首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highly radiosensitive immature oocytes of mice were irradiated in vivo with graded doses of 252Cf fission radiation, 0.43- or 15-MeV neutrons, or 60Co gamma rays. Comparisons of oocyte survival for neutrons and for gamma rays demonstrate that neutron RBEs for the killing of these important cells do not reach the high values (30-50 or more) at low doses observed for several other biological end points. Rather, neutrons differ little in effectiveness from gamma rays in killing these extremely sensitive murine oocytes. For 0.43-MeV neutrons, RBEs obtained from fitted survival curves reach only 1.7 at 0.1 rad. For 15-MeV neutrons, they are not significantly different from 1 at any dose tested (lowest, 4.5 rad). For 252Cf fission neutrons (E = 2.15 MeV), RBEs are intermediate between those for 0.43- and 15-MeV neutrons. For all neutron energies tested, the RBEs are particularly low in the juvenile period, a time when murine immature oocytes are especially radiosensitive. With exposure just prior to birth, however, when these cells are much less easily killed, higher, more usual RBEs are found. The minimum size of the lethality target in mouse immature oocytes, estimated from the inactivation constant for 0.43-MeV neutrons and microdosimetric values, is larger than the nucleus but not larger than the cell. This and related analytical considerations suggest that the hypersensitive target in these particular oocytes is the plasma membrane, a finding which is in excellent accord with results from other experiments using different, contrasting radiations and dose deliveries (accelerated Si14+ ions, gamma rays, and beta rays from 3HOH compared with those from [3H]thymidine).  相似文献   

2.
The female guinea-pig has been shown to represent a good model to investigate the genetic hazard of ionizing radiation in humans. The sensitivity of the guinea-pig oocytes to radiation-induced chromosome aberrations was, therefore, studied at different stages of oocyte and follicular growth. The sensitivity of oocytes enclosed in small follicles (15 weeks before ovulation) was found to be low and comparable to that of immature oocytes present at birth. The sensitivity of growing oocytes remained low and almost constant until 3 weeks before ovulation, from which time it began to increase. The most dramatic increase of sensitivity occurred during the last week preceding ovulation: about 90% of oocytes X-irradiated with 4Gy, 2 days before ovulation showed one or more chromatid interchanges, as compared to 20% for those irradiated with the same dose 1 week earlier. A comparison of our results with those found by others in the mouse shows that considerable differences of sensitivity exist between oocytes of these two species irradiated at similar stages of development. The possible reasons for these differences are discussed.  相似文献   

3.
Inbred CBA male mice were irradiated with 14.5-MeV neutrons. Three acute doses, 75, 150 and 250 rad, and one chronic dose, 250 rad, were given. The percentages of affected spermatocytes as counted from reciprocal translocations which had been induced in spermatogonia were 0.7, 0.8 and 1.6 respectively for the acute series and 2.2 after chronic exposure. The data could be fitted to a linear or concave curvilinear regression line. There seemed to be a slight increase of damage with dose, even if the percentages were generally lower than those reported earlier for fast neutrons with energies around 1 MeV. The existence of dose-rate effects is discussed, and the conclusion drawn so far is that there seems to be no such effect either for 1-MeV fast neutrons or 14.5-MeV high energy neutrons. The term “reversed dose-rate effect”, as used earlier, relates to another phenomenon. The difference between the point estimates for the chronic and acute 250 rad series is not significant. The effectiveness of neutrons with energies around 14 MeV versus neutrons with energies around 1 MeV is discussed.  相似文献   

4.
Mature sperm and prophase-1 oocytes of Tetranychus urticae Koch were irradiated with 250-kVp X-rays or 1.5 MeV fast neutrons. The X-ray doses ranged from 0.5 to 24.0 krad, and those of the fast neutrons from 0.1 to 16.0 krad. The genetic endpoint measured was lethality, expressed in the stages from egg to adulthood in the F1 progeny. The frequency of recessive lethals in female germ cells was estimated by comparing survival of fertilized versus unfertilized F1 eggs, after irradiation with the same dosage. X-Rays induce dominant lethals in prophase-1 oocytes by the action of both single hits on single targets and multiple hits on multiple targets. 1.5-MeV neutrons induce these effects predominantly by the action of multiple tracks on multiple targets. Dominant lethals were induced in mature sperm by X-rays and by fast neutrons by the action of both single hits on single targets and multiple hits on multiple targets. Both for prophase-1 oocytes and for mature sperm the low R.B.E. value corresponded with the relatively large multiple-target component of induction of dominant lethals by fast neutrons. The nature of dominant lethality in relation to the kinetochore organization of the chromosome is discussed. A non-linear trend in the dose--effect relationship was observed for both X-rays and fast neutrons for the estimated frequency of recessive lethals induced in prophase-1 oocytes. X-Rays were more effective than neutrons in inducing recessive lethals in prophase-1 oocytes at doses lower than 3 krad.  相似文献   

5.
The induction and repair of DNA damage were studied by a DNA unwinding method in mouse L5178Y cells exposed to fast neutrons. DNA lesions induced by fast neutrons were classified into three types from their repair profiles: fast-reparable breaks (T1/2 = 3-5 min), slow-reparable breaks (T1/2 = 70 min), and nonreparable breaks. The repair rates of both fast-reparable and slow-reparable breaks were almost the same as those of corresponding damage induced by low-LET radiation. Neutrons induced a smaller amount of fast-reparable damage, an almost equal amount of slow-reparable damage, and a larger amount of nonreparable damage than those induced by equal doses of gamma rays or X rays. RBEs for fast- and slow-reparable damage were 0.3 and 0.9, respectively. The RBE for nonreparable damage was dose dependent and was 1.4 at the level of 100 breaks/10(12) Da DNA. Among the three types of lesions, only the nonreparable damage levels correlated with the linear-quadratic shape of the survival curves and with the enhanced killing effectiveness of neutrons (RBE = 1.7 at D0).  相似文献   

6.
Estimates of genetic risks of radiation exposure of humans are traditionally expressed as expected increases in the frequencies of genetic diseases (single-gene, chromosomal and multifactorial) over and above those of naturally-occurring ones in the population. An important assumption in expressing risks in this manner is that gonadal radiation exposures can cause an increase in the frequency of mutations and that this would result in an increase in the frequency of genetic diseases under study. However, despite compelling evidence for radiation-induced mutations in experimental systems, no increases in the frequencies of genetic diseases of concern or other adverse effects (i.e., those which are not formally classified as genetic diseases), have been found in human studies involving parents who have sustained radiation exposures. The known differences between spontaneous mutations that underlie naturally-occurring single-gene diseases and radiation-induced mutations studied in experimental systems now permit us to address and resolve these issues to some extent. The fact that spontaneous mutations (among which are point mutations and DNA deletions generally restricted to the gene) originate through a number of different mechanisms and that the latter are intimately related to the DNA organization of the genes, are now well-documented. Further, spontaneous mutations include those that cause diseases through loss of function as well as gain of function of genes. In contrast, most radiation-induced mutations studied in experimental systems (although identified through the phenotypes of the marker genes) are predominantly multigene deletions which cause loss of function; the recoverability of an induced deletion in a livebirth seems dependent on whether the gene and the genomic region in which it is located can tolerate heterozygosity for the deletion and yet be compatible with viability. In retrospect, the successful mutation test systems (such as the mouse specific locus test) used in radiation studies have involved genes which are non-essential for survival and are also located in genomic regions, likewise non-essential for survival. In contrast, most of the human genes at which induced mutations have been looked for, do not seem to have these attributes. The inference therefore is that the failure to find induced germline mutations in humans is not due to the resistance of human genes to induced mutations but due to the structural and functional constraints associated with their recoverability in livebirths. Since the risk of inducible genetic diseases in humans is estimated using rates of "recovered" mutations in mice, there is a need to introduce appropriate correction factors to bridge the gap between these rates and the rates at which mutations causing diseases are potentially recoverable in humans. Since the whole genome is the "target" for radiation-induced genetic damage, the failure to find increases in the frequencies of specific single-gene diseases of societal concern does not imply that there are no genetic risks of radiation exposures: the problem lies in delineating the phenotypes of recoverable genetic damage that are recognizable in livebirths. Data from studies of naturally-occurring microdeletion syndromes in humans and those from mouse radiation studies are instructive in this regard. They (i) support the view that growth retardation, mental retardation and multisystem developmental abnormalities are likely to be among the quantitatively more important adverse effects of radiation-induced genetic damage than mutations in a few selected genes and (ii) underscore the need to expand the focus in risk estimation from known genetic diseases (as has been the case thus far) to include these induced adverse developmental effects although most of these are not formally classified as "genetic diseases". (ABSTRACT TRUNCATED)  相似文献   

7.
The dichotomy in DNA damage sensitivity of developing mouse oocytes during female germ line development is striking. Embryonic oocytes withstand hundreds of programmed DNA double-strand breaks (DSBs) required for meiotic recombination. Postnatal immature oocytes fail to tolerate even a few DSBs induced by gamma radiation treatment. TAp63α, a p53 family member, undergoes phosphorylation and mediates postnatal immature oocyte death following gamma radiation treatment, which is thought important for germ line quality maintenance. Whether prenatal meiotic oocytes tolerate DNA DSBs simply because they lack TAp63α expression is not clear. We found a significant number of oocytes in newborn mice initiate TAp63α expression and simultaneously carry meiotic DNA DSBs. However, the risk of premature death appears unlikely, because newborn oocytes strongly abate TAp63α phosphorylation induction and resist normally lethal doses of ionizing radiation damage. A calyculin A-sensitive Ser/Thr phosphatase activity downregulates TAp63α phosphorylation and ATM kinase mediates phosphorylation. Possible alterations in the relative balance of these counteracting activities during development may first temper TAp63α phosphorylation and death induction during meiotic DNA DSB repair and recombination, and afterward, implement germ line quality control in later stages. Insights into inherent DNA DSB resistance mechanisms in newborn oocytes may help prevent infertility in women in need of radiation or chemotherapy.  相似文献   

8.
22-MeV neutrons affecting the culture of human peripheral blood lymphocytes have been studied for their cytogenetic peculiarities. Linear character of the dependence of chromosome aberrations yield within the dose range of 0.2-4.0 Gy is noted. Relative biological efficiency of 22-MeV neutrons reaches the highest values at low doses (18.8-2.4). Pair fragments and dicentrics prevail in spectrum of aberrations.  相似文献   

9.
Summary Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 ± 16 µm2, comparing well with the microscopically determined cross-sectional area of 111 ± 12µm2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.  相似文献   

10.
The plasma membrane protein pattern of human oocytes was established using a highly sensitive nonisotopic technique. Unfertilized, 2-day-old metaphase II (MII) and immature oocytes were biotinylated at 4°C and zona pellucida were mechanically removed. Proteins were resolved by 7% SDS PAGE, and electrotransferred to PVDF membranes. Plasma membrane proteins were selectively detected by streptavidin-horseradish peroxidase (HRP) and enhanced chemoluminescence (ECL). Thirteen biotinylated polypeptide bands were identified in MII oocyte plasma membrane (126, 110, 98, 90, 77, 71, 64, 61, 58, 54, 50, 48, 44 kD). During maturation, the total amount of membrane proteins decreased dramatically from the germinal vesicle (GV) to the MII stage oocytes, while the relative proportion of the 71 kD band increased from 9.9% to 13.1% and 27.4% in GV, metaphase I, and MII stage oocytes, respectively. Improvement of the detection technique permitted to establish the protein profile of a single oocyte loaded per lane (n = 12). Five to ten polypeptides were identified, indicating a great polymorphism of the plasma protein pattern, even for oocytes from the same cohort. Hamster and mouse oocyte plasma membrane protein patterns were also investigated with the same technique. Both presented 15 bands, 12 of which had a molecular weight similar to those from the human oocytes. In conclusion, the protein pattern in the human plasma membrane appears qualitatively limited to 13 species, and quantitatively, their amount decreases during oocyte preovulatory maturation. A great polymorphism from one oocyte to another was detected. The protein pattern is highly conserved between human, hamster, and mouse oocytes. This very sensitive technique will allow further studies on the functional significance of this protein pattern. Mol. Reprod. Dev. 47:120–126, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
To analyse the effect of the state of the sperm plasma membrane on oocyte activation rate following intracytoplasmic sperm injection (ICSI), three types of human and mouse spermatozoa (intact, immobilised and Triton X-100 treated) were individually injected into mouse oocytes. At 30, 60 and 120 min after injection, maternal chromosomes and sperm nuclei within oocytes were examined. Following human sperm injection, the fastest and the most efficient oocyte activation and sperm head decondensation occurred when the spermatozoa were treated with Triton X-100. Intact spermatozoa were the least effective in activating oocytes. Thus, the rate of mouse oocyte activation following human sperm injection is greatly influenced by the state of the sperm plasma membrane during injection. When mouse spermatozoa were injected into mouse oocytes, the rates of oocyte activation and sperm head decondensation within activated oocytes were the same irrespective of the type of sperm treatment prior to injection. We witnessed that live human spermatozoa injected into moue oocytes often kept moving very actively within the ooplasm for more than 60 min, whereas motile mouse spermatozoa usually became immotile within 20 min after injection into the ooplasm. In 0.002% Triton X-100 solution, mouse spermatozoa are immobilised faster than human spermatozoa. These facts seem to suggest that human sperm plasma membranes are physically and biochemically more stable than those of mouse spermatozoa. Perhaps the physical and chemical properties of the sperm plasma membrane vary from species to species. For those species whose spermatozoa have 'stable' plasma membranes, prior removal or 'damage' of sperm plasma membranes would increase the success rate of ICSI.  相似文献   

12.
Freezing of spermatozoa and unfertilized oocytes is a useful tool for the conservation of mouse genetic resources. However, the proportion of frozen-thawed oocytes fertilized with spermatozoa in vitro is low because spermatozoa, especially those frozen-thawed, can not penetrate into oocytes because of hardening of the zona pellucida following premature release of cortical granules. To produce offspring efficiently from cryopreserved transgenic mouse gametes, we fertilized frozen-thawed gametes by using intracytoplasmic sperm injection (ICSI) and assessed pre- and postimplantation development of embryos. Compared with fresh unfertilized oocytes, frozen-thawed unfertilized oocytes were highly tolerant to damage by injection, as the survival rates after injection of frozen spermatozoa were 51 and 78%, respectively. Frozen-thawed oocytes that survived after sperm injection developed normally to the blastocyst stage and gave rise to offspring. Moreover, offspring with transgenes also were obtained from frozen gametes fertilized by ICSI. These results demonstrate that ICSI is an efficient technique for producing offspring from transgenic spermatozoa showing low fertility and that use of frozen-thawed oocytes leads to conservation of genetic resources because suboptimally preserved gametes are not wasted.  相似文献   

13.
Survival parameters and immediate DNA damage induced by 60Co gamma rays, 50-kVp X rays, and Janus fission-spectrum neutrons in human epithelial P3 cells (derived from an embryonic teratocarcinoma) are compared with those for Chinese hamster lung V79 cells. DNA damage caused by X and gamma irradiation, measured by alkaline elution methods, is the same in both cell types, whereas the P3 cells are about two times more sensitive (as measured by Do ratios of the final survival curve slope) to the lethal effects of these radiations than are the V79 cells. Human P3 cells are also more sensitive to the lethal effects of fission-spectrum neutrons than V79 cells. Survival experiments with split radiation doses and hypertonic salt treatment indicate that both P3 cells and V79 cells can recover from radiation-induced damage efficiently.  相似文献   

14.
The relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) were determined in the yeast Saccharomyces cerevisiae for the induction of gene conversion (the product of recombinational repair) and mutation (the product of error prone repair) by 14.5-MeV neutrons in comparison with 60Co gamma rays and 150 KVp X rays. Neutron irradiation in oxic or anoxic conditions induced significantly higher yields of convertants and mutants than sparsely ionizing radiations under the same conditions. RBEs for both gene conversion and mutation under anoxia were significantly higher than under oxic conditions. RBEs for mutant induction under anoxia were lower than the RBEs for gene conversion under the same conditions. The data support the hypothesis that the production of lesions leading to the genetic consequences of gene conversion and mutation differ in their dependence upon LET and the presence of oxygen during irradiation, and therefore the two DNA repair processes which produce these end points recognize, at least in part, different classes of damage.  相似文献   

15.
Radiation-induced lymphomagenesis and leukemogenesis are complex processes involving both genetic and epigenetic changes. Although genetic alterations during radiation-induced lymphoma- and leukemogenesis are fairly well studied, the role of epigenetic changes has been largely overlooked. Rodent models are valuable tools for identifying molecular mechanisms of lymphoma and leukemogenesis. A widely used mouse model of radiation-induced thymic lymphoma is characterized by a lengthy "pre-lymphoma" period. Delineating molecular changes occurring during the pre-lymphoma period is crucial for understanding the mechanisms of radiation-induced leukemia/lymphoma development. In the present study, we investigated the role of radiation-induced DNA methylation changes in the radiation carcinogenesis target organ--thymus, and non-target organ--muscle. This study is the first report on the radiation-induced epigenetic changes in radiation-target murine thymus during the pre-lymphoma period. We have demonstrated that acute and fractionated whole-body irradiation significantly altered DNA methylation pattern in murine thymus leading to a massive loss of global DNA methylation. We have also observed that irradiation led to increased levels of DNA strand breaks 6 h following the initial exposure. The majority of radiation-induced DNA strand breaks were repaired 1 month after exposure. DNA methylation changes, though, were persistent and significant radiation-induced DNA hypomethylation was observed in thymus 1 month after exposure. In sharp contrast to thymus, no significant persistent changes were noted in the non-target muscle tissue. The presence of stable DNA hypomethylation in the radiation-target tissue, even though DNA damage resulting from initial genotoxic radiation insult was repaired, suggests of the importance of epigenetic mechanisms in the development of radiation-related pathologies. The possible role of radiation-induced DNA hypomethylation in radiation-induced genome instability and aberrant gene expression in molecular etiology of thymic lymphomas is discussed.  相似文献   

16.
Szumiel I 《Radiation research》2008,169(3):249-258
The concept that the balance between DNA damage and repair determines intrinsic radiation sensitivity has dominated radiobiology for several decades. There is undeniably a cause- effect relationship between radiation-induced molecular alterations in the genomic DNA and cellular consequences. In the last decade, however, it has become obvious that the chromatin context affects the fate of damaged DNA and that cellular signaling is an important factor in defining intrinsic radiation sensitivity. Damaged DNA is the site of signal generation; however, alternative signaling at the plasma membrane is triggered: Reactive oxygen species (ROS) inactivate phosphatases and consequently cause activation of kinases localized at the plasma membrane; this includes ligand-independent activation of receptor kinases. Cells with an apparently functional DNA repair system may show increased radiation sensitivity due to deficiencies in specific kinases essential for repair activation and checkpoint control. Other signals that determine intrinsic radiosensitivity may affect proneness to apoptosis, the balance between DNA damage fixation and repair, and the translocation of proteins participating in the response to ionizing radiation. Interplay between the various signals decides the extent to which the repair of radiation-inflicted damage is supported or limited; in some cell types, this includes DNA-damage-independent processes guided by plasma membrane-generated signaling. Cellular signaling in the context of specific subcellular structures is the key to understanding how the molecular effects of radiation are expressed as biological consequences in various cell types. A systems approach should bring us closer to this end.  相似文献   

17.
The relative biological effectiveness (RBE) of a range of neutron energies relative to 250-kVp X rays has been determined for oncogenic transformation and cell survival in the mouse C3H 10T 1/2 cell line. Monoenergetic neutrons at 0.23, 0.35, 0.45, 0.70, 0.96, 1.96, 5.90, and 13.7 MeV were generated at the Radiological Research Accelerator Facility of the Radiological Research Laboratories, Columbia University, and were used to irradiate asynchronous cells at low absorbed doses from 0.05 to 1.47 Gy. X irradiations covered the range 0.5 to 8 Gy. Over the more than 2-year period of this study, the 31 experiments provided comprehensive information, indicating minimal variability in control material, assuring the validity of comparisons over time. For both survival and transformation, a curvilinear dose response for X rays was contrasted with linear or nearly linear dose responses for the various neutron energies. RBE increased as dose decreased for both end points. Maximal RBE values for transformation ranged from 13 for cells exposed to 5.9-MeV neutrons to 35 for 0.35-MeV neutrons. This study clearly shows that over the range of neutron energies typically seen by nuclear power plant workers and individuals exposed to the atomic bombs in Japan, a wide range of RBE values needs to be considered when evaluating the neutron component of the effective dose. These results are in concordance with the recent proposals in ICRU 40 both to change upward and to vary the quality factor for neutron irradiations.  相似文献   

18.
Some photon resistant tumours are sensitive to neutrons but no predictive methods exist which could identify such tumours. In a recent study addressing this clinically important issue, we demonstrated that relative biologic effectiveness (RBE) values for p(66)/Be neutrons estimated from micronucleus (MN) data correlate positively with RBE values obtained from conventional clonogenic survival data. However, not all photon-resistant cell lines showed high RBE values when the MN endpoint was used. Now, we examine how the functional status of the p53 tumour suppressor gene and radiation-induced changes in cell cycle phase populations may contribute to this discrepancy. No significant association was established between p53 status and MN yield for both photon and neutron irradiation. The data demonstrated that neutron-, but not photon-, induced MN yield is dependent on the intrinsic ability of cells to activate a G1-phase arrest. In cell lines of comparable photon sensitivity, those showing more extensive depletion of the G1 population express significantly more micronuclei per unit dose of neutrons. These results suggest that differences in cell cycle kinetics, and not the p53 status, may constitute an important factor in damage induction by high linear energy transfer (LET) irradiation and need to be considered when radiation toxicity in clinical radiobiology or radiation protection is assessed using damage endpoints.  相似文献   

19.
The effects of bremsstrahlung, electron, gamma, and neutron radiations were investigated on the motor performance of male Sprague-Dawley rats. Rats were irradiated at a midline tissue dose rate of 20 Gy/min +/- 1 with one of the following: 18.6-MeV electrons (N = 40) or 18.1-MVp bremsstrahlung (N = 57) from a linear accelerator, 60Co 1.25-MeV gamma-ray photons (N = 48), or reactor neutrons at 1.67 MeV tissue-kerma weighted-mean energy (N = 43). Radiation effects were determined by establishing median effective doses (ED50) for rats trained on an accelerod, a shock-avoidance motor performance test. ED50's were based on 10-min postexposure performance. The ED50's were 61 Gy for electrons, 81 Gy for bremsstrahlung, 89 Gy for gamma-ray photons, and 98 Gy for neutrons. In terms of relative biological effectiveness to produce early performance decrement (10 min from the start of irradiation), significant differences existed between the electrons and the other three fields and between the bremsstrahlung and neutron fields. These differences could not be explained by macroscopic dose distribution patterns in the irradiated animals. The data imply that different radiation qualities are not equally effective at disrupting performance, with high-energy electrons being the most effective and neutrons the least.  相似文献   

20.
The skin reactions in aerated and hypoxic mouse tails after single or fractionated doses of 250 kV X-rays or fast neutrons (6 MeV deuterons on beryllium) have been measured. The o.e.r. for one to sixteen fractions of X-rays remains constant, while that for one to ten fractions of neutrons decreases with increasing neutron fractionation and decreasing neutron dose/fraction. The o.e.r. for X-rays was 1.7, for single-neutron doses 1.4, and for ten fractions of neutrons 1.25. It was anticipated that the o.e.r. for neutron-induced damage would decrease further as neutron fractionation is increased because the contribution to damage from the highest LET components of dose, the alpha and heavy recoil particles, would increase relative to the lowe LET components. The r.b.e. values obtained for skin damage were higher at all neutron doses/fraction examined in this study on tails than all those previously obtained in studies on skin at other sites on four species. This may be due to the influence of hypoxia on the r.b.e. measurements in the mouse tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号