首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There have been several reports of increased levels of excretion of indolyl-3-acryloylglycine (IAcrGly) in human urine in a number of disease states. However, the metabolic source of this compound is still not clear and there is the possibility of more than one mechanism for IAcrGly production. There was therefore a need for a rapid, low limit of quantitation assay for IAcrGly to enable further study in this area. In the assay described here, these analytical requirements were addressed by utilising a solid-phase extraction method for sample clean-up, reversed-phase LC with an on-column focusing method of sample introduction and UV absorbance detection at 326 nm. The limit of quantitation of this method was 26.2 ng ml−1. It was also noted that IAcrGly undergoes isomerisation when exposed to light and that this process is reversible.  相似文献   

2.
Biosynthetic incorporation of tryptophan (Trp) analogs such as 7-azatryptophan, 5-hydroxytryptophan, and fluorotryptophan into a protein can facilitate its structural analysis by spectroscopic techniques such as fluorescence, phosphorescence, nuclear magnetic resonance, and Fourier transform infrared. Until now, the approach has dealt primarily with soluble proteins. In this article, we demonstrate that four different Trp analogs can be very efficiently incorporated into a membrane protein as demonstrated for the mannitol transporter of Escherichia coli (EII(mtl)). EII(mtl) overexpression was under control of the lambdaP(R) promoter, and the E. coli Trp auxotroph M5219 was used as host. This strain constitutively expresses the heat labile repressor protein of the lambdaP(R) promoter. Together with the presence of the repressor gene on the EII(mtl) plasmid, this resulted in a tightly controlled promoter system, a prerequisite for high Trp analog incorporation. A new method for determining the analog incorporation efficiency is presented that is suitable for membrane proteins. The procedure involves fitting of the phosphorescence spectrum as a linear combination of the Trp and Trp analog contributions, taking into account the influence of the protein environment on the Trp analog spectrum. The data show that the analog content of EII(mtl) samples is very high (>95%). In addition, we report here that biosynthetic incorporation of Trp analogs can also be effected with less expensive indole analogs, which in vivo are converted to L-Trp analogs.  相似文献   

3.
Apolipoprotein E (apoE) is a 34-kDa exchangeable apolipoprotein that regulates metabolism of plasma lipoproteins by functioning as a ligand for members of the LDL receptor family. The receptor-binding region localizes to the vicinity of residues 130-150 within its independently folded 22-kDa N-terminal domain. In the absence of lipid, this domain exists as a receptor-inactive, globular four-helix bundle. Receptor recognition properties of this domain are manifest upon lipid association, which is accompanied by a conformational change in the protein. Fluorescence resonance energy transfer has been used to monitor helix repositioning, which accompanies lipid association of the apoE N-terminal domain. Site-directed mutagenesis was used to replace naturally occurring Trp residues with phenylalanine, creating a Trp-null apoE3 N-terminal domain (residues 1-183). Subsequently, tyrosine residues in helix 2, helix 3, or helix 4 were converted to Trp, generating single Trp mutant proteins. The lone cysteine at position 112 was covalently modified with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine, which serves as an energy acceptor from excited tryptophan residues. Fluorescence resonance energy transfer analysis of apoE N-terminal domain variants in phospholipid disc complexes suggests that the helix bundle opens to adopt a partially extended conformation. A model is presented that depicts a tandem arrangement of the receptor-binding region of the protein in the disc complex, corresponding to its low density lipoprotein receptor-active conformation.  相似文献   

4.
Using site-directed mutagenesis, a double mutant in yeast cytochrome c peroxidase (CCP) has been constructed where the proximal ligand, His175, has been converted to glutamine and the neighboring Trp191 has been converted to phenylalanine. The refined 2.4-A crystal structure of the double mutant shows that the Gln175 side chain is within coordination distance of the heme iron atom and that Phe191 occupies the same position as Trp191 in the native enzyme with very little rearrangement outside the immediate vicinity of the mutations. Consistent with earlier work, we find that the single mutant, His175-->Gln, is fully active under steady state assay conditions and that as reported earlier (Mauro et al., 1988), the Trp191-->Phe mutant exhibits only < 0.05% activity. However, the double mutant, His175-->Gln/Phe191-->Phe, exhibits 20% wild type activity. Since it is known that the Trp191-->Phe mutant is inactive because it can no longer transfer electrons from ferrocytochrome c, changing the nature of the proximal ligand is able to restore this activity. These results raise interesting questions regarding the mechanism of interprotein electron transfer reactions.  相似文献   

5.
The aggregation of alpha-synuclein is believed to be a critical step in the etiology of Parkinson's disease. A variety of biophysical techniques were used to investigate the aggregation and fibrillation of alpha-synuclein in which one of the four intrinsic Tyr residues was replaced by Trp, and two others by Phe, in order to permit fluorescence resonance energy transfer (FRET) between residues 39 (Tyr) and 125 (Trp). The mutant Y125W/Y133F/Y136F alpha-synuclein (one Tyr, one Trp) showed fibrillation kinetics similar to that of the wild-type, as did the Y125F/Y133F/Y136F (one Tyr, no Trp) and Y39F/Y125W/Y133F/Y136F (no Tyr, one Trp) mutants. Time-dependent changes in FRET, Fourier transform infrared, Trp fluorescence, dynamic light-scattering and other probes, indicate the existence of a transient oligomer, whose population reaches a maximum at the end of the lag time. This oligomer, in which the alpha-synuclein is in a partially folded conformation, is subsequently converted into fibrils, and has physical properties that are distinct from those of the monomer and fibrils. In addition, another population of soluble oligomers was observed to coexist with fibrils at completion of the reaction. The average distance between Tyr39 and Trp125 decreases from 24.9A in the monomer to 21.9A in the early oligomer and 18.8A in the late oligomer. Trp125 remains solvent-exposed in both the oligomers and fibrils, indicating that the C-terminal domain is not part of the fibril core. No FRET was observed in the fibrils, due to quenching of Tyr39 fluorescence in the fibril core. Thus, aggregation of alpha-synuclein involves multiple oligomeric intermediates and competing pathways.  相似文献   

6.
Glycine 165, which is located near the active site metal, is mostly conserved in aligned amino acid sequences of manganese-containing superoxide dismutase (Mn-SOD) proteins, but is substituted to threonine in most iron-containing SODs (Fe-SODs). Because threonine 165 is located between Trp128 and Trp130, and Trp128 is one of the metal-surrounding aromatic amino acids, the conversion of this amino acid may affect the metal-specific activity of Escherichia coli Mn-SOD. In order to clarify this possibility, we prepared a mutant of E. coli Mn-SOD with the replacement of Gly165 by Thr. The ratio of the specific activities of Mn- to Fe-reconstituted enzyme increased from 0.006 in the wild-type to 0.044 in the mutant SOD; therefore, the metal-specific SOD was converted to a metal-tolerant SOD. The visible absorption spectra of the Fe- and Mn-reconstituted mutant SODs indicated the loss of Mn-SOD character. It was concluded that Gly at position 165 plays a catalytic role in maintaining the integrity of the metal specificity of Mn-SOD.  相似文献   

7.
The aim of this work was to examine the bioactivity and the conformational behavior of some gomesin (Gm) analogues in different environments that mimic the biological membrane/water interface. Thus, manual peptide synthesis was performed by the solid-phase method, antimicrobial activity was evaluated by a liquid growth inhibition assay, and conformational studies were performed making use of several spectroscopic techniques: CD, fluorescence and EPR. [TOAC(1)]-Gm; [TOAC(1), Ser(2,6,11,15)]-Gm; [Trp(7)]-Gm; [Ser(2,6,11,15), Trp(7)]-Gm; [Trp(9)]-Gm; and [Ser(2,6,11,15), Trp(9)]-Gm were synthesized and tested. The results indicated that incorporation of TOAC or Trp caused no significant reduction of antimicrobial activity; the cyclic analogues presented a beta-hairpin conformation similar to that of Gm. All analogues interacted with negatively charged SDS both above and below the detergent's critical micellar concentration (cmc). In contrast, while Gm and [TOAC(1)]-Gm required higher LPC concentrations to bind to micelles of this zwitterionic detergent, the cyclic Trp derivatives and the linear derivatives did not seem to interact with this membrane-mimetic system. These data corroborate previous results that suggest that electrostatic interactions with the lipid bilayer of microorganisms play an important role in the mechanism of action of gomesin. Moreover, the results show that hydrophobic interactions also contribute to membrane binding of this antimicrobial peptide.  相似文献   

8.
Trp140 of E. coli aspartate aminotransferase has been converted to Phe or Gly by site-directed mutagenesis. As compared to the wild-type enzyme, either of the mutant enzymes showed 10- to 100-fold increase in Km's for natural dicarboxylic substrates, but did not show appreciable changes in Km's for aromatic substrates. Teh kcat values for dicarboxylic and aromatic substrates were greatly decreased by [Trp140----Gly] mutation, but were decreased to lesser extents by [Trp140----Phe] mutation. These findings suggested that N(1) of Trp140 may not be essential for catalysis, but may be partly involved in the binding of the distal carboxylate group of the dicarboxylic substrates.  相似文献   

9.
根据阻遏蛋白,辅阻遏因子与启动基因之间的相互作用,建立了采用色氨酸启动子的基因工程重组徽生物的产物表达数学模型。提出了mRNA最大转录速率常数和产物表达速率常数与比生长速率呈线性关系的假设,用干扰素基因工程菌培养过程中的实验数据估计了mR—NA转录速率常数,干扰素表达速率常数和干扰素降解速率常数。推导出了发酵过程中干扰素表达量和细胞内干扰素比活计算公式。运用这些公式可以通过检测色氨酸浓度和细胞比生长速率来计算预测干扰紊表达量。确定最佳的终止培养时间。  相似文献   

10.
In the present study, modified nucleotides in the B. subtilis tRNA(Trp) cloned and hyperexpressed in E. coli have been identified by TLC and HPLC analyses. The modification patterns of the two isoacceptors of cloned B. subtilis tRNA(Trp) have been compared with those of native tRNA(Trp) from B. subtilis and from E. coli. The modifications of the A73 mutant of B. subtilis tRNA(Trp), which is inactive toward its cognate TrpRS, were also investigated. The results indicate the formation of the modified nucleotides S4U8, Gm18, D20, Cm32, i6A/ms2i6A37, T54 and psi 55 on cloned B. subtilis tRNA(Trp). This modification pattern resembles the pattern of E. coli tRNA(Trp), except that m7G is missing from the cloned tRNA(Trp), probably on account of its short extra loop. In contrast, the pattern departs substantially from that of native B. subtilis tRNA(Trp). Therefore, the cloned B. subtilis tRNA(Trp) has taken on largely the modification pattern of E. coli tRNA(Trp) despite the 26% sequence difference between the two species of tRNA, gaining in particular the Cm32 and Gm18 modifications from the E. coli host. A notable difference between the isoacceptors of the cloned tRNA(Trp) was seen in the extent of modification of A37, which occurred as either the hypomodified i6A or the hypermodified ms2i6A form. Surprisingly, base substitution of guanosine by adenosine at position 73 of the cloned tRNA(Trp) has led to the abolition of the 2'-O-methylation modification of the remote G18 residue.  相似文献   

11.
Summary It is known that total L-tryptophan (Trp) levels decrease with a decrease in albumin-bound Trp levels and an increase in free Trp levels in the plasma or serum of nephrotic children. We, therefore, examined the change of serum Trp levels following the development and recovery of acute nephrosis in 6-week-old male Wistar rats injected once with puromycin aminonucleoside (100mg/kg body weight) and checked the levels of 16 amino acids including Trp in the serum and the levels of Trp in the liver, kidney, and urine under nephrotic conditions. In this study, the development and recovery of nephrosis were checked by the changes of levels of urinary protein and serum protein and albumin. Total serum Trp and albumin-bound serum Trp levels decreased with the development of nephrosis and these decreased levels returned to the normal level with its recovery. In contrast, free serum Trp levels increased with the development of nephrosis and this increased level returned to the normal level with its recovery. In the serum of nephrotic rats, the decrease of albumin-bound Trp levels and the increase of free Trp levels were well consistent with a decrease in albumin levels and an increase in the level of non-esterified fatty acids which are known to weaken the binding of Trp to albumin and among 16 amino acids studied, only Trp showed a significant change in its levels. Trp levels increased in the liver and kidney but not in the urine under nephrotic conditions. These results indicate that the change of serum Trp levels should be closely related to the condition of nephrosis and that although serum Trp is lost under nephrotic conditions, the lost serum Trp is accumulated in the liver and kidney.  相似文献   

12.
The receptor for avian sarcoma/leukosis virus subtype A (ASLV-A), Tva, is the simplest member of the low density lipoprotein receptor family containing a single ligand-binding repeat (LBR). Most LBRs contain a central Trp (Trp33 in Tva) that is important for ligand binding and, for the low density lipoprotein receptor, is associated with familial hypercholesterolemia. The Tva ligand-binding module contains a second Trp (Trp48) that is part of a DEW motif present in a subset of LBRs. Trp48 is important for ASLV-A infectivity. A soluble Tva (sTva) ligand-binding module is sufficient for ASLV-A infectivity. Tva interacts with the viral glycoprotein, and a soluble receptor-binding domain (SUA) binds sTva with picomolar affinity. We investigated whether Tva, a retroviral receptor, could behave as a classic LBR by assessing sTva interactions with the universal receptor-associated protein (RAP) and comparing these interactions with those between sTva and its viral ligand (SUA). To address the role of the two Trp residues in Tva function, we prepared sTva harboring mutations of Trp33, Trp48, or both and determined the binding kinetics with RAP and SUA. We found that sTva behaved as a "normal" receptor toward RAP, requiring both calcium and Trp33 for binding. However, sTva binding to SUA required neither calcium nor Trp33. Furthermore, sTva could bind both RAP and SUA simultaneously. These results show that the single LBR of Tva has two ligand-binding sites, raising the possibility that other LBRs may also.  相似文献   

13.
RNA quality control: degradation of defective transfer RNA   总被引:17,自引:0,他引:17  
The distinction between stable (tRNA and rRNA) and unstable (mRNA) RNA has been considered an important feature of bacterial RNA metabolism. One factor thought to contribute to the difference between these RNA populations is polyadenylation, which promotes degradation of unstable RNA. However, the recent discovery that polyadenylation also occurs on stable RNA led us to examine whether poly(A) might serve as a signal for eliminating defective stable RNAs, and thus play a role in RNA quality control. Here we show that a readily denaturable, mutant tRNA(Trp) does not accumulate to normal levels in Escherichia coli because its precursor is rapidly degraded. Degradation is largely dependent on polyadenylation of the precursor by poly(A) polymerase and on its removal by polynucleotide phosphorylase. Thus, in the absence of these two enzymes large amounts of tRNA(Trp) precursor accumulate. We propose that defective stable RNA precursors that are poorly converted to their mature forms may be polyadenylated and subsequently degraded. These data indicate that quality control of stable RNA metabolism in many ways resembles normal turnover of unstable RNA.  相似文献   

14.
Rat cellular retinol binding protein (CRBP II) is a 134-amino acid intracellular protein synthesized in the polarized absorptive cells of the intestine. We have previously used 19F nuclear magnetic resonance (NMR) spectroscopy to survey the structural effects of ligand binding on the apoprotein. For these studies, all 4 Trp residues of rat CRBP II were efficiently labeled with 6-fluorotryptophan (6-F-Trp) by inducing its expression in a tryptophan auxotroph of Escherichia coli. Resonances corresponding to 2 of its Trp residues underwent large downfield shifts upon binding of all-trans-retinol and retinal, while resonances corresponding to the other 2 Trp residues underwent only minor perturbations in chemical shifts. To identify which Trp residues undergo changes in their environment upon ligand binding, we have constructed four CRBP II mutants where Trp9, Trp89, Trp107, or Trp110 have been replaced by another hydrophobic amino acid. By comparing the 19F NMR spectrum of each 6-F-Trp-labeled mutant with that of wild type 6-F-Trp CRBP II, we demonstrate that the 19F resonance corresponding to Trp107 undergoes the largest change in chemical shift upon ligand binding (2.0 ppm downfield). This is consistent with the position of this residue predicted from molecular modeling studies. The 19F resonance corresponding to Trp9 also undergoes a downfield change in chemical shift of 0.5 ppm associated with retinol binding even though it is predicted to be removed from the ligand binding site. By contrast, the resonances assigned to Trp89 and Trp110 undergo only minor perturbations in chemical shifts. These results have allowed us to identify residue-specific probes for evaluating the interactions of all-trans-retinol (and other retinoids) with this intracellular binding protein.  相似文献   

15.
Camalexin (3-thiazol-2-yl-indole) is an indole alkaloid phytoalexin produced by Arabidopsis thaliana that is thought to be important for resistance to necrotrophic fungal pathogens, such as Alternaria brassicicola and Botrytis cinerea. It is produced from Trp, which is converted to indole acetaldoxime (IAOx) by the action of cytochrome P450 monooxygenases CYP79B2 and CYP79B3. The remaining biosynthetic steps are unknown except for the last step, which is conversion of dihydrocamalexic acid to camalexin by CYP71B15 (PAD3). This article reports characterization of CYP71A13. Plants carrying cyp71A13 mutations produce greatly reduced amounts of camalexin after infection by Pseudomonas syringae or A. brassicicola and are susceptible to A. brassicicola, as are pad3 and cyp79B2 cyp79B3 mutants. Expression levels of CYP71A13 and PAD3 are coregulated. CYP71A13 expressed in Escherichia coli converted IAOx to indole-3-acetonitrile (IAN). Expression of CYP79B2 and CYP71A13 in Nicotiana benthamiana resulted in conversion of Trp to IAN. Exogenously supplied IAN restored camalexin production in cyp71A13 mutant plants. Together, these results lead to the conclusion that CYP71A13 catalyzes the conversion of IAOx to IAN in camalexin synthesis and provide further support for the role of camalexin in resistance to A. brassicicola.  相似文献   

16.
The method for separation of emission (EM) and excitation (EX) spectra of a protein into EM and EX spectra of its tyrosine (Tyr) and tryptophan (Trp) residues was described. The method was applied to analysis of Escherichia coli RecA protein and its complexes with Mg(2+), ATPgammaS or ADP, and single-stranded DNA (ssDNA). RecA consists of a C-terminal domain containing two Trp and two Tyr residues, a major domain with five Tyr residues, and an N-terminal domain without these residues (R. M. Story, I. T. Weber, and T. A. Steitz (1992) Nature (London) 355, 374-376). Because the fluorescence of Tyr residues in the C-terminal domain was shown to be quenched by energy transfer to Trp residues, Trp and Tyr fluorescence of RecA was provided by the C-terminal and the major domains, respectively. Spectral analysis of Trp and Tyr constituents revealed that a relative spatial location of the C-terminal and the major domains in RecA monomers was different for their complexes with either ATPgammaS or ADP, whereas this location did not change upon additional interaction of these complexes with ssDNA. Homogeneous (that is, independent of EX wavelength) and nonhomogeneous (dependent on EX wavelength) types of Tyr and Trp fluorescence quenching were analyzed for RecA and its complexes with nucleotide cofactors and ssDNA. The former was expected to result from singlet-singlet energy transfer from these residues to adenine of ATPgammaS or ADP. By analogy, the latter was suggested to proceed through energy transfer from high vibrational levels of the excited state of Trp and Tyr residues to the adenine. In this case, for correct calculation of the overlap integral, Trp and Tyr donor emission spectra were substituted by the spectral function of convolution of emission and excitation spectra that resulted in a significant increase of the overlap integral and gave an explanation of the nonhomogeneous quenching of Trp residues in the C-terminal domain.  相似文献   

17.
Tryptophan (Trp) biosynthesis and production of other related compounds from 1 mM each of indole (IND), L-serine (Ser), and IND plus Ser by mixed ruminal bacteria (B), protozoa (P), and their mixture (BP) in an in vitro system were quantitatively investigated. Ruminal microorganisms were anaerobically incubated at 39°C for 12 h. Trp and other related compounds produced in both the supernatants and microbial hydrolyzates of the incubation were analyzed by HPLC. B, P, and BP suspensions were not able to produce Trp when incubated with only IND or Ser. Appreciable amounts of Trp (9.8, 3.1, and 6.6% of substrate) were produced from IND plus Ser after 12 h by B, P, and BP suspensions, respectively. Trp produced from IND + Ser in B was found only in the hydrolyzate, whereas it was found in the medium as a free form in P after a 12-h incubation period. Rumen bacteria and protozoa were separately demonstrated for the first time to produce Trp from IND plus Ser, and the ability of P to produce Trp from IND plus Ser was about one-third that of B in 12 h. Trp produced from IND plus Ser by B, P, and BP suspensions was simultaneously degraded into its related compounds, and, among them, indoleacetic acid (IAA) was a major product found in B. Production of IAA was 4.3, 0.3, and 3.2% of IND in 12 h by B, P, and BP suspensions, respectively. A small amount of skatole (SKT) (1.1 and 2.5% in B and BP, respectively) and p-cresol (CRL) (2.4 and 3.4% in B and BP, respectively) were also produced from IND plus Ser during 12-h incubation. P suspension produced no SKT or CRL from IND plus Ser in 12-h incubation. These results suggested for the first time that both rumen bacteria and protozoa have an ability to produce Trp from IND plus Ser, and the ability was higher in B than in P. The ratios of Trp produced from IND plus Ser to that from indolepyruvic acid by B, P, and BP were 1:3.4, 1:14.2, and 1:6.6 during 12-h incubation period. From these results, the degree of importance of producing Trp from IND plus Ser in the rumen was indicated. Received: 18 February 1999 / Accepted: 18 May 1999  相似文献   

18.
W C Lam  A H Maki  T Itoh  T Hakoshima 《Biochemistry》1992,31(29):6756-6760
Phosphorescence and ODMR measurements have been made on ribonuclease T1 (RNase T1), the mutated enzyme RNase T1 (Y45W), and their complexes with 2'GMP and 2'AMP. It is not possible to observe the phosphorescence of Trp45 in RNase T1 (Y45W). Only that of the naturally occurring Trp59 is seen. The binding of 2'GMP to wild-type RNase T1 produces only a minor red shift in the phosphorescence and no change in the ODMR spectrum of Trp59. However, a new tryptophan 0,0-band is found 8.2 nm to the red of the Trp59 0,0-band in the 2'GMP complex of the mutated RNase T1 (Y45W). Wavelength-selected ODMR measurements reveal that the red-shifted emission induced by 2'GMP binding, assigned to Trp45, occurs from a residue with significantly different zero-field splittings than those of Trp59, a buried residue subject to local polar interactions. The phosphorescence red shift and the zero-field splitting parameters demonstrate that Trp45 is located in a polarizable environment in the 2'GMP complex. In contrast with 2'GMP, binding of 2'AMP to RNase T1 (Y45W) induces no observable phosphorescence emission from Trp45, but leads only to a minor red shift in the phosphorescence origin of Trp59 in both the mutated and wild-type enzyme. The lack of resolved phosphorescence emission from Trp45 in RNase T1 (Y45W) implies that the emission of this residue is quenched in the uncomplexed enzyme. We conclude that local conformational changes that occur upon binding 2'GMP remove quenching residues from the vicinity of Trp45, restoring its luminescence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
By combining a favorable turn sequence with a turn flanking Trp/Trp interaction and a C-terminal H-bonding interaction between a backbone amide and an i-2 Trp ring, a particularly stable (DeltaG(U) > 7 kJ/mol) truncated hairpin, Ac-WI-(D-Pro-D-Asn)-KWTG-NH(2), results. In this construct and others with a W-(4-residue turn)-W motif in severely truncated hairpins, the C-terminal Trp is the edge residue in a well-defined face-to-edge (FtE) aryl/aryl interaction. Longer hairpins and those with six-residue turns retain the reversed "edge-to-face" (EtF) Trp/Trp geometry first observed for the trpzip peptides. Mutational studies suggest that the W-(4-residue turn)-W interaction provides at least 3 kJ/mol of stabilization in excess of that due to the greater beta-propensity of Trp. The pi-cation, and Trp/Gly-H(N) interactions have been defined. The latter can give rise to >3 ppm upfield shifts for the Gly-H(N) in -WX(n)G- units both in turns (n = 2) and at the C-termini (n = 1) of hairpins. Terminal YTG units result in somewhat smaller shifts (extrapolated to 2 ppm for 100% folding). In peptides with both the EtF and FtE W/W interaction geometries, Trp to Tyr mutations indicate that Trp is the preferred "face" residue in aryl/aryl pairings, presumably because of its greater pi basicity.  相似文献   

20.
Tryptophan at the 62nd position (Trp62) of hen egg-white lysozyme is an amino acid residue whose action is essential for its enzymatic activity. Its indole ring may possibly come into direct contact with sugar residues of the substrate, and thus contribute significantly to substrate binding. For further elucidation of its role in catalytic processes, this amino acid was converted to other aromatic residues, such as Tyr, Phe, and His, by site-directed mutagenesis. All the mutations were found to enhance the bacteriolytic activity but to decrease the hydrolytic activity toward an artificial substrate, glycol chitin. Such a change in substrate preference appears remarkable considering the smaller size of the aromatic residue on the mutant enzyme at the 62nd position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号