首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to identify the sources and depth of water uptake by 15-years old Quercus suber L. trees in southern Portugal under a Mediterranean climate, measuring δ18O and δD in the soil–plant-atmosphere continuum. Evidence for hydraulic lift was substantiated by the daily fluctuations observed in Ψs at 0.4 and 1 m depth and supported by similar δ18O values found in tree xylem sap, soil water in the rhizosphere and groundwater. From 0.25 m down to a depth of 1 m, δD trends differed according to vegetation type, showing a more depleted value in soil water collected under the evergreen trees (−47‰) than under dead grasses (−35‰). The hypothesis of a fractionation process occurring in the soil due to diffusion of water vapour in the dry soil is proposed to explain the more depleted soil δD signature observed under trees. Hydraulically lifted water was estimated to account for 17–81% of the water used during the following day by tree transpiration at the peak of the drought season, i.e., 0.1–14 L tree−1 day−1. Significant relationships found between xylem sap isotopic composition and leaf water potential in early September emphasized the positive impact of the redistribution of groundwater in the rhizosphere on tree water status.  相似文献   

2.
The sources of water used by woody vegetation growing on karst soils in seasonally dry tropical regions are little known. In northern Yucatan (Mexico), trees withstand 4–6 months of annual drought in spite of the small water storage capacity of the shallow karst soil. We hypothesized that adult evergreen trees in Yucatan tap the aquifer for a reliable supply of water during the prolonged dry season. The naturally occurring concentration gradients in oxygen and hydrogen stable isotopes in soil, bedrock, groundwater and plant stem water were used to determine the sources of water used by native evergreen and drought-deciduous tree species. While the trees studied grew over a permanent water table (9–20 m depth), pit excavation showed that roots were largely restricted to the upper 2 m of the soil/bedrock profile. At the peak of the dry season, the δ18O signatures of potential water sources for the vegetation ranged from 4.1 ± 1.1‰ in topsoil to −4.3 ± 0.1‰ in groundwater. The δ18O values of tree stem water ranged from −2.8 ± 0.3‰ in Talisia olivaeformis to 0.8 ± 1‰ in Ficus cotinifolia, demonstrating vertical partitioning of soil/bedrock water among tree species. Stem water δ18O values were significantly different from that of groundwater for all the tree species investigated. Stem water samples plotted to the right of the meteoric water line, indicating utilization of water sources subject to evaporative isotopic enrichment. Foliar δ13C in adult trees varied widely among species, ranging from −25.3 ± 0.3‰ in Enterolobium cyclocarpum to −28.7 ± 0.4‰ in T. olivaeformis. Contrary to initial expectations, data indicate that native trees growing on shallow karst soils in northern Yucatan use little or no groundwater and depend mostly on water stored within the upper 2–3 m of the soil/bedrock profile. Water storage in subsurface soil-filled cavities and in the porous limestone bedrock is apparently sufficient to sustain adult evergreen trees throughout the pronounced dry season.  相似文献   

3.
An analytical model, based on unsaturated zone water and solute balances, was developed to describe the uptake of saline groundwater by plants in dry regions. It was assumed that: i. initially, the profile had low water and salt contents to some depth; ii. both water and solutes move upwards from the water table by piston flow due only to plant water extraction; iii. the uptake of water concentrates solutes in the soil solution until some threshold salinity is reached, above which plants can no longer extract water due to osmotic effects; iv. uptake of the groundwater does not affect the water table level; and v. uptake of groundwater is only limited by transmission of groundwater through the soil. Model predictions were compared with measurements of groundwater uptake made over 15 months at five sites in aEucalyptus forest in a semi-arid area, using independently measured model parameters. Depth and salinity of groundwater, and soil type varied greatly between sites. Predicted groundwater uptake rates were close to measured values, generally being within ∼ 0.1 mm day-1. Sensitivity analysis showed that groundwater depth and salinity were the main controls on uptake of groundwater, while soil properties appeared to have a lesser effect. The model showed that uptake of groundwater would result in complete salinisation of the soil profile within 4 to 30 yr at the sites studied, unless salts were leached from the soil by rainfall or flood waters. However, a relatively small amount of annual leaching may be sufficient to allow groundwater uptake to continue. Thus groundwaters, even when saline, may be important sources of water to plants in arid and semi-arid areas.  相似文献   

4.
王玉刚  肖笃宁  李彦  李小玉 《生态学报》2007,27(10):4036-4044
研究地下水动态和土壤积盐过程有助于了解地下水抬升对土壤积盐的作用规律,合理利用水资源,防止土壤盐渍化。根据1985年、2000年和2005年的地下水等值线图资料,结合研究区1983~2005年水资源利用和0~20cm土壤层总盐数据以及土地利用数据,利用GIS技术和地统计学方法,分析了近23a来地下水动态,以及地下水抬升与地表积盐的关系。结果表明:区域输水灌溉是地下水水位抬升的直接动因。年均地下水水位抬升0.09m,地下水位每抬升1m,造成区域地表积盐区增加144.45hm2,地下水位的抬升对区域灌溉景观的积盐面积的扩张作用要强于非灌溉景观,在灌溉景观中耕地积盐速率最快,达0.43t.hm-.2a-1,23a间,单位面积的积盐量增加了40.04%,在非灌溉景观中,盐碱地的积盐作用较强,积盐速率达0.68.thm-.2a-1。  相似文献   

5.
Spatial patterns of soil water depletion by Eucalyptus spp. were surveyed to assess the potential of tree belts and short rotation phase farming with trees for groundwater recharge reduction and salinity control. Soils were sampled to depths of up to 10 m in transects perpendicular to 4- to 7-year-old mallee eucalypt belts (Eucalyptus horistes, E. kochii ssp. plenissima, E. loxophleba ssp. lissophloia, E. polybractea) and in a 4 year-old block of E. astringens. Results indicate that the eucalypt species can exploit soil water to depths of at least 8–10 m within 7 years of planting. The root systems of these eucalypts were able to penetrate clayey subsoils with bulk densities of up to 2.0 g cm−3. Leaf area indexes of tree belts were 2–10 times greater than those predicted for natural vegetation, probably as a result of exploiting a greater amount of soil water stored under the agricultural system. The lateral influence of mallee belts, as indicated by soil water contents that were depleted to wilting point, ranged from 15–42 m. The resulting dry soil zone provided an effective barrier to groundwater recharge by incident rainfall thereby lessening the risk of salinisation in the agricultural landscape. The width of this barrier to recharge was predicted to range from 7 m to 54 m based on leaf area.  相似文献   

6.
Melaleuca halmaturorum is a salt and waterlogging tolerant tree and thus often occurs in saline areas fringing permanent wetlands and in ephemeral swamps. The dominance of this tree in natural groundwater discharge areas may result in M. halmaturorum transpiration making a major contribution to groundwater discharge. To quantify this the seasonal changes in tree water sources in response to fluctuating soil salinity and waterlogging were examined. This study was conducted in a natural system where seasonally fluctuating saline groundwater (64 dS m–1; 0.3–1.2 m deep) allowed the patterns of M. halmaturorum root water uptake to be followed over a 15 month period. Tree water sources were examined using the naturally occurring stable isotopes of water, while new root growth was examined using a field root observation window and from soil cores. The presence of isotopic fractionation of 2H under conditions of soil salinity and waterlogging was tested in a glasshouse experiment. Measurements of soil and leaf water potential were also made to examine the possible water sources and limits to water uptake. No isotopic fractionation was found by tree roots under conditions of salinity and waterlogging. M. halmaturorum trees were active in taking up groundwater at most times and combined this with a shallower soil water source replenished by rainfall in winter. Water uptake was concentrated in the deeper parts of the soil profile when the groundwater was at its deepest and salt had accumulated in the surface soils, at the end of summer. When groundwater rose, at the end of winter, roots responded by extracting water from near the soil surface (0–0.1 m), at the new watertable. This pattern of water uptake in response to groundwater fluctuations and salt accumulation in the surface soil was also reflected in new root tip appearance at the root observation window. Fluctuations in leaf water potential fallowed fluctuations in surface soil (0.1 m depth) water potential at all times. In winter leaf water potential reflected the absolute values of the surface soil water potential but in summer it was between surface soil and groundwater water potentials. We conclude that M. halmaturorum used groundwater in summer and a combination of rainfall and groundwater from the surface soils in winter. The ability to take up water from saline substrates through the maintenance of low leaf water potential, combined with this ability to rapidly alter root water uptake in response to changes in soil water availability contributed to the survival of M. halmaturorum in this saline swamp.  相似文献   

7.
In order to analyze the salt transport affected by roots and its effects on soil salinity in an experimental irrigated field newly established in an alluvial valley of the Yellow River in China, spatial distribution of ions contained in waters, soils and crops relevant to these phenomena were evaluated there. During the intensive surveys conducted in year 2007–2008, the Yellow River water, irrigation canal water, groundwater, field soils and crops, etc. were sampled and their chemical characteristics such as electrical conductivity, concentrations of ions Na+, Ca2+, Mg2+, K+, Cl, SO42−and NO3 were measured. Irrigation seemed to cause increases in the concentrations of ions Na+, Cl and SO42− in the groundwater. Although those were also major ions contained in the field soil, the soil was classed as saline but not sodic according to the standard classification. On the other hand, K+, which is one of the major essential nutrients for plant growth, was highly concentrated in the crops, while Na+ was not concentrated because of crop’s poor ability to absorb it. The ion concentration within the plant body seemed to be reflected by the active and selective ion uptake by roots and the transpiration stream. Furthermore, salt accumulation in the surface-irrigated field largely depended on the upward transport of water and ions in the soil profile affected by root absorption capacity. The information obtained in this study will contribute to the development of scientific methods for sustainable and effective plant production in irrigated fields.  相似文献   

8.
Significant studies about Tamarix chinensis as an introduced invasive plant species have been implemented in North America. However, the response of native T. chinensis to its environment is not well known in China. T. chinensis is a useful species in preventing sea water intrusion in coastal areas of northern China. It is necessary to fully understand the relationships between environmental conditions and ecological characteristics of this species to better preserve its habitats. The Yellow River Delta Natural Reserve, one of the major distribution regions of T. chinensis, was then selected as a case study area to investigate the response of this species to water table depth and soil salinity (Na+, Cl, Mg2+). It was found that sites with shallow water table depths (less than 1.5 m) and low soil salinity (less than 30 psu), provided the best habitat conditions for T. chinensis. The results also showed that plant height, stem diameter, and crown width were all positively correlated to plant age, while they had negative correlations with water table depth. Negative correlations between plant height and soil salinity, plant stem diameter and soil salinity were also concluded. However, no obvious relationship between the crown breadth of T. chinensis and soil salinity was observed. Four types of T. chinensis habitats were obtained based on the ecological characteristics of T. chinensis individuals associated with soil salinity and water table depth, i.e., (1) Low water table with high soil salinity; (2) Deep water table with high soil salinity; (3) Deep water table with low soil salinity; (4) Inundation with low salinity. These results provide a sound basis for wetland management in the Yellow River Delta.  相似文献   

9.
土壤盐分空间变异特征和地下水埋深状况是指导灌区合理用水和防治土壤盐碱化的重要依据。运用经典统计学和地质统计学方法,结合GIS技术,分析了河套灌区沙壕渠灌域0-20 cm、20-40 cm、40-60 cm土壤EC值的空间变异特征及地下水埋深对土壤盐分分布的影响。结果表明:沙壕渠灌域土壤盐分Cv值在不同灌溉时期和不同土壤深度均大于36%,表现为强变异特征;各灌水时期和不同土壤深度土壤EC值均表现为中等强度的空间自相关性,表层0-20 cm土壤空间自相关程度最高;秋浇前不同层次土壤EC值的空间分布在灌域内从南到北呈增大趋势,秋浇后土壤含盐量的高值区在西北部或东北部;土壤盐分受地下水埋深影响显著,灌域内地下水埋深南深北浅,土壤盐分随地下水埋深的增大而减小,二者之间满足指数关系。因此,应采取合理措施控制地下水埋深,防止区域土壤盐渍化加剧。  相似文献   

10.
Water use and sodium chloride uptake by apple trees   总被引:2,自引:0,他引:2  
D. W. West 《Plant and Soil》1978,50(1-3):37-49
Summary Apple trees grown with their root systems split into halves were used to study the effects of non-uniform salinity stress within a root system upon salt and water uptake. Water uptake declined rapidly when sodium chloride solution (90 meq l−1) was added to any root zone but uptake increased correspondingly in the non-saline root zone of each tree. This changed pattern of water uptake with partial salinization did not change the total water use by the trees compared with their water use when neither root zone was salt stressed. After a‘steady-state’ condition of water uptake had been reached 80 to 85% of the water was taken up in the non-saline root zone. Irrigation at three soil matric potential intervals of −6.6, −33 and −66 kPa allowed to develop in the non-saline root zone of each tree did not affect water use responses. Leaf concentrations of Ca, Mg and K were unaffected by treatments. Chloride and Na concentrations increased in leaves with exposure to salinity stress in half root zones and with increasing soil matric potential stress. Some evidence was obtained using tritium enriched water that water was transferred from a non-saline root zone into a saline root zone but the volume involved was unmeasurable.  相似文献   

11.
Little is known about partitioning of soil water resources in species-rich, seasonally dry tropical forests. We assessed spatial and temporal patterns of soil water utilization in several canopy tree species on Barro Colorado Island, Panama, during the 1997 dry season. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and sap flow were measured concurrently. Evaporative fractionation near the soil surface caused soil water δD to decrease from about –15‰ at 0.1 m to –50 to –55‰ at 1.2 m depth. Groundwater sampled at the sources of nearby springs during this period yielded an average δD value of –60‰. θv increased sharply and nearly linearly with depth to 0.7 m, then increased more slowly between 0.7 and 1.05 m. Based on xylem δD values, water uptake in some individual plants appeared to be restricted largely to the upper 20 cm of the soil profile where θv dropped below 20% during the dry season. In contrast, other individuals appeared to have access to water at depths greater than 1 m where θv remained above 45% throughout the dry season. The depths of water sources for trees with intermediate xylem δD values were less certain because variation in soil water δD between 20 and 70 cm was relatively small. Xylem water δD was also strongly dependent on tree size (diameter at breast height), with smaller trees appearing to preferentially tap deeper sources of soil water than larger trees. This relationship appeared to be species independent. Trees able to exploit progressively deeper sources of soil water during the dry season, as indicated by increasingly negative xylem δD values, were also able to maintain constant or even increase rates of water use. Seasonal courses of water use and soil water partitioning were associated with leaf phenology. Species with the smallest seasonal variability in leaf fall were also able to tap increasingly deep sources of soil water as the dry season progressed. Comparison of xylem, soil, and groundwater δD values thus pointed to spatial and temporal partitioning of water resources among several tropical forest canopy tree species during the dry season. Received: 5 October 1998 / Accepted: 23 June 1999  相似文献   

12.
Chlorophyll a and nutrient concentrations along with temperature and salinity values were measured at 22 CTD stations along a 735-km transect running to the northwest of the island of South Georgia, Southern Ocean. Measurements were repeated during five summer surveys (January and February 1994, January 1996, December 1996, January 1998) and one spring survey (October 1997). The transect sampled Sub-Antarctic Zone water in the north, Polar Frontal Zone water and Antarctic Zone water in the south. Chlorophyll a concentrations were lowest to the north of the transect and frequently high (up to 17 mg m−3) in the deep open ocean of the Antarctic Zone. Sub-surface peaks were measured in all zones and chlorophyll a was detectable to a depth of 150 m. There was a clear latitudinal temperature gradient in the near-surface waters (0–50 m), the warmest water occurring in the north (∼12 °C), and the coolest in the Antarctic Zone (∼2 °C). There was also a well-defined latitudinal gradient in summer near-surface silicate concentrations (∼2, 4, and 10 mmol m−3 in the Sub-Antarctic Zone, the Polar Frontal Zone and the Antarctic Zone, respectively), increasing to >20 mmol m−3 near South Georgia. Distinct differences in silicate concentrations were also evident in all three zones to a depth of 500 m. Near-surface nitrate and phosphate concentrations were relatively low to the north of the transect (∼14 and 1 mmol m−3, respectively) and higher in the Polar Frontal Zone and Antarctic Zone (∼18 and 1.4 mmol m−3, respectively). Ammonium and nitrite were restricted to the upper 200 m of the water column, and exhibited sub-surface concentration peaks, the lowest being in the Sub-Antarctic Zone (0.68 and 0.25 mmol m−3, respectively) and the highest in the Antarctic Zone (1.72 and 0.29 mmol m−3, respectively). Surface (∼6 m) spring nutrient measurements provided an indication of pre-bloom conditions; ammonium and nitrite concentrations were low (∼0.27 and 0.28 mmol m−3, respectively), while silicate, nitrate and phosphate concentrations were high and similar to previously measured winter values (e.g. ∼26, 23, 2 mmol m−3, respectively in the Antarctic Zone). Although the values measured were very variable, and there was some evidence of a seasonal growth progression, the chlorophyll a and nutrient distribution patterns were dominated by intercruise (interannual) factors. Approximate nutrient depletions (spring minus summer) appeared similar in the Polar Frontal Zone and Antarctic Zone for nitrate and phosphate, while silicate showed a marked latitudinal increase from north to south throughout the transect. Highest chlorophyll a concentrations coincided with the highest apparent silicate depletions over the deep ocean of the Antarctic Zone. In this area, relatively warm, easterly flowing Antarctic Circumpolar Current water meets cooler, westerly flowing water that is influenced by the Weddell-Scotia Confluence and is rich in nutrients, especially silicate. Accepted: 27 November 1999  相似文献   

13.
以固氮树种刺槐与绒毛白蜡、榆树、臭椿三树种的混交林及其纯林为研究对象,研究了刺槐与不同树种混交对土壤水分、盐分年动态变化的影响。研究结果表明:(1)刺槐与3个树种混交,刺槐臭椿混交林生长最好,均高于各自纯林。(2)混交林一定程度改善了土壤含水量及层次分布,土壤含水量整体趋势均表现出0~60 cm表层土中含水量高于各自纯林,而深层土壤含水量低的特点,只有8月份纯林和混交林的土壤含水量没有显著差别。不同树种在具体层次上略有差异;(3)混交林降低了土壤含盐量,改变了土壤盐分层次分布和年变化规律。不同月份间土壤含盐量随土壤深度、混交树种的变化而变化。深层土壤含盐量高,表层土壤含盐量低,混交林含盐量低于纯林且存在树种差异。混交林与纯林含盐量均雨季低,旱季高;但在某一具体月份各层次含盐量差别不大;不同土层含水量、含盐量与天然降水之间有明显的相关性,天然降水是混交林及纯林土壤水分的主要来源。  相似文献   

14.
To study salt dynamics in soil profiles under different groundwater conditions, a 3-year indoor experiment was carried out under conditions of open-air evaporation. Silt loam soil was treated under three groundwater table depths (0.85, 1.05, and 1.55 m) combined with three groundwater salinities: 0.40 dS m? 1 (2 g l? 1), 0.80 dS m? 1 (4 g l? 1), and 1.60 dS m? 1 (8 g l? 1). A total of nine soil columns (0.14 m internal diameter) were used to simulate different combinations of groundwater depths and salinities. The results obtained showed that salt first accumulated at the bottom of the soil column, and only when soil salinity in this layer had remained relatively stable with time, salt began to accumulate in the adjacent upper soil layers. When all subsoil layers had reached dynamic salinity equilibrium, electrical conductivity (EC) of soils in the surface layer began to increase drastically. With increasing salt accumulation in the surface soil, EC of the subsoil began to rise tardily. The further up the soil layer, the earlier EC started to increase, although the redistribution of salts in the soil profile tended to be homogenous. Groundwater depth did not significantly change subsoil EC values at the same depth; however, it distinctly affected the time needed for the subsoil to reach dynamic salinity equilibrium. Groundwater salinity, on the other hand, did not significantly alter the time point at which soil salinity at the same depth began to increase rapidly or the time period needed to reach dynamic salinity equilibrium. This study explored salt transport processes in the soil profile through a long-term experiment, enabling us to reveal some general laws governing salt dynamics that will be very important to understand the mechanism of soil salinization. The results could be further used to set up strategies to prevent salinization or to improve salt-affected soils.  相似文献   

15.
Zusammenfassung In Salzb?den wird das Wasserpotential der Rhizobodenl?sung (wurzelnahe Bodenl?sung) durch die transpirationsabh?ngige Akkumulation leichtl?slicher Salze erniedright. Aus Bodenl?sungen niedriger Wasserpotentiale ist die Wasseraufnahme der Pflanze gering bzw. wird ganz eingestellt. Wurzeln junger Zuckerrübenpflanzen konnten noch aus Bodenl?sungen mit 900–1000 meq NaCl/l (≜≈−3,8 MPa bis−4,2 MPa) die zum überleben erforderliche Wassermenge aufnehmen, da sich die Bl?tter durch Aufnahme von Na-und Cl-Ionen an extreme Salzbedingungen adaptierten. Für Pflanzen, die mit etwa 2,5 meq Na/g TS und etwa 1,5 meq Cl/g TS im Pro? an weniger extreme Bodensalzgehalte angepa?t waren, wurden maximale Konzentrationen der Rhizobodenl?sung von 650 bis 750 meq NaCl/1 (≜≈−2,7 MPa bis −3,1 MPa) ermittelt. Es ist anzunehmen, da? in der Rhizobodenl?sung von Pflanzen mit potentiell h?chsten Wachstumsraten, aber geringer Salzadaption, deutlich niedrigere Salzkonzentrationen in der Rhizobodenl?sung ermittelt werden.
Maximum salt concentrations in the rhizospheric soil solution of young sugar beets
Summary Due to transpiration easily soluble salts accumulate in the rhizospheric soil solution (soil solution in close vicinity of the roots) and reduce the water potential. The uptake of water by roots is lower or might even be ceased from soil solutions of low water potentials. Roots of young sugar beets were able to absorb enough water to survive even from soil solutions of 900–1000 meq NaCl/1 (≜≈−3.8MPa to−4.2 MPa), as their leaves were adapted to extreme salinity by uptake of Na-and Cl-ions. For plants less adapted to extreme soil salinity containing 2.5meq Na/g DM and 1.5 meq Cl/gDM maximum salt concentration of 650 to 750 meq NaCl/l (≜≈−2.7 MPa bis −3.1 MPa) were found in the rhizospheric soil solution. Most probably the maximum salt concentration is much lower around roots of plants high in growth potential, but less adapted to saline soils.
  相似文献   

16.
Groundwater use and salinization with grassland afforestation   总被引:5,自引:0,他引:5  
Vegetation changes, particularly transitions between tree- and grass-dominated states, can alter ecosystem water balances and soluble salt fluxes. Here we outline a general predictive framework for understanding salinization of afforested grasslands based on biophysical, hydrologic, and edaphic factors. We tested this framework in 20 paired grassland and adjacent afforested plots across ten sites in the Argentine Pampas. Rapid salinization of groundwater and soils in afforested plots was associated with increased evapotranspiration and groundwater consumption by trees, with maximum salinization occurring on intermediately textured soils. Afforested plots (10–100 ha in size) showed 4–19-fold increases in groundwater salinity on silty upland soils but 50% of the days, and depressed the water table 38 cm on average compared to the adjacent grassland. Soil cores and vertical electrical soundings indicated that ≈6 kg m−2 of salts accumulated close to the water table and suggested that salinization resulted from the exclusion of fresh groundwater solutes by tree roots. Groundwater use with afforestation in the Pampas and in other regions around the world can enhance primary production and provide a tool for flood control. However, our framework and experimental data also suggest that afforestation can compromise the quality of soils and water resources in predictable ways based on water use, climate, and soil texture.  相似文献   

17.
排水沟蓄水条件下农田与排水沟水盐监测   总被引:4,自引:0,他引:4  
为了查明盐碱地排水沟蓄水条件下农田与排水沟之间的水盐交换,基于两年现场观测试验数据,分析了农田与排水沟的水位响应以及电导率变化规律。结果发现:研究区排水沟蓄水条件下,相邻排水沟水位与农田地下水位变化基本一致,作物生长期较为强烈的蒸发蒸腾作用进一步降低了田间地下水位;排水沟水位变化可以直接或间接地影响周围农田的地下水位和水质状况,在无外界来水干扰的情况下,农田地下水和排水沟水样的电导率变化趋势一致,当排水沟受到外来淡水补给时,沟内浓缩的盐分得到稀释,电导率明显低于农田地下水。研究结果可为类似地区盐碱地治理和生态环境保护提供参考依据。  相似文献   

18.
Soil surface CO2 flux was measured in hollow and hummock microhabitats in a peatland in north central Minnesota from June to October in 1991. We used a closed infrared gas exchange system to measure soil CO2 flux. The rates of CO2 evolution from hummocks (9.8 ± 3.5 g m−2 d−1, [mean ± SE]) were consistently higher than those from hollows (5.4 ± 2.9 g m−2 d−1) (the hummock values included the contribution of moss dark respiration, which may account for 10–20% of the total measured flux). The soil CO2 flux was strongly temperature-dependent (Q10 ≈ 3.7) and appeared to be linearly related to changes in water table depth. An empirical multiplicative model, using peat temperature and water table depth as independent variables, explained about 81% of the variance in the CO2 flux data. Using the empirical model with measurements of peat temperature and estimates of hollow/hummock microtopographic distribution (relative to water table elevation), daily rates of “site-averaged” CO2 evolution were calculated. For the six-month period (May–October), the total soil CO2 released from this ecosystem was estimated to be about 1340 g CO2 m−2. Published as Paper No. 9950, Journal Series, Nebraska Agricultural Research Division, University of Nebraska, Lincoln, NE, USA.  相似文献   

19.
咸水灌溉条件下土壤水盐分布特征   总被引:6,自引:0,他引:6  
通过设置3种灌水量水平(100%ETc、80%ETc、60%ETc)和3种灌水水质水平(0.7、3和6 g·L-1),研究了咸水灌溉条件下春小麦120 cm土层内水分动态和盐分累积特征.结果表明:水分在农田土壤中的分布主要受灌水量和土壤质地的影响,充分灌溉使水分存贮在较深土层中,而非充分灌溉则使水分存贮在表层;在相同灌水量的条件下,土体内的盐分积累程度随着灌溉水矿化度的增大而加剧;在相同矿化度条件下,土体内的盐分含量及积盐深度随着灌水量的增加而增大.在作物整个生育期内,连续使用咸水灌溉将导致土壤积盐,且非充分灌溉较充分灌溉更易使土壤表层积盐.  相似文献   

20.
Summary The root systems ofEucalyptus grandis W. Hill ex Maiden, irrigated with recycled municipal effluent at two sites in north-western Victoria, Australia, were studied by excavation and coring. Trees at Robinvale were four years-old and were irrigated using micro-sprays that covered only 70% of the ground surface area, whereas at Mildura, effuent was uniformly was uniformly applied to six years-old trees by flood and sprinkler irrigation. At Mildura where roots were excavated from a 2.80×2.80×1.20 m block of soil, a total root length of 1193 m.m−2 and a total root weight of 3.1 kg m−2 were estimated in the top metre. For roots >1 mm diameter, 77% of intercepts were at 0–30 cm, whereas only 50% were in the 50–100 cm soil horizon. At both sites where roots in the top 30 cm were studied by coring, the vertical distributions of root intercepts, length and weight were similar. Root length was greatest in the 0–10 cm soil horizon at both sites, and intercepts of roots <1 mm diameter comprised 73% and 81% of all roots at Mildura and Robinvale respectively. Roots <1 mm diameter contributed 85% of total length at both sites, but only 19% and 21% of total weight at Mildura and Robinvale respectively. The horizontal distribution of roots differed at the two sites. With uniform application of effuent at Mildura, root intercepts and length were concentrated in the centre of the irrigation bay, but at Robinvale, the concentration occurred closer to the tree row due mainly to the different method of irrigation. Root weight at both sites was highest within 50 cm of the tree row. Root densities of 0.11 to 0.57 cm cm−3 were estimated in the two plantations; these were similar to root densities measured inPinus radiata D. Don plantations up to 46 months old, but were considerably lower than those estimated for pastures. The implications of the results for the management of irrigated plantations of eucalypts are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号