首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the parameters of activity in hindlimb locomotor generators following decerebellation were quantified during experiments on decerebrate immobilized cats. Eliminating modulating cerebellar influences on nuclei of descending systems was found to lead to a slight increase in the length of activity in the flexor generator half-center and less intensive activity, as well as shortening of the period and more intensive activity in the extensor half-center, together with increased instability in generator operation, reduced statistical dependence between alterations in parameters of activity at the hindlimb half-center generators, and finally intensified effects of afferent inputs on generator activity. A comparison is drawn between the functional role of the spino-cerebellar loop in the operation of locomotor and scratch generators.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 2, pp. 142–150, March–April, 1991.  相似文献   

2.
Microinjections of aspartic acid and chlorpromazine into the region of the locus coeruleus, which strengthen spontaneous unit activity in that structure, in decerebellate cats anesthetized with chloralose, led to depression of the inhibitory influence of flexor reflex afferents on extensor discharges, but did not change the facilitatory action of these afferents on flexor monosynaptic discharges and had no effect on recurrent inhibition of extensor discharges or reduced it. Microinjection of noradrenalin into this region, which depresses spontaneous unit activity in the locus coeruleus, or of procaine, which blocks action potential generation in neurons, led to potentiation of the inhibitory action of flexor reflex afferents on extensor discharges and to strengthening of recurrent inhibition, but did not affect the facilitatory action of these afferents on flexor discharges. The role of tonic descending influences of the locus coeruleus in the control of spinal inhibition evoked by flexor reflex afferents is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 247–256, May–June, 1981.  相似文献   

3.
The effects of signals proceeding along descending systems of the spinal cord on the parameters of efferent activity in the scratch generator (i.e., discharges in ventral roots L5 and L7) were investigated in decerebrate immobilized cats. It was found that eliminating cerebellar modulatory influences on nuclei of the descending system (decerebellation) leads to an altered ratio between the activity of generator hemicenters, increased instability of generator operation, a reduced statistical relationship between alteration in parameters of hemicenter activity, and raised sensitivity to afferent signals in the generator. Complete elimination of descending system influences (after severing the spinal cord at the anterior boundary of the first cervical segment) produced a reduction in the intensity of efferent activity and in the afferent sensitivity of the scratch generator. The functional significance of descending signals for operation of the scratch generator is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 123–131, January–February, 1990.  相似文献   

4.
K. V. Baev 《Neurophysiology》1979,11(6):426-433
The kinetics of primary afferent depolarization (PAD) in the lumbar spinal cord was studied in immobilized decerebrate and decapitated cats during fictitious scratching. Fictitious scratching was accompanied by tonic and periodic PAD. Periodic PAD was cophased in different segments of the lumbosacral enlargement. Tonic depolarization was observed in terminals of all groups of afferent fibers studied (low-threshold cutaneous and of groups Ia and Ib). Periodic changes were observed only in endings of low-threshold cutaneous fibers and group Ib fibers. The physiological role of modulation of PAD by the spinal scratch generator is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 569–577, November–December, 1979.  相似文献   

5.
Electrical activity of flexor and extensor alpha-motoneurons of the lumbar segments of cat's spinal cord as recorded intracellularly during electric stimulation of afferents of the contralateral posterior limb. Contralateral postsynaptic potentials (PSP) were shown to be evoked by activation of cutaneous and high-threshold muscle afferents. The high-threshold afferents of various muscle nerves participate to varying degrees in the generation of contralateral PSP. Contralateral inhibitory postsynaptic potentials (IPSP) were recorded in both flexor and extensor motoneurons along with contralateral excitatory postsynaptic potentials (EPSP). There are no fundamental differences in their distribution between flexor and extensor neurons. Inhibitory influences as a rule are predominant in both during the first 20 msec, and EPSP are predominant in the interval between 20 and 100 msec. The balance of excitatory and inhibitory pathway activity was found to be not as stable as that of the homolateral pathways.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 418–425, July–August, 1971.  相似文献   

6.
In intact or decerebrate pigeons, unilateral functional deafferentation of the dorsal neck muscles of one side produced a postural asymmetry, characterized by an increase in flexor tonus of the ipsilateral wing and leg and an increase in extensor tonus of the contralateral limbs. This postural asymmetry was just opposite in sign to that described recently in cats, where unilateral section of the cervical dorsal roots C1-C3 produced ipsilateral hypertonia and contralateral hypotonia of the limb extensors. The striking increase in flexor tonus of the wing following deafferentation of the ipsilateral neck extensors contrasts with the decrease in flexor tonus of the wing which occurs after deafferentation of the ipsilateral leg extensors. It appears, therefore, that the proprioceptive input from the neck and that from the leg extensors exert an antagonistic influence on the flexor tonus of the ipsilateral wing.  相似文献   

7.
It has been found that bremazocine predominantly enhances the flexor reflex of the right hind limb, without affecting the left limb. The similarity of the visual data measuring the asymmetry of the pose and the asymmetry of EMG responses to painful stimulation has a high probability. No correlation between the asymmetry of the pose and EMG extensor activity has been found.  相似文献   

8.
The influence of tonic afferent inflow as conditioned by ipsilateral hindlimb position on the efferent activity parameters of the spinal generator governing scratching motion was investigated in immobilized decerebrate cats. A significant correlation was observed between motor activity parameters and ensuing bouts of scratching in the absence of afferent flow (after deafferentation of the limbs). This correlation was less pronounced when afferentation remained intact and declined when the limb was shifted from the "aimed" to either the "overaimed" or "deflecting backwards" placing of the limb. The statistically significant correlations found between the parameters of different stages of motor activity and their dependence on hindlimb positions during actual scratching could be responsible for the stability of intended placing of the limbs during the performance of oscillatory movements. Hindlimb deafferentation would appear closest to "aimed" position judging by the parameters of efferent activity and the nature of correlations between them.A. A. Bogomolets Institute of Physiology. Academy of Sciences of the Ukrainian SSR. Kiev. Translated from Neirofiziologiya, Vol. 15, No. 5, pp. 636–645, September–October, 1986.  相似文献   

9.
The statistical relationship was investigated between temporal and amplitude parameters of scratching motion performed by the hindlimb and those of muscular activity during naturally-occurring scratching in the course of experiments on decerebrate cats. The factors mainly determining movement parameters, such as amplitude or the speed and duration of a specific phase were found to be the intensity of EMG activity displayed by scratching and aiming muscles and the duration of aiming muscle activity. Findings from experiments involving limb deafferentation showed that the statistical relationship between the parameters of motion and muscular electrical activity reflect certain patterns of scratch generator operation. Certain relationships linking parameters of electrical activity changed due to the effects of afferent signals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 525–533, July–August.  相似文献   

10.
Experiments performed on decerebrate cats showed that afferent activity accompanying scratching consists of two components—one with a tonic and the other with a periodic phase. The first of these is determined by limb position and the second closely related to speed and amplitude of angular changes occurring at the joints. Peak integral afferent activity within the cycle occurred at the end of the scratch phase itself, when aiming muscles are already operating. These two components of afferent activity produce corresponding changes in depolarization at primary afferent terminals (DPA), which are added to those DPA changes brought about by the effects of the central generator. Statistical relationships between the aforementioned processes were investigated. Mechanisms underlying afferent control over the operation of the scratch generator are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 49–57, January–February, 1988.  相似文献   

11.
The reorganization of the parameters of the efferent activity of the forelimb locomotion generator for electrical stimulation of the descending systems is determined in experiments on decerebrate immobilized cats. This generator is found to be characterized by a stable state at which the sum of influences of the signals from different descending systems on the generator is extremely limited. It is concluded that under the influence of these signals, the reorganizations of the activity of the locomotion generators of different limbs bring the motor program into a dynamic (or nearly dynamic) relationship with the supraspinal inflow, allowing for a sufficient limitation and balancing of the influences of the corresponding descending systems on the interneuronal networks determining the temporal and phase characteristics of the activity of these generators.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 704–708, November–December, 1991.  相似文献   

12.
Experiments were conducted on anesthetized cats with microelectrode recording to study the synaptic responses that develop in the lumbar motoneurons on stimulation of the afferent fibers of groups II and III in the nerves of the ipsilateral and contralateral forelegs. Stimulation of these afferents evoked predominantly inhibitory postsynaptic potentials (IPSP) in the extensor motoneurons and excitatory postsynaptic potentials (EPSP) in the flexor motoneurons. A basically inhibitory change in the rhythmic background activity developed under the influence of descending impulsation. The duration of the total inhibition of "spontaneous" motoneuron activity corresponded to the duration of the inhibitory influences exerted by the forelimb flexor-reflex afferents (FRA) on the interneurons. The interaction of the descending and segmental PSP resulted in inhibition and facilitation of the segmental responses in the motoneurons. The ultimate result of this interaction was determined by the shifts in the membrane potential of the motoneuron and by the effects created in the interneurons.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 58–67, January–February, 1971.  相似文献   

13.
The effects of spontaneous locomotor activity on neuronal background firing in the lateral vestibular nucleus was investigated during experiments on decerebrate guinea pigs. The onset of rhythmic muscular activity in the extramities was found to produce a rise in the rate of such discharges, which increased from 10–15 to 100 spikes/sec in most neurons. A higher rate occurred as activity began in the ipsilateral forelimb extensor muscles (the stage corresponding to the end of the swing phase and start of the stance phase in the locomotor cycle). The alterations noted in vestibular neuronal activity during locomotion are thought to ensure the background of high anti-graveity muscle tonus against which rhythmic limb movements take place.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 536–541, September–October, 1991.  相似文献   

14.
Effects of stimulation of flexor reflex afferents were studied in decerebrate immobilized cats. Stimulation of ipsilateral afferents evoked late long-lasting discharges in the nerves to the flexors, whereas stimulation of contralateral afferents led to similar discharges in nerves to both extensors and flexors. Compared with spinal animals, early segmental reflexes in thalamic cats were tonically depressed. Similar tonic inhibition of segmental reflexes took place in spinal animals after injection of dopa. Segmental reflexes were clearly modulated during late or rhythmic discharges. The possible central mechanisms of these changes in the segmental reflexes are discussed on the basis of data in the literature.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 2, pp. 137–145, March–April, 1979.  相似文献   

15.
Experiments on cats anesthetized with chloralose showed that repetitive stimulation of the locus coeruleus is accompanied by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons. The effect appeared 600 msec after the beginning of stimulation and reached its maximum after 1500–2000 msec. Repetitive stimulation of the locus coeruleus did not change the membrane potential and did not affect EPSPs or IPSPs evoked by stimulation of low-threshold muscle afferents; EPSPs due to activation of high-threshold cutaneous and muscle afferents likewise remained unchanged. Repetitive stimulation of more central regions of the brain stem was accompanied not only by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons, but also by a decrease in amplitude of EPSPs arising in response to stimulation of these same afferents in flexor motoneurons. These effects were not connected with activation of monoaminergic structures, for unlike effects arising during stimulation of the locus coeruleus, they were also found in previously reserpinized animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 51–59, January–February, 1982.  相似文献   

16.
The effects of applying adequate vestibular stimulation to the mesencephalic locomotor region on locomotor activity in fore- and hindlimb muscles was investigated during experiments on decerebrate guinea pigs. This stimulation was produced by linear sinusoidal shifting of the animal along a vertical axis at rates of 0.08, 0.2, 0.4, and 0.8 Hz (with peak accelerations of 0.010, 0.063, 0.252, and 1.010 m·sec–2 respectively). A downwards shift was found to increase electromyographic extensor muscle activity in fore- and hindlimbs occurring during the swing phase of the locomotor cycle. An upwards movement was accompanied by the opposite changes in muscle activity. Minimum acceleration required to produce an alteration in muscle activity equaled 0.063 m·sec–2 (0.006g). These alterations were characterized by cyclical delay in relation to linear (active) acceleration. Phase lags in the activity of fore- and hindlimb extensor muscles at the rate of 0.8 Hz reached 63° and 86° respectively. Changes in flexor muscle activity ran counterphasically to these; phasic delay equalled 264° and 275° respectively. The part played by the vestibular system in control over locomotor activity in vertebrate muscles is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 192–197, March–April, 1989.  相似文献   

17.
The influence of adequate vestibular stimulation occurring as the animal tilted around longitudinal axis on locomotor activity of the forelimb muscles was investigated during experiments on guinea pigs decerebrated at precollicular level. Locomotor activity was produced by electrical stimulation of the mesencephalic locomotor region. An increase in extensor EMG activity was observed when the animal shifted its weight onto the limb ipsilateral to the tilt during the "standing" phase and a reduction in flexor activity during the swing phase. The reverse of these changes was seen in the activity of antagonist muscles in the contralateral limb. It was found that changes in muscular locomotor activity exceeded those observed during animal movements by 60–40° in the extensors and 40–20° in the flexors during cyclic sinusoidal tilting in the 0.02–0.4 Hz range. The mechanisms underlying vestibular control of locomotor activity are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 534–541, July–August, 1987.  相似文献   

18.
Reordering of the parameters of motor activity produced in the scratch generator by regular electrical stimulation of the ipsilateral hindlimb muscle nerve during different limb positions was investigated in decerebrate immobilized cats. Brief short latency inhibition of currently occurring motor activity was produced in response to stimulation, which did not cause an overall shift in the relationship between the intensity of aiming and scratching motion. Changes in cycle duration and intensity of these activities were phase-locked. Speculations were made on the functional role of the phase-locked nature of motor activity remodeling. The possible existence within the scratch generator of a model of the afferent inflow entering the spinal cord during true scratching is suggested.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 382–390, May–June, 1987.  相似文献   

19.
Previous experiments had shown that in decerebrate cats activation of limb extensor motoneurons during side-down roll tilt of the animal or side-up neck rotation depends on both an increased discharge of excitatory vestibulospinal (VS) neurons and a reduced discharge of inhibitory reticulospinal (RS) neurons of the medulla, thus leading to disinhibition of limb extensor motoneurons. The present experiments were performed to find out whether the locus coeruleus (LC) complex keeps under its tonic inhibitory control the medullary inhibitory RS neurons and, if so, whether this structure intervenes in the gain regulation of the vestibular and neck reflexes acting on the limb extensor musculature. In precollicular decerebrate cats with good postural rigidity of the four limbs, the amplitude of modulation and thus the response gain of the first harmonic component of multiunit EMG responses of limb extensors to sinusoidal stimulation of labyrinth and neck receptors (at 0.15 Hz, +/- 10 degrees) were quite small in forelimb muscles (triceps brachii) and almost negligible or absent in hindlimb muscles (triceps surae). Electrolytic lesion limited to the LC complex decreased the tonic contraction of limb extensors, but greatly increased in the forelimbs (and brought to the light in the hindlimbs) the response modulation of extensor muscles to the same parameters of labyrinth or neck stimulation. Correspondingly, the response gain increased, but no change in the phase angle of the responses was observed. Both changes in posture, as well as in response gain of the limb extensors to labyrinth and neck stimulation, fully developed some time after the LC lesion. This increase in response gain of the vestibular and neck reflexes acting on the limb extensor muscles did not depend on the decrease in postural activity following the LC lesion, since it was still obtained when an increased static stretch of the extensor muscle following passive flexion of the limb compensated for the reduced EMG activity. Moreover, the slope of the regression line relating the gain of the multiunit EMG response of the triceps brachii to animal tilt with the base frequency greatly increased following lesioning of the LC, thus indicating that for the same background discharge of the muscle the amplitude of modulation, and thus the response gain, increased significantly. The effects described above involved mainly, but not exclusively, the limbs ipsilateral to the side of the lesion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Efferent fibers of the hind limbs were divided and electrical activity of a filament from the ventral root of S1 was recorded in experiments on mesencephalic cats capable of locomotion in response to stimulation of the "locomotor region" of the midbrain. In response to weak stimulation of the locomotor region, when the forelimbs were not performing stepping movements, regular waves of activity appeared in the filament with a period close to the duration of the step during walking (0.5–1.0 sec). This periodic process was largely dependent on the tonic afferent inflow: various extero- and interoceptive stimuli applied to the hind limb could change the period of generation or abolish it. Active stepping movements of the forelimbs as well as passive movements of the hind limbs led to synchronization of activity in the filament with these movements. After division of the afferent fibers to the hind limbs the animals performed one or two steps in response to stimulation of the dorsal root of S1 by a short series of pulses. They could also perform independent stepping movements of the hind limb if 15–30% of the fibers in the dorsal root of L7 remained intact.M. V. Lomonosov Moscow State University. Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 4, pp. 401–409, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号