determined to be 64 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and TJA-II was separated into two different subunits of 33 and 29 kDa in the presence of 2-mercaptoethanol. The respective subunits contained mannose, N-acetylglucosamine, fucose, and xylose. It was determined by equilibrium dialysis to have two equal binding sites per molecule, the association constant toward tritium-labeled Fuc alpha 1-->2Gal beta 1-->3GlcNAc beta 1-->3Gal beta 1-->4GlcOT being K alpha = 3.05 x 10(5) M-1. The precise carbohydrate binding specificity of immobilized TJA-II was studied using various tritium-labeled oligosaccharides. A series of oligosaccharides possessing Fuc alpha 1-->2Gal beta 1--> or GalNAc beta 1--> groups at their nonreducing terminals showed stronger binding ability than ones with Gal beta 1-->GlcNAc (Glc) groups, indicating that TJA-II fundamentally recognizes a beta-galactosyl residue and the binding strength increases on substitution of the hydroxyl group at the C-2 position with a fucosyl or acetylamino group. This lectin column is useful for fractionating oligosaccharides or glycoproteins containing blood group type 1H, type 2H, and Sd antigenic determinants.  相似文献   

12.
13.
We have identified a novel galactose 3-O-sulfotransferase, termed Gal3ST-4, by analysis of an expression sequence tag using the amino acid sequence of human cerebroside 3'-sulfotransferase (Gal3ST-1). The isolated cDNA contains a single open reading frame coding for a protein of 486 amino acids with a type II transmembrane topology. The amino acid sequence of Gal3ST-4 revealed 33%, 39%, and 30% identity to human Gal3ST-1, Gal beta 1-->3/4GlcNAc:-->3'-sulfotransferase (Gal3ST-2) and Gal beta 1-->4GlcNAc:-->3'-sulfotransferase (Gal3ST-3), respectively. The Gal3ST-4 gene comprised at least four exons and was located on human chromosome 7q22. Expression of Gal3ST-4 in COS-7 cells produced a sulfotransferase activity that catalyzes the transfer of [(35)S]sulfate to the C-3' position of Gal beta 1-->3GalNAc alpha 1-O-Bn. Gal3ST-4 recognizes Gal beta 1-->3GalNAc and Gal beta 1-->3(GlcNAc beta 1-->6)GalNAc as good substrates, but not Gal beta 1-->3GalNAc(OH) or Gal beta 1-->3/4GlcNAc. Asialofetuin is also a good substrate, and the sulfation was found exclusively in O-linked glycans that consist of the Gal beta 1-->3GalNAc moiety, suggesting that the enzyme is specific for O-linked glycans. Northern blot analysis revealed that 2.5-kilobase mRNA for the enzyme is expressed extensively in various tissues. These results suggest that Gal3ST-4 is the fourth member of a Gal:-->3-sulfotransferase family and that the four members, Gal3ST-1, Gal3ST-2, Gal3ST-3, and Gal3ST-4, are responsible for sulfation of different acceptor substrates.  相似文献   

14.
15.
The synthesis of alpha-D-galactofuranosyl-(1-->2)-D-galactitol, which has been isolated by reductive beta-elimination from glycoproteins of Bacteroides cellulosolvens and Clostridium thermocellum, is described. The approach of selective glycosylation of an aldono-1,4-lactone by the trichloroacetimidate method was employed. The synthesis of alpha-D-Gal f-(1-->2)[beta-D-Gal f-(1-->3)]-D-Galol, that contains Gal f units in both anomeric configurations, is also reported. These are the first synthetic oligosaccharides with alpha-D-Gal f, previously found in natural products.  相似文献   

16.
beta1,4-Galactosyltransferase I (Gal-T1) normally transfers Gal from UDP-Gal to GlcNAc in the presence of Mn(2+) ion. In the presence of alpha-lactalbumin (LA), the Gal acceptor specificity is altered from GlcNAc to Glc. Gal-T1 also transfers GalNAc from UDP-GalNAc to GlcNAc, but with only approximately 0.1% of Gal-T activity. To understand this low GalNAc-transferase activity, we have carried out the crystal structure analysis of the Gal-T1.LA complex with UDP-GalNAc at 2.1-A resolution. The crystal structure reveals that the UDP-GalNAc binding to Gal-T1 is similar to the binding of UDP-Gal to Gal-T1, except for an additional hydrogen bond formed between the N-acetyl group of GalNAc moiety with the Tyr-289 side chain hydroxyl group. Elimination of this additional hydrogen bond by mutating Tyr-289 residue to Leu, Ile, or Asn enhances the GalNAc-transferase activity. Although all three mutants exhibit enhanced GalNAc-transferase activity, the mutant Y289L exhibits GalNAc-transferase activity that is nearly 100% of its Gal-T activity, even while completely retaining its Gal-T activity. The steady state kinetic analyses on the Leu-289 mutant indicate that the K(m) for GlcNAc has increased compared to the wild type. On the other hand, the catalytic constant (k(cat)) in the Gal-T reaction is comparable with the wild type, whereas it is 3-5-fold higher in the GalNAc-T reaction. Interestingly, in the presence of LA, these mutants also transfer GalNAc to Glc instead of to GlcNAc. The present study demonstrates that, in the Gal-T family, the Tyr-289/Phe-289 residue largely determines the sugar donor specificity.  相似文献   

17.
18.
19.
K Yamashita  K Umetsu  T Suzuki  T Ohkura 《Biochemistry》1992,31(46):11647-11650
Two lectins were purified from tuberous roots of Trichosanthes japonica. The major lectin, which was named TJA-II, interacted with Fuc alpha 1-->2Gal beta/GalNAc beta 1-->groups, and the other one, which passed through a porcine stomach mucin-Sepharose 4B column, was purified by sequential chromatography on a human alpha 1-antitrypsin-Sepharose 4B column and named TJA-I. The molecular mass of TJA-I was determined to be 70 kDa by sodium dodecyl sulfate gel electrophoresis. TJA-I is a heterodimer of 38-kDa (36-kDa) and 32-kDa (30-kDa) subunits with disulfide linkage(s), and the difference between 38 and 36 kDa, and between 32 and 30 kDa, is due to secondary degradation of the carboxyl-terminal side. It was determined by equilibrium dialysis that TJA-I has four equal binding sites per molecule, and the association constant toward tritium-labeled Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4GlcOT is Ka = 8.0 x 10(5) M-1. The precise carbohydrate binding specificity was studied using hemagglutinating inhibition assay and immobilized TJA-I. A series of oligosaccharides possessing a Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc or HSO3(-)-->6Gal beta 1-->4GlcNAc group showed tremendously stronger binding ability than oligosaccharides with a Gal beta 1-->4GlcNAc group, indicating that TJA-I basically recognizes an N-acetyllactosamine residue and that the binding strength increases on substitution of the beta-galactosyl residue at the C-6 position with a sialic acid or sulfate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号