首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has recently been suggested that in the rat, sequence variation in the renin gene or closely linked genes may have the capacity to affect blood pressure and contribute to the pathogenesis of hypertension. To map the chromosomal location of the rat renin gene and to investigate its relationship to the inheritance of increased blood pressure, we studied a panel of rat x mouse somatic cell hybrids and a large set of recombinant inbred (RI) strains derived from spontaneously hypertensive rats (SHR) and normotensive Brown-Norway (BN) rats. We have found that in the rat, the renin gene is located on chromosome 13 and that it belongs to a conserved synteny group located on chromosome 1 in man and mouse. We have also found the median blood pressure of the RI strains that inherited the renin allele of the SHR to be greater than that of the RI strains that inherited the renin allele of the normotensive BN rat. These findings, together with the results of previous studies, suggest that in the rat, sequence variation in the renin gene, or in genes linked to the renin locus on chromosome 13, may have the capacity to affect blood pressure.  相似文献   

2.
Total genome scans of genetically segregating populations derived from spontaneously hypertensive rats (SHR) and other rat models of essential hypertension suggested a presence of quantitative trait loci (QTL) regulating blood pressure on multiple chromosomes, including chromosome 5. The objective of the current study was to test directly a hypothesis that chromosome 5 of the SHR carries a blood pressure regulatory QTL. A new congenic strain was derived by replacing a segment of chromosome 5 in the SHR/Ola between the D5Wox20 and D5Rat63 markers with the corresponding chromosome segment from the normotensive Brown Norway (BN/Crl) rat. Arterial pressures were directly monitored in conscious, unrestrained rats by radiotelemetry. The transfer of a segment of chromosome 5 from the BN strain onto the SHR genetic background was associated with a significant decrease of systolic blood pressure, that was accompanied by amelioration of renal hypertrophy. The heart rates were not significantly different in the SHR compared to SHR chromosome 5 congenic strain. The findings of the current study demonstrate that gene(s) with major effects on blood pressure and renal mass exist in the differential segment of chromosome 5 trapped within the new SHR.BN congenic strain.  相似文献   

3.
Spontaneously hypertensive rats (SHR), which develop hypertension approximately 10 weeks after birth, are considered to provide a good animal model for human essential hypertension. We report here that the abnormal activation of phospholipase C delta 1 (PLC-delta 1) may be one of the main causes of hypertension. Levels of the second messengers inositol 1,4,5-trisphosphate and diacylglycerol are found to be higher in the aortas of 12-week-old SHR than in age-matched normotensive Wistar-Kyoto rats (WKY), although the levels in the aortas of 7-week-old SHR, which have normal blood pressure, are the same as in WKY. Moreover, PLC activity is also higher in the aortas of 12-week-old SHR. Judging from Western blot analysis and immunoabsorption of PLCs, this activation is found to be due to that of PLC-delta 1. PLC-delta 1 from rat aorta is expressed significantly from 7 to 12 weeks, which correlates with the development of hypertension in SHR. The activity of PLC-delta 1 in the aortas of 12-week-old SHR is more markedly activated at low Ca2+ concentration than that of age-matched WKY. These results suggest that the abnormal enhancement of PLC-delta 1 activity is responsible for accumulation of inositol 1,4,5-trisphosphate and diacylglycerol, leading to continuous hypertonicity of vascular smooth muscle in SHR. The activity of PLC-delta 1 in the aortas of 12-week-old SHR is significantly higher at low Ca2+ concentration than that of normotensive WKY.  相似文献   

4.
Spontaneously hypertensive rats (SHR/NIH strain) harbor a deletion variant in the Cd36 fatty acid transporter and display defective fatty acid metabolism, insulin resistance and hypertension. Transgenic rescue of Cd36 in SHR ameliorates insulin resistance and improves dyslipidemia. However, the role of Cd36 in blood pressure regulation remains controversial due to inconsistent blood pressure effects that were observed with transgenic expression of Cd36 on the SHR background. In the current studies, we developed two new SHR transgenic lines, which express wild type Cd36 under the control of the universal Ef-1 alpha promoter, and examined the effects of transgenic expression of wild type Cd36 on selected metabolic and cardiovascular phenotypes. Transgenic expression of Cd36 in the new lines was associated with significantly decreased serum fatty acids, amelioration of insulin resistance and glucose intolerance but failed to induce any consistent changes in blood pressure as measured by radiotelemetry. The current findings confirm the genetic association of defective Cd36 with disordered insulin action and fatty acid metabolism in the SHR/NIH strain and suggest that Cd36 is linked to other gene(s) on rat chromosome 4 that regulate blood pressure.  相似文献   

5.
Spontaneously hypertensive rats (SHR) are the most extensively used animal model for genetic hypertension, increased stroke damage, and insulin resistance syndromes; however, the identification of target genes has proved difficult. SHR show elevated sympathetic nerve activity, and stimulation of the central blood pressure control centers with glutamate or nicotine results in exaggerated blood pressure responses, effects that appear to be genetically determined. Kynurenic acid, a competitive glutamate antagonist and a non-competitive nicotinic antagonist, can be synthesized in the brain by the enzyme kynurenine aminotransferase-1 (KAT-1). We have previously shown that KAT-1 activity is significantly reduced in SHR compared with normotensive Wistar Kyoto rats (WKY). Here we show that KAT-1 contains a missense mutation, E61G, in all the strains of SHR examined but not in any of the WKY or outbred strains. Previous studies on F2 rats from a cross of stroke-prone SHR and WKY have shown a suggestive level of linkage between elevated blood pressure and the KAT-1 locus on chromosome 3. In addition, the mutant enzyme expressed in Escherichia coli displays altered kinetics. This mutation may explain the enhanced sensitivity to glutamate and nicotine seen in SHR that may be related to an underlying mechanism of hypertension and increased sensitivity to stroke.  相似文献   

6.
The stroke-prone spontaneously hypertensive rat (SHRSP) is a well-characterized model for primary hypertension in humans. High blood pressure in SHRSP shows polygenic inheritance, but none of the loci responsible have previously been identified. To locate genes controlling this quantitative trait, we mapped a large collection of DNA polymorphisms in a cross between SHRSP and the normotensive WKY strain. Here we report strong genetic evidence that a gene, Bp1, having a major effect on blood pressure maps to rat chromosome 10 with a LOD score of 5.10 and is closely linked to the rat gene encoding angiotensin-converting enzyme (ACE), an enzyme that plays a major role in blood pressure homeostasis and is an important target of anti-hypertensive drugs. We also find significant, albeit weaker, linkage to a locus, Bp2, on chromosome 18. We discuss the implications of genetic dissection of quantitative disease-related phenotypes in mammals.  相似文献   

7.
8.
Although important advances have been made over past decades in studying the mechanisms of hypertension, the nature of cellular signaling patterns involved and their relationship remain unclear. High cGMP production rates in isolated renal glomeruli have been presented as a characteristic of spontaneously hypertensive rat (SHR) even before the development of hypertension, which suggests that this event might be a cause of the increase in blood pressure. Using cross-breeding between SHR and WKY parental strains to obtain F1 and F2 hybrids, we have investigated the patterning of high blood pressure and cGMP production rates. We have found that, in the F2 population, the mean blood pressure and both basal and ANP(1-28)-stimulated cGMP production are similar to the parental SHR. In addition, we have found a positive correlation between blood pressure and high cGMP production rates in the F2 population. The higher cGMP production was not a consequence of hypertension, since in DOCA-salt hypertensive rats cGMP production was similar to that observed in normotensive WKY rats. These observations suggest that high cGMP production is a characteristic linked to hypertension. Finally, reciprocal crosses between the SHR and WKY parental strains showed that in the F1 population blood pressure but not cGMP production are associated with the Y chromosome.  相似文献   

9.
To study polygenetically inherited human diseases like hypertension, inbred rat strains are usually the preferred models. Because many inbred generations under optimized environmental conditions may have led to the survival of "silent" disease genes, we used a cross between one wild rat and genetically hypertensive SHR rats to analyze quantitative trait loci (QTLs) of blood pressure and related traits. The (Wild x SHR)F1 hybrids were transferred into a pathogen-free environment by wet-hysterectomy and were backcrossed onto SHR to generate first backcross hybrids (BC1). Progeny from one F1 female (n = 72) were phenotypically and genetically characterized to map QTLs. Significant, subsignificant, and suggestive evidence was found for more sex-specific than common linkage of blood pressure and most blood-pressure-related traits. Male- and female-specific regions were determined on different chromosomes for blood pressures (Chrs. 2 and 7 vs 5 and 11), body weight (Chrs. 10 vs 18), and blood glucose (Chr. 17 vs 20). A linkage in both males and females was shown for serum triglycerides on chromosomes 6 and 17, respectively, and blood glucose on chromosome 15. For serum total cholesterol, a significant linkage was found on chromosome 14 only in males. Our findings not only indicate the complex character of quantitative traits per se but also show impressively their dependence on sex, age, and strains in cosegregation analysis.  相似文献   

10.
11.
Hypertension is a widespread human disease caused by a complex interaction of a series of the genetic factors with both each other and the environmental conditions. In this study we aimed at determining the candidate genetic loci responsible for hypertension in the ISIAH rats and studying the dynamics of the relevant genetic and physiological mechanisms in rat ontogeny. The candidate genetic loci were identified from association of the microsatellite markers linked to these loci with arterial hypertension in rat F2 hybrids exposed to stress. Two populations of F2 hybrids of different age (3-4 and 6 months) were obtained by crossing hypertensive ISIAH and normotensive WAG rats. We present the results of cosegregation analysis for the following loci: the gene for the Na+, K(+)-ATPase alpha 1 subunit isoform (Atp1a1), the endothelin-2 gene (Edn2), the low affinity nerve growth factor receptor gene (Lngfr), and a region of chromosome 10 marked with the D10Rat58 microsatellile located 3 cM away of the aldolase C gene (AldC). The results obtained allowed us to localize the genes responsible for the stress-induced arterial hypertension in the ISIAH rats to the Atp1a1 locus (P < 0.05), chromosome 2 and to the Lngfr gene locus (P < 0.05), chromosome 10. The association of hypertensive status with the Lngfr gene was found only in young ISIAH rats whereas in adult rats of this line, hypertension was associated with the Atp1a1 locus.  相似文献   

12.
The Dahl salt-sensitive (S) rat is a widely studied model of salt-sensitive hypertension and develops proteinuria, glomerulosclerosis, and renal interstitial fibrosis. An earlier genetic analysis using a population derived from the S and spontaneously hypertensive rat (SHR) identified eight genomic regions linked to renal injury in the S rat and one protective locus on chromosome 11. The "protective" locus in the S rat was replaced with the SHR genomic segment conferring "susceptibility" to kidney injury. The progression of kidney injury in the S.SHR(11) congenic strain was characterized in the present study. Groups of S and S.SHR(11) rats were followed for 12 wk on either a low-salt (0.3% NaCl) or high-salt (2% NaCl) diet. By week 12 (low-salt), S.SHR(11) demonstrated a significant decline in kidney function compared with the S. Blood pressure was significantly elevated in both strains on high salt. Despite similar blood pressure, the S.SHR(11) exhibited a more significant decline in kidney function compared with the S. The decline in S.SHR(11) kidney function was associated with more severe kidney injury including tubular loss, immune cell infiltration, and tubulointerstitial fibrosis compared with the S. Most prominently, the S.SHR(11) exhibited a high degree of medullary fibrosis and a significant increase in renal vascular medial hypertrophy. In summary, genetic modification of the S rat generated a model of accelerated renal disease that may provide a better system to study progression to renal failure as well as lead to the identification of genetic variants involved in kidney injury.  相似文献   

13.
Localization of the cryptdin locus on mouse chromosome 8   总被引:4,自引:0,他引:4  
Cryptdin is a defensin-related peptide, and its mRNA accumulates to high abundance in epithelial cells of intestinal crypts beginning in the second week of postnatal development. The cryptdin (Defcr) locus was assigned to mouse chromosome 8 by Southern blotting of DNAs from mouse/hamster somatic hybrid cell lines. Analysis of somatic hybrid DNAs for mouse-specific restriction fragments showed zero discordance and perfect concordance with chromosome 8. The Defcr locus was localized on chromosome 8 by analysis of DNAs from recombinant inbred (RI) strains of mice after identification of three potential Defcr alleles based on restriction fragment length polymorphisms (RFLPs) in inbred strains. The strain distribution patterns of the Defcr locus were compared with those of chromosome 8 markers in five panels of RI strains. Analysis of cosegregation of Defcr with xenotropic proviral locus Xmv-26 and additional loci confirmed the chromosomal assignment and showed that Defcr is on proximal chromosome 8 within approximately 6 (1.3 to 21.3) cM of Xmv-26. The mouse Defcr locus and the human defensin gene(s) located on chromosome 8p23 appear to map to homologous regions.  相似文献   

14.
We have recently reported that the allele of the SA gene of the Spontaneously hypertensive rat (SHR) has a capacity to influence blood pressure in a F2 rat population prepared from SHR and Wistar-Kyoto rat. In the present study, we have undertaken a similar genetic co-segregation analysis of the F2 rat population prepared from SHR and Lewis rat. The result indicated that, although overall effects of the SA gene genotypes on blood pressure were not significant, a correlation of the genotypes of the SA gene with blood pressure was significantly observed in the female rats of this population. The present results further strengthen our hypothesis that the SA gene, or a gene closely linked to this gene, has a capacity to influence blood pressure.  相似文献   

15.
Wild rat representing a disease-resistant phenotype and genotype, was used in a crossing study with spontaneously hypertensive rat (SHR) to search for quantitative trait loci (QTL) affecting blood pressure. Therefore, one male wild rat was crossed with SHR females and F1 hybrids were transferred in a pathogen free environment by wet-hysterectomy and backcrossed onto hypertensive SHR rats resulting in first backcross hybrids (BC1). Considering that the F1 hybrids are not uniform, as are the cross hybrids of inbred rat strains, we selected 72 BC1 progeny of one F1 female, which were characterised for systolic blood pressure, measured by tail cuff method and were genetically analysed using 200 microsatellites covering the whole genome. We found suggestive linkage of blood pressure to region on chromosome 2 flanked by D2Mit8 and Fgg loci (lod score 2.3). In addition, possible interaction between genes on chromosomes 7 and 3, X and 3, 14 and 3, 13 and 11 was described, indicating that blood pressure development in the SHR might be the result of interacting genes.  相似文献   

16.
Hypertension is a widespread human disease caused by a complex interaction of a series of the genetic factors with both each other and the environmental conditions. In this study we aimed at determining the candidate genetic loci responsible for hypertension in the ISIAH rats and studying the dynamics of the relevant genetic and physiological mechanisms in rat ontogeny. The candidate genetic loci were identified from association of the microsatellite markers linked to these loci with arterial hypertension in rat F2 hybrids exposed to stress. Two populations of F2 hybrids of different age (3–4 and 6 months) were obtained by crossing hypertensive ISIAH and normotensive WAG rats. We present the results of cosegregation analysis for the following loci: the gene for the Na+, K+-ATPase alpha 1 subunit (Atp1a1), the endothelin-2 gene (Edn2), the low affinity nerve growth factor receptor gene (Lngfr), and a region of chromosome 10 marked with the D10Rat58 microsatellile located 3 cM away of the aldolase C gene (AldC). The results obtained allowed us to localize the genes responsible for the stress-induced arterial hypertension in the ISIAH rats to the Atp1a1locus (P < 0.05), chromosome 2 and to the Lngfr gene locus (P < 0.05), chromosome 10. The association of hypertensive status with the Lngfr gene was found only in young ISIAH rats whereas in adult rats of this strain, hypertension was associated with the Atp1a1locus.  相似文献   

17.
Spontaneously diabetic BB/OK rats are not genetically susceptible to develop diabetic complications as hypertension or nephropathy. Recently, we generated 5 congenic BB. SHR rat strains by transferring different chromosomal regions of the spontaneously hypertensive rat (SHR) onto the genetic background of BB/OK rats. Four out of 5 strains showed a weak increase of blood pressure (8 mmHg). This weak blood pressure effect indicated that the transferred regions fo not contain major genes for hypertension. That prompted us to choose the classical procedure of phenotypic selection to fix major genes causing hypertension in a BB/OK rat subline generated by cross of BB/OK and SHR and repeated backcrossing of animals with highest blood pressure onto normotensive BB/OK rats. After 7 backcrosses (N8), all backcross parents were genetically analysed with the aid of 259 microsatellites to identify loci causing blood pressure of 177 ± 10 mmHg in this BB/OK rat subline. The data revealed, that loci on chromosome 1, 14 and 18 were heterozygous until BC5, BC6 and BC7, respectively. Considering the relative stable high blood pressure during the backcross procedure, these loci might be of essential importance for the development of hypertension in the SHR.  相似文献   

18.
The SHR-Lx congenic strain carrying a differential segment of chromosome 8 of BN and PD origin was recently shown to exhibit a significant decrease in blood pressure as compared to the SHR strain. There were two positional candidate genes for blood pressure control mapped to the differential segment: the rat kidney epithelial potassium channel gene (Kcnj1) and brain dopamine receptor 2 gene (Drd2). Bot these genes were separated into SHR.BN-RNO8 congenic substrains. In this communication, we are presenting the assignment of two further putative candidate genes, which might be involved in blood pressure control to the BN/PD differential segment of the SHR-Lx congenic strain. These are: the gene coding for smooth muscle cell specific protein 22 (Sm22) defined by the D8Mcw1 marker and neuronal nicotinic acetylcholine receptor gene cluster, defined by the D8Bord1 marker. Moreover, the glutamate receptor gene Grik4 which also maps to the differential segment of the SHR-Lx should be taken into account. The genetic separation of all these putative candidate genes of blood pressure control is being performed by recombinations and subsequent selection using (SHR×SHR-Lx) intercross population.  相似文献   

19.
The stroke-prone spontaneously hypertensive rat (SHRSP) is vulnerable to delayed neuronal death (DND) in the CA1 subfield of the hippocampus after the transient forebrain ischemia by the occlusion of the bilateral carotid arteries. The present study was designed to show that the genetic factors independent of high blood pressure contributed to the high incidence of DND in SHRSP. Male rats of the four strains, SHRSP/Izm, SHRSP/Ngsk, SHR/Izm and a congenic strain for the blood pressure quantitative trait locus on chromosome 1 [SHRSP.WKY-(D1Wox29-D1Arb21)/Izm]were used in the experiments. At 13 weeks of age, the bilateral carotid arteries of rats were occluded for 10 min under anesthesia with their body temperature kept at 37°C. Seven days after the transient ischemia, the loss of the pyramidal cells in the CA1 was evaluated histologically. In some experiments, the blood flow was monitored with a laser Doppler flowmeter during the transient ischemia. The blood pressure in SHRSP/Izm was significantly greater than that in the other three strains. The incidence of DND, however, was not significantly different among SHRSP/Izm, SHRSP/Ngsk and the congenic strain (82, 74 and 65%, respectively), while SHR/Izm showed a significantly lower incidence (20%). Neither a significant correlation between the incidence of DND and the blood flow reduction during the occlusion, nor a significant inter-strain difference in the blood flow reduction was observed. The genetic factors independent of high blood pressure may contribute to the greater susceptibility to DND in SHRSP.  相似文献   

20.
The objective of this study was to compare strain and gender differences in kidney and heart norepinephrine (NE) content and turnover rate in normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR, SHR/a, and SHR/y). Our laboratory has shown that the Y chromosome has a significant effect on blood pressure in the SHR model of hypertension through the use of two new rat stains, SHR/a and SHR/y, to study the Y chromosome. SHR/a have a SHR autosomal genetic background with a WKY Y chromosome, whereas the SHR/y rats have a WKY autosomal genetic background with a SHR Y chromosome. Tissues were homogenized after alpha-methyl-DL-p-tyrosine injection and analyzed for NE. The male kidney NE content was significantly lower in the WKY compared with the SHR, SHR/y, and SHR/a. Kidney and heart NE content was significantly higher in females compared with males in all strains except the SHR/y. The WKY and SHR/y females had significantly lower kidney NE turnover rates, and the SHR and SHR/a females had significantly higher kidney NE turnover rates than strain-matched males. This study suggests both a strain and gender difference in sympathetic nervous system activity through noradrenergic neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号