首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood-brain barrier (BBB) function is endowed by the expression of unique proteins within the brain capillary endothelium. In the absence of knowing the function of BBB-specific proteins, one strategy for identification of these proteins is the purification and amino acid sequencing of proteins within the brain capillary that are not found in other cells. Earlier studies have shown that a 16-18K triplet of low-molecular-weight proteins in isolated brain capillaries is not found in either erythrocytes or in capillary-free preparations of synaptosomal proteins. Therefore, the present studies describe the purification of the 16-18K triplet of proteins as well as a 14K protein in isolated brain capillaries using sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and C4 reverse-phase HPLC. Amino acid sequencing of the N-terminus of the 14K, 17K, and 18K proteins and of two tryptic peptides of the 16K protein showed that these proteins are alpha-globin, histone 2B, histone 3, and histone 2A, respectively. SDS-PAGE of subcellular fractions of bovine brain capillaries demonstrated that the 16-18K triplet of histone proteins migrated in the nuclear fraction. In addition, a 34K doublet and a 200K protein were localized in the nuclear pellet. Therefore, the present studies demonstrate that the predominant 14-18K proteins seen on SDS-PAGE of isolated brain capillaries are known proteins and provide a general scheme for purification of brain capillary proteins isolated following SDS-PAGE.  相似文献   

2.
P J Robinson 《FEBS letters》1991,282(2):388-392
A 96,000 dalton phosphoprotein, called dephosphin, is phosphorylated in intact synaptosomes from rat brain and is rapidly dephosphorylated upon depolarisation-dependent calcium entry. A 96,000 dalton phosphoprotein is also a substrate of protein kinase C in synaptosomal cytosol, and the aim of the study was to determine whether the two proteins may be the same. Dephosphin in intact synaptosomes and the 96,000 dalton protein kinase C substrate comigrated on polyacrylamide gels. Both phosphoproteins had identical phosphopeptide maps after digestion with V8 protease. Both phosphoproteins ran on isoelectric focussing gels with a pI of 6.3-6.7 and focussed as a series of 5-6 spots. Both proteins were phosphorylated exclusively on serine. Both proteins could be resolved into a doublet on longer polyacrylamide gels. The two subunits were of 96 and 93 kDa in both phosphorylation conditions and had dissimilar phosphopeptide maps. However, phosphopeptide maps of either the 96 or 93 kDa subunits were identical in intact synaptosomes compared with synaptosomal cytosol. These results show that a phosphoprotein phosphorylated in intact synaptosomes and a 96,000 dalton protein kinase C substrate from rat brain synaptosomal cytosol are the same, and raise the possibility that protein kinase C is the protein kinase responsible for dephosphin phosphorylation in intact synaptosomes.  相似文献   

3.
The relationship between postnatal age and protein tyrosine kinase activity in synaptosomes prepared from the rat forebrain was studied. Synaptosomal particulate and soluble fractions, as well as total homogenates, the cell soluble fraction, and P3, were prepared from rats ranging in postnatal age from 5 to 60 days and analyzed for (a) tyrosine kinase activity using polyglutamyltyrosine (4:1) as the substrate, (b) the presence of endogenous substrates for tyrosine phosphorylation using polyclonal antibodies specific for phosphotyrosine, and (c) levels of pp60src. Enzyme activity, expressed per milligram of protein, in the total homogenate, P3, and both the cell and synaptosomal soluble fractions was highest in the brains of young animals (postnatal days 5-10) and decreased thereafter to adult levels. In contrast, tyrosine kinase activity in the synaptosomal particulate fraction exhibited a unique biphasic developmental profile, increasing to maxima at postnatal days 10 and 20 before decreasing to adult values. Endogenous substrates for tyrosine phosphorylation were identified by incubating subcellular fractions with 2 mM ATP in the presence of sodium orthovanadate and probing nitrocellulose blots of proteins separated by gel electrophoresis with antiphosphotyrosine antibodies. Several phosphotyrosine-containing proteins were detected in the synaptosomal particulate and P3 fractions, including proteins of Mr 180K, 145K, 120K, 100K, 77K, 68K, 62K, 54K, 52K, and 42K. In the cell soluble fraction a protein doublet of Mr 54/52K and a 120K protein were the major phosphotyrosine-containing proteins. The 54/52K doublet was the major protein tyrosine kinase substrate in the synaptosomal soluble fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Temporal changes in the phosphorylation level of synaptosomal phosphoproteins following depolarization of synaptosomes were investigated under conditions restricting calcium influx. High-K+ depolarization in media of low [Na+]o (32 mM during preincubation and depolarization) at pH 6.5 resulted in a pronounced fall in the cytosolic free calcium concentration transient, and in a reduction in the initial K(+)-stimulated 45Ca2+ uptake and endogenous acetylcholine release relative to the values obtained with control synaptosomes (preincubated and depolarized in Na(+)-based media). This reduction was paralleled by a decrease in the rate of dephosphorylation of the synaptosomal protein P96. A slower dephosphorylation of P96 also was observed on exposure to 20 microM veratridine at 0.5 mM external calcium. Our results indicate that, similar to synapsin I phosphorylation, P96 dephosphorylation shows a graded response to the amount of calcium entering the presynaptic terminal. Depolarization of synaptosomes under conditions restricting the influx of calcium revealed a transient dephosphorylation (reversed within 10 s) of the phosphoprotein P65. The possible significance of this finding to the process of neurotransmitter release is discussed.  相似文献   

5.
Depolarization of intact synaptosomes activates calcium channels, leads to an influx of calcium, and increases the phosphorylation of several neuronal proteins. In contrast, there are two synaptosomal phosphoproteins labeled in intact synaptosomes with 32Pi, termed P96 and P139, which appear to be dephosphorylated following depolarization. Within intact synaptosomes P96 was found in the cytosol whereas P139 was present largely in membrane fractions. Depolarization-stimulated dephosphorylation was fully reversible and continued for up to five cycles of depolarization/repolarization, suggesting a physiological role for the phenomenon. The basal phosphorylation of these proteins was at least partly regulated by cyclic AMP, since dibutyryl cyclic AMP produced small but significant increases in P96 and P139 labeling, even in the presence of fluphenazine at concentrations that inhibited calcium-stimulated protein kinases. Depolarization-dependent dephosphorylation was independent of a rise in intracellular calcium, since agents such as guanidine and low concentrations of A23187, which increase intracellular calcium without activating the calcium channel, did not initiate P96 or P139 dephosphorylation. These agents did sustain increases in the phosphorylation of a number of other proteins including synapsin I and protein III. The results suggest that the phosphorylation of these two synaptosomal proteins is intimately linked to the membrane potential and that their dephosphorylation is dependent on both the mechanism of calcium entry and calcium itself, rather than simply on a rise in intracellular free calcium.  相似文献   

6.
The effects of the naturally occurring polyamines spermine and spermidine on phosphorylation promoted by cyclic AMP (cAMP)-dependent protein kinase (PK) (cAMP-PK; EC 2.7.1.37) were studied using the brain of the tobacco hornworm, Manduca sexta. Four particulate-associated peptides (280, 34, 21, and 19 kilodaltons) in day 1 pupal brains are endogenous substrates for a particulate type II cAMP-PK. These phosphoproteins are present in brain synaptosomal, as well as microsomal, particulate fractions but are not present in the cytosol. They are distributed throughout the CNS and PNS and are present in several nonneuronal tissues as well. Phosphorylation of these proteins via cAMP-PK was inhibited markedly by micromolar concentrations of spermine and spermidine. Other particulate-associated peptides phosphorylated via a Ca2+/calmodulin-PK or Ca2+ and cAMP-independent PKs were unaffected by polyamines, whereas the phosphorylation of a 260-kilodalton peptide was markedly enhanced. Spermine did not exert its inhibitory effect indirectly by enhancement of cAMP or ATP hydrolysis or via proteolysis, but its action appears to involve a substrate-directed inhibition of cAMP-PK-promoted phosphorylation as well as enhanced dephosphorylation. Although addition of spermine resulted in marked ribosome aggregation in synaptosomal and microsomal particulate fractions, this phenomenon was not involved in the inhibition of cAMP-PK-promoted phosphorylation.  相似文献   

7.
The effect of calcium on protein phosphorylation was investigated using intact synaptosomes isolated from rat cerebral cortex and prelabelled with 32Pi. For nondepolarised synaptosomes a group of calcium-sensitive phosphoproteins were maximally labelled in the presence of 0.1 mM calcium. The phosphorylation of these proteins was slightly decreased in the presence of strontium and absent in the presence of barium, consistent with the decreased ability of these cations to activate calcium-stimulated protein kinases. Addition of calcium alone to synaptosomes prelabelled in its absence increased phosphorylation of a number of proteins. On depolarisation in the presence of calcium certain of the calcium-sensitive phosphoproteins were further increased in labelling above nondepolarised levels. These increases were maximal and most sustained after prelabelling at 0.1 mM calcium. On prolonged depolarisation at this calcium concentration a slow decrease in labelling was observed for most phosphoproteins, whereas a greater rate and extent of decrease occurred at higher calcium concentrations. At 2.5 mM calcium a rapid and then a subsequent slow dephosphorylation was observed, indicating two distinct phases of dephosphorylation. Of all the phosphoproteins normally stimulated by depolarisation, only phosphoprotein 59 did not exhibit the rapid phase of dephosphorylation at high calcium concentrations. Replacing calcium with strontium markedly decreased the extent of change observed on depolarisation whereas barium decreased phosphorylation changes even further. Taken together these data suggest that an influx of calcium into synaptosomes initially activates protein phosphorylation, but as the levels of intrasynaptosomal calcium rise protein dephosphorylation predominates. Other phosphoproteins were dephosphorylated immediately on depolarisation in the presence of calcium. The fine control of protein phosphorylation levels exerted by calcium supports the idea that the synaptosomal phosphoproteins could play a role in modulating events such as neurotransmitter release in the nerve terminal.  相似文献   

8.
Aspects of protein phosphorylation related to events occurring during synaptic transmission were briefly reviewed. High resolution two-dimensional electrophoresis was used to study protein phosphorylation catalysed by protein kinase C in a fraction from rat brain enriched in synaptosomes. Incubation of 32P-labelled synaptosomes with 4 beta-phorbol 12 beta-myristate 13 alpha-acetate resulted in an increase in the phosphorylation of a 45 K polypeptide (generally known as B-50) and an 82 K polypeptide; other major phosphoproteins in the preparation were unaffected by this treatment. It appears therefore that the 45 K and 82 K polypeptides are the only significant substrates for protein kinase C in synaptosomes. Depolarisation of labelled synaptosomes by high K+ increased the phosphorylation of the 82 K polypeptide, synapsin I and several unknown phosphoproteins. Incubation of labelled synaptosomes with the cholinergic agonist carbachol resulted in a modest, but statistically significant, increase in the phosphorylation of the 45 K (B-50) and 82 K polypeptides. This effect was blocked by atropine. The results are discussed in relation to a possible role for the B-50 phosphoprotein in regulating the resynthesis of polyphosphoinositides following cholinergic stimulation.  相似文献   

9.
Abstract: Age-related changes of the ceramide composition of gangliosides were studied in the synaptosomal and myelin fractions from rat brain, carrying plasma membranes of neuronal and glial origin, respectively. The five major gangliosides (GM1, GD1 a, GD1 b, GT1 b, and GQ1 b) present in these fractions were separated and quantitated by normal-phase HPLC. Each ganglioside was then fractionated by reverse-phase HPLC into the molecular species carrying a single long-chain base (LCB). The largely preponderant LCBs in the synaptosomal and myelin fractions were the C18:1 and C20:1. The content of C20.1 LCB, generally low at 1 month, increased with age in all analyzed gangliosides and in all subcellular fractions and was greater in the "b series" than in the "a series" gangliosides. Remarkably, GM1 was the only ganglioside where the proportion of LCB 20:1 was higher in the synaptosomal fraction than in the myelin fraction. The fatty acid composition of the C18:1 or C20:1 LCB species of the different gangliosides in the synaptosomal and myelin fractions did not undergo appreciable changes with age. Stearic acid was largely predominant in all the gangliosides of the synaptosomal fraction, more in the C18:1 than in the C20:1 LCB species (80–90% vs. 60–70%). The gangliosides of the myelin fraction were characterized by a lower content of 18:0 and a much higher content of 16:0 and 18:1 fatty acids than those of the synaptosomal fraction. Thus, the ceramide composition is different in the gangliosides of neuronal and myelin origin and appears to be subjected to an age-related control.  相似文献   

10.
Activation of the phagocytic cell superoxide-generating NADPH oxidase requires interaction of cytosolic and membrane-associated components. With most stimuli activation of the oxidase is accompanied by multisite phosphorylation of the 47-kDa cytosolic oxidase factor (p47) which translocates from cytosol to membranes. Native p47 is a highly basic protein that undergoes stepwise charge shifts with successive phosphorylation events. Phosphorylation of p47 was studied by immunoprecipitation from neutrophil cytosol and membrane fractions followed by two-dimensional gel electrophoresis and autoradiography. In the resting cell p47 was not phosphorylated. In the cytosol of phorbol myristate acetate-activated neutrophils eight distinct p47 phosphoproteins were present. The membrane fraction from these activated cells contained a family of p47 phosphoproteins of electrophoretic mobilities identical to those seen in cytosol plus an additional, more acidic p47 phosphoprotein not present in cytosol. Very early after activation (30 s) only the four most acidic p47 phosphoproteins were present in the membrane fraction. Only at later times (5-15 min) was the full spectrum of p47 phosphoproteins present in the membrane fraction. In contrast, the full spectrum of p47 phosphoproteins was present in the cytosol over the entire time course we studied. In neutrophils from patients with cytochrome b558-deficient chronic granulomatous disease p47 phosphorylation was incomplete and p47 translocation to membrane did not occur. These studies demonstrated that the cytochrome was essential for formation of the three most acidic p47 phosphoproteins and greatly augmented formation of the fourth most acidic p47 phosphoprotein found in normal neutrophils. The temporal correlation between specific p47 phosphorylation events and p47 translocation to membrane is consistent with a model of oxidase activation in which a series of p47 phosphorylation events which occurs in cytosol precedes and may be required for p47 interaction with membrane.  相似文献   

11.
We have identified a bovine sperm phosphoprotein, pp255 (Mr = 255,000), which reacts strongly and specifically with an antibody to rat brain microtubule-associated protein 2 (MAP2). The phosphorylation state of this putative sperm MAP2 in intact bovine epididymal sperm is uniquely sensitive to regulation by intracellular pH (pHi), calcium, isobutyl-3-methylxanthine (MIX), H-8, and fluoride. Increasing pHi by approximately 0.4 units or exposure to calcium (0.1 microM with the ionophore A23187) or to the protein kinase inhibitor, H-8, decreases sperm MAP2 phosphorylation. Decreasing sperm pHi or exposure to MIX or fluoride increases MAP2 phosphorylation. Numerous other detectable sperm phosphoproteins are either unresponsive to most of these modulators or are considerably less sensitive to them. This phosphoprotein co-sediments with the particulate sperm heads during subcellular fractionation, and is not detectable in other sperm fractions. Two-dimensional electrophoresis separates sperm MAP2 into multiple species, indicative of varying degrees of phosphorylation. Sperm MAP2 is phosphorylated on serine residues, changes electrophoretic mobility slightly on one-dimensional gels with changes in phosphorylation levels, and exhibits the highest specific radioactivity of any sperm phosphoprotein observed. The phosphorylation state of sperm MAP2 can be uncoupled from sperm motility levels under several conditions. The co-localization of sperm MAP2 with the head fraction and the unique sensitivity of its phosphorylation level to modulators, which are known to regulate capacitation and the acrosome reaction, suggest that sperm MAP2 phosphorylation may be an intermediate step in the regulation of one or both of these sperm processes.  相似文献   

12.
Treatment of platelet rich plasma (PRP) at pH 5 results in the precipitation of a protein kinase system. The protein kinase is associated with the platelet fraction and is capable of phosphorylation of several plasma proteins. Analysis of the 32P-labeled phosphoproteins by two dimensional gel electrophoresis showed the existence of three major phosphoproteins: 72K and 80K proteins with identical isoelectric points (pI) of 6.0 and another 72K protein with a pI of 6.8–7.0. This latter 72K phosphoprotein has recently been identified as the α-chain of fibrinogen. The identity of the other 2 proteins remains to be shown. The activity of the protein kinase is markedly enhanced by Mn2+, it phosphorylates calf thymus histone as an exogenous substrate and is independent of cAMP or cGMP. This protein kinase activity is inhibited competitively by ADP.  相似文献   

13.
Bovine sperm in neat caudal epididymal fluid become motile in response to either pH elevation or dilution of the fluid. Buffers containing permeant weak acids at physiologic concentrations are able to mimic these effects of caudal fluid. These observations lead to the hypothesis that a pH-dependent epididymal fluid quiescence factor regulates bovine sperm motility by modulating sperm intracellular pH (pHi). Here we report that sperm pHi, measured with the fluorescent pH probe carboxyfluorescein, increases by approximately 0.4 units in response to either of these motility-initiating manipulations. At least 26 discrete phosphoprotein bands are distinguishable by sodium dodecylsulfate-polyacrylamide gel electrophoresis after incubation of intact caudal sperm with 32PO4. A prominent phosphoprotein, with Mr approximately 255,000 (pp255) and a relatively high specific radioactivity, is reversibly dephosphorylated in response to elevations in pHi that initiate sperm motility. Unlike most of the sperm phosphoproteins, the extraction of pp255 requires reducing agents. This phosphoprotein cosediments with the sperm heads but not the tail, midpiece, soluble, or plasma membrane fractions. No other pHi-dependent phosphorylation changes are apparent in gels of whole sperm extracts. However, subcellular fractionation allows the detection of increased phosphorylation of two plasma membrane phosphoproteins (Mr approximately 105,000 and 97,000) and decreased phosphorylation of another plasma membrane phosphoprotein (Mr approximately 120,000) in response to increasing pHi. This is the first report describing changes in endogenous phosphoproteins from intact motile and nonmotile bovine sperm that are regulated by pHi.  相似文献   

14.
The phosphorylation of specific substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was examined in striatal synaptosomal cytoplasm. The phosphoprotein substrata were termed group C phosphoprotems and were divided into two subgroups: group C1 phosphoproteins (P83, P45A, P21 and P18) were found in both cytoplasm and synaptosomal membranes and, although stimulated by phosphatidylserine, only required exogamous calcium for their labeling; group C2 phosphoproteins (P120, P96, P21.5, P18.5 and P16) were found predominantly in the cytoplasm and were absolutely dependent upon exogenous calcium and phosphatidylserme for their labeling. Several criteria were used to identify these proteins as specific protein kinase C substrates: (a) their phosphorylation was stimulated to a greater extent by Ca2+ /phosphatidylserine/diolein than by Ca2+ alone or Cal2+ /calmodulin (group C1) or was completely dependent upon Ca2+ /phosphatdylserine/diolein (group C2); (b) supermaximal concentrations of the cAMP-dependent protein kinase inhibitor were without effect; (c) their phosphorylation was stimulated by oleic acid, which selectively activates protein kinase C in the absence of Ca2+; (d) NaCl, which inhibited cAMP- and Ca2+/calmodulindependent phosphorylation, slightly increased phosphorylation of group C1 and slightly decreased phosphorylation of group C2 phosphoproteins. Maximal phosphorylation of P96 and other group C phosphoproteins occurred within 60 s and was followed by a slow decay rate while substrata of calmodulin-dependent protein kinase were maximally labeled within 20–30 s and rapidly dephosphorylated. The phosphorylation of all group C phosphoproteins was inhibited by the calcium channel agomst BAY K 8644, however, group C2 phosphoproteins were considerably more sensitive. The IC50 for inhibition of P96 labeling was 19 μM. but for P83 was 190 μM. Group B phosphoproteins were also slightly inhibited, and the IC50 for P63 was 290 μM. No inhibitory effects of another dihydropyridine, nifedipine, or of verapamil were detected in this concentration range. BAY K 8644 did not displace [3H]phorbol-12,13-dibutyrate binding, nor was the inhibition decreased by increasing phosphatidylserine concentrations. BAY K 8644 had no effect on the rate of dephosphorylation of any phosphoprotein, indicating that it is unlikely to inhibit a protein phosphatase. BAY K 8644 may, therefore, prove to be a valuable tool for discriminating protein kinase C activity from the activity of other protein kinases. We conclude that BAY K 8644 interacts either with a specific subgroup of protein kinase C substrata or with one of two putative forms of protein kinase C.  相似文献   

15.
We have shown recently that neuronal growth cones isolated from developing rat forebrain possess an appreciable activity of adenylate cyclase, which produces cyclic AMP and can be stimulated by various neurotransmitter receptor agonists and by forskolin. To investigate cyclic AMP-mediated biochemical mechanisms in isolated growth cones, we have centered the present study on cyclic AMP-dependent protein phosphorylation. One-dimensional gel electrophoretic analysis showed that cyclic AMP analogs increased incorporation of 32P into several phosphoproteins in molecular mass ranges of 50-58 and 76-82 kilodaltons, including those of 82, 76, and 51 kilodaltons. Two-dimensional electrophoresis, using isoelectric focusing in the first dimension, resolved phosphorylated alpha- and beta-tubulin species, actin, a very acidic protein (isoelectric point 4.0) with a molecular mass of 93 kilodaltons, and two proteins (x and x') closely neighboring beta-tubulin. Two other phosphoproteins seen in the gels had molecular masses of 56 and 51 kilodaltons (respective isoelectric points, 4.5 and 4.4) and, along with the 93-kilodalton phosphoprotein, were highly enriched in the isolated growth cones. Only the tubulin and actin species were major proteins in the isolated growth cones. Cyclic AMP analogs enhanced incorporation of 32P into phosphoproteins x and x', and, as assessed by immunoprecipitation, into beta-tubulin. Peptide digest experiments suggested that phosphoproteins x and x' are unrelated to beta-tubulin. Nonequilibrium two-dimensional electrophoresis resolved many phosphoproteins, of which a 79- and 75-kilodalton doublet, a 74-kilodalton species, and a 58-kilodalton doublet showed enhanced incorporation of 32P in the presence of cyclic AMP.  相似文献   

16.
A significant consequence of protein phosphorylation is to alter protein-protein interactions, leading to dynamic regulation of the components of protein complexes that direct many core biological processes. Recent proteomic studies have populated databases with extensive compilations of cellular phosphoproteins and phosphorylation sites and a similarly deep coverage of the subunit compositions and interactions in multiprotein complexes. However, considerably less data are available on the dynamics of phosphorylation, composition of multiprotein complexes or that define their interdependence. We describe a method to identify candidate phosphoprotein complexes by combining phosphoprotein affinity chromatography, separation by size, denaturing gel electrophoresis, protein identification by tandem mass spectrometry, and informatics analysis. Toward developing phosphoproteome profiling, we have isolated native phosphoproteins using a phosphoprotein affinity matrix, Pro-Q Diamond resin (Molecular Probes-Invitrogen). This resin quantitatively retains phosphoproteins and associated proteins from cell extracts. Pro-Q Diamond purification of a yeast whole cell extract followed by 1-D PAGE separation, proteolysis and ESI LC-MS/MS, a method we term PA-GeLC-MS/MS, yielded 108 proteins, a majority of which were known phosphoproteins. To identify proteins that were purified as parts of phosphoprotein complexes, the Pro-Q eluate was separated into two fractions by size, <100 kDa and >100 kDa, before analysis by PAGE and ESI LC-MS/MS and the component proteins queried against databases to identify protein-protein interactions. The <100 kDa fraction was enriched in phosphoproteins indicating the presence of monomeric phosphoproteins. The >100 kDa fraction contained 171 proteins of 20-80 kDa, nearly all of which participate in known protein-protein interactions. Of these 171, few are known phosphoproteins, consistent with their purification by participation in protein complexes. By comparing the results of our phosphoprotein profiling with the informational databases on phosphoproteomics, protein-protein interactions and protein complexes, we have developed an approach to examining the correlation between protein interactions and protein phosphorylation.  相似文献   

17.
Addition of vasopressin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an acidic molecular weight 80,000 cellular protein (termed 80K). The effect was concentration- and time-dependent; enhancement in 80K phosphorylation could be detected as early as 30 sec after the addition of the hormone. Recently, a rapid increase in the phosphorylation of an 80K cellular protein following treatment with phorbol esters or diacylglycerol has been shown to reflect the activation of protein kinase C in intact Swiss 3T3 cells. Here we show that the 80K phosphoproteins generated in response to vasopressin and phorbol 12,13-dibutyrate (PBt2) were identical as judged by one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) and peptide mapping following partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with PBt2 which leads to the disappearance of protein kinase C activity blocked the ability of vasopressin to stimulate the phosphorylation of 80K. The effect of vasopressin on 80K phosphorylation and mitogenesis was selectively blocked by the vasopressin antagonist (Pmp1-O-Me-Tyr2-Arg8) vasopressin suggesting that these responses are mediated by its specific receptor in these cells. The removal of vasopressin leads to dephosphorylation (within minutes) of the 80K phosphoprotein. We conclude that vasopressin rapidly stimulates protein kinase C activity in intact 3T3 cells.  相似文献   

18.
Abstract: A 41,000-dalton phosphoprotein in crude synaptosomal membrane fractions is characterized by its unique divalent and monovalent cation regulation. It is identified by two-dimensional gel electrophoresis as the phosphoprotein whose phosphorylation is enhanced by repetitive electrical stimulation of hippocampal brain slices. After sucrose-gradient ultracentrifugation, this phosphoprotein is found in the mitochondrial subfraction. This suggests that the electrically produced changes in the level of phosphorylation of the 41,000-dalton polypeptide are probably effects on cellular energetics rather than on specialized neural membrane function.  相似文献   

19.
Abstract— In experiments designed to localize the increased turnover of phosphoprotein-P which occurs in respiring brain slices as a result of electrical stimulation, a cell separation procedure was used to prepare a fraction enriched in neuronal cell bodies from incubated slices labelled with [32P]phosphate. Labelled phosphoprotein was found to be twice as concentrated in the neuron-enriched fraction as in other fractions. Electrical stimulation for 10 s increased the rate of incorporation of [32P]phosphate into phosphoproteins in the neuron-enriched fraction by 25 per cent ( P < 0.05), but had no effect on incorporation into a partially purified glial fraction contaminated with neuropil and cell debris.  相似文献   

20.
A synthetic peptide analogue of the phosphorylation site of LHC II, when phosphorylated by thylakoid membranes, served as a substrate for the thylakoid phosphoprotein phosphatase. The phosphopeptide became dephosphorylated at a low rate, comparable to that of the 9 kDa phosphoprotein. Phospho-LHC II itself became dephosphorylated much more rapidly, at a rate unaffected by endogenous phosphorylation of the peptide. Endogenous phosphorylation of the peptide was also without effect on other thylakoid protein phosphorylation and dephosphorylation reactions. In contrast, dephosphorylation of many thylakoid phosphoproteins was inhibited by addition of a pure, chemically-synthesised phosphopeptide analogue of phospho-LHC II. This result suggests that at least one thylakoid phosphoprotein phosphatase exhibits a broad substrate specificity. The results indicate that any one of a number of amino acid sequences can give a phosphoprotein configuration that is recognised by a single phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号