首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunocastrated pigs (IC) exhibit intensive fat deposition after immunisation, but the underlying mechanisms of intensified fat metabolism and deposition are not yet fully understood. Moreover, there is also a lack of comparative studies performed on IC, entire males (EM) and surgical castrates (SC). The main objective of our research was, therefore, to characterise the adipose tissue from the quantitative, histo-morphological and biochemical perspectives in IC 5 weeks after their immunisation in comparison to EM and SC. Immunocastrated pigs had an intermediate position in carcass fatness traits between EM (the leanest) and SC (the fattest). The histo-morphological traits of the subcutaneous adipose tissue of IC were similar to those of SC and differed from those of EM; i.e., they exhibited larger adipocytes in the outer backfat and a larger lobulus surface area in both backfat layers than EM. Intensive fat tissue development in IC was corroborated with higher activities of lipogenic enzymes (i.e., fatty acid synthase, malic enzyme, glucose 6-phosphate dehydrogenase, citrate cleavage enzyme), which was especially pronounced in the subcutaneous adipose tissue of IC (1.5- to 2.7-fold higher activity than in EM or SC). The fatty acid composition of the backfat in IC was similar to that in EM pigs. Both IC and EM exhibited less saturated and more polyunsaturated fatty acids than SC. In contrast, the fatty acid composition of the intramuscular fat of longissimus dorsi muscle in IC pigs was more similar to SC than to EM (higher monounsaturated and lower polyunsaturated fatty acid content in IC and SC than EM). In this study, it was demonstrated that immunocastration notably influenced lipid metabolism. This was shown by increased quantity of lipid depots and with changes in adipose tissue cellularity compared to EM, with changes in the fatty acid composition of the intramuscular fat and enhanced lipogenic activity compared to both EM and SC. These results provide new insights into the specificity of adipose tissue development and deposition in IC compared to EM and SC.  相似文献   

2.
Triacylglycerol/fatty acid substrate cycling was measuredin vivo in brown adipose tissue (BAT) and white adipose tissue (WAT) of fed, starved and refed rats. Starvation (24 h) significantly decreased the rate of cycling in BAT, and refeeding chow diet led to a rapid, 6-fold increase in cycling. Cycling rate in WAT was much lower than in BAT, and was not influenced by fasting or refeeding. Similar rates of cycling were found in epididymal, mesenteric, subcutaneous, and scapular WAT depots. Sympathetic denervation of interscapular BAT abolished the response of the tissue to refeeding, as did acute suppression of insulin secretion. Similarly, rats fasted for 3 days showed no acute increase in the activity of the cycle following refeeding.  相似文献   

3.
Two protocols were performed to study meal fatty acid metabolism. In protocol 1, 14 patients scheduled for elective intra-abdominal surgery (11 undergoing bariatric surgery for severe obesity) consumed a meal containing [3H]triolein in the evening before surgery. This allowed us to measure adipose tissue lipid specific activity (SA) in mesenteric and omental, deep and superficial abdominal subcutaneous adipose tissue. Intra-abdominal adipose tissue lipid SA was greater than subcutaneous lipid SA. There were no significant differences between mesenteric and omental or between deep and superficial abdominal subcutaneous adipose tissue. In protocol 2, meal fatty acid oxidation and uptake into subcutaneous and omental adipose tissue ([3H]triolein) were measured in six normal, healthy volunteers. Meal fatty acid oxidation (3H2O generation) plus that remaining in plasma ( approximately 1%) plus uptake into upper body subcutaneous, lower body subcutaneous, and visceral fat allowed us to account for 98 +/- 6% of meal fatty acids 24 h after meal ingestion. We conclude that omental fat is a good surrogate for visceral fat and that abdominal subcutaneous fat depots are comparable with regard to meal fatty acid metabolic studies. Using [3H]triolein, we were able to account for virtually 100% of meal fatty acids 24 h after meal ingestion. These results support the meal fatty acid tracer model as a way to study the metabolic fate of dietary fat.  相似文献   

4.
Highly active antiretroviral therapy (HAART) has improved the prognosis of human immunodeficiency virus (HIV)-infected patients but is associated with severe adverse events, such as lipodystrophy and insulin resistance. Rosiglitazone did not increase subcutaneous fat in patients with HAART-associated lipodystrophy (HAL) in a randomized, double-blind, placebo-controlled trial, although it attenuated insulin resistance and decreased liver fat content. The aim of this study was to examine effects of rosiglitazone on gene expression in subcutaneous adipose tissue in 30 patients with HAL. The mRNA concentrations in subcutaneous adipose tissue were measured using real-time PCR. Twenty-four-week treatment with rosiglitazone (8 mg/day) compared with placebo significantly increased the expression of adiponectin, peroxisome proliferator-activated receptor-gamma (PPARgamma), and PPARgamma coactivator 1 and decreased IL-6 expression. Expression of other genes involved in lipogenesis, fatty acid metabolism, or glucose transport, such as acyl-CoA synthase, adipocyte lipid-binding protein, CD45, fatty acid transport protein-1 and -4, GLUT1, GLUT4, keratinocyte lipid-binding protein, lipoprotein lipase, PPARdelta, and sterol regulatory element-binding protein-1c, remained unchanged. Rosiglitazone also significantly increased serum adiponectin concentration. The change in serum adiponectin concentration was inversely correlated with the change in fasting serum insulin concentration and liver fat content. In conclusion, rosiglitazone induced significant changes in gene expression in subcutaneous adipose tissue and ameliorated insulin resistance in patients with HAL. Increased expression of adiponectin might have mediated most of the favorable insulin-sensitizing effects of rosiglitazone in these patients.  相似文献   

5.
Normal male rats were made chronically diabetic by injection of alloxan or acutely diabetic by injection of anti-insulin serum. The concentration of cyclic AMP in epididymal adipose tissue was increased approximately 2 1/2-fold 24 h after alloxan administration and up to 7-fold 72 h post-alloxan. Treatment of alloxan-diabetic rats with insulin for 4 h completely suppressed lipolysis but only partially suppressed cyclic AMP levels; 6 h following insulin treatment cyclic AMP levels were normal. When segments of the epididymal fat bodies were incubated in vitro the high cyclic AMP levels were not maintained but instead decreased spontaneously. Addition of insulin to the incubation media decreased lipolysis in tissues of diabetic rats to levels measured in tissues of normal rats and accelerated the decline in cyclic AMP levels but did not return cyclic AMP levels to normal. Rats rendered acutely insulin deficient by injection of anti-insulin serum showed increased plasma glucose and free fatty acid levels and increased adipose tissue free fatty acid, and cyclic AMP levels 30 min following injection of the antiserum. Plasma glucagon levels increased but not until 2 h following anti-insulin serum, thereby excluding the possibility that an increment in plasma glucagon is the primary stimulus for the acceleration of lipolysis in diabetes. These data are consistent with the view that control of adipose tissue cyclic AMP levels in situ is an important physiologic action of insulin.  相似文献   

6.
We tested for gender differences in dietary fatty acid metabolism in 12 nonobese men and 12 nonobese women using the meal fatty acid tracer/adipose tissue biopsy study design. In addition to determining body composition, measurements of regional adipose tissue lipoprotein lipase activity, blood flow, and fat cell size were performed to place the meal fatty acid kinetic studies in perspective. Twenty-four hours after ingesting the test meal, the concentration of meal fatty acids was greater (P < 0.05) in abdominal subcutaneous than in thigh adipose tissue in both men (0. 61 +/- 0.12 vs. 0.45 +/- 0.09 mg/g) and women (0.59 +/- 0.10 vs. 0. 43 +/- 0.05) but was not different between men and women. A greater percentage of dietary fat was stored in subcutaneous adipose tissue in women than in men (38 +/- 3 vs. 24 +/- 3%, respectively, P < 0. 05), and a greater portion of meal fatty acid disposal was unaccounted for in men. Significant gender differences in regional adipose tissue blood flow after meal ingestion were noted; the differences were in the direction that could support greater nutrient storage in lower body fat in women.  相似文献   

7.
The increasing incidence of insulin resistance has been linked to both increased intake of saturated fatty acids and disruption of the hypothalamic-pituitary-adrenal (HPA) axis. We tested the hypothesis that adding saturated fat/cholesterol to the diet of growing pigs would both disrupt HPA function and cause insulin resistance. Three-month-old pigs were fed either a control (13% energy from fat) or a high saturated fatty acid cholesterol (HSFC) diet (44% energy from fat; 2% cholesterol). After 10 weeks on the diets, intravenous ACTH, insulin and glucose challenges were performed, and after 12 weeks, tissue samples were taken for measurement of mRNA and for lipid-rich aortic lesions. Plasma total, HDL- and LDL-cholesterol were significantly increased in pigs fed the HSFC diet. Cortisol release during the ACTH challenge was suppressed in HSFC-fed pigs which were also more insulin resistant and glucose intolerant than controls. The HSFC diet decreased the expression of insulin receptor (IR) and insulin receptor substrate-1 in muscle and adipose tissue as well as adiponectin and adiponectin receptor 2 expression in fat. The HSFC diet decreased PGC-1α and PPARα expression in muscle but increased PPARα expression in liver. There was a trend for an increase in lipid-stained lesion frequency around the abdominal branches of the aorta in HSFC-fed pigs. We conclude that feeding increased saturated fat to pigs causes disruption in the HPA axis, insulin resistance and decreased muscle and adipose expression of genes controlling insulin signalling and mitochondrial oxidative capacity.  相似文献   

8.
Normal male rats were made chronically diabetic by injection of alloxan or acutely diabetic by injection of anti-insulin serum. The concentration of cyclic AMP in epididymal adipose tissue was increased approximately 24 h after alloxan administration and up to 7-fold 72 h post-alloxan. Treatment of alloxan-diabetic rats with insulin for 4 h completely suppressed lipolysis but only partially suppressed cyclic AMP levels; 6 h following insulin treatment cyclic AMP levels were normal. When segments of the epididymal fat bodies were incubated in vitro the high cyclic AMP levels were not maintained but instead decreased spontaneously. Addition of insulin to the incubation media decreased lipolysis in tissues of diabetic rats to levels measured in tissues of normal rats and accelerated the decline in cyclic AMP levels but did not return cyclic AMP levels to normal. Rats rendered acutely insulin deficient by injection of anti-insulin serum showed increased plasma glucose and free fatty acid levels and increased adipose tissue free fatty acid, and cyclic AMP levels 30 min following injection of the antiserum. Plasma glucagon levels increased but not until 2 h following anti-insulin serum, thereby excluding the possibility that an increment in plasma glucagon is the primary stimulus for the acceleration of lipolysis in diabetes. These data are consistent with the view that control of adipose tissue cyclic AMP levels in situ is an important physiologic action of insulin.  相似文献   

9.
Long-term food restriction (85%, 70% and 50% of ad libitum energy intake for one month) induced a substantial fall in serum leptin concentration and leptin mRNA levels in epididymal white adipose tissue in rats. Surprisingly, this suppression was not reversed by refeeding ad libitum for 48 h. The reduction in serum leptin concentration and leptin mRNA level did not strictly correlate with reduction in fat or body mass. Unlike serum leptin concentration and epididymal adipose tissue leptin mRNA levels, fatty acid synthase activity, fatty acid synthase protein abundance and fatty acid synthase mRNA levels increased significantly in white adipose tissue after refeeding rats subjected to food restriction. The increase in serum insulin concentration was observed in all groups on different degrees of food restriction and refed ad libitum for 48 h compared to controls. A decrease in serum insulin concentration was found in the rats not refed before sacrifice. Long-term food restriction did not significantly affect serum glucose concentrations in either refed or non-refed rats. The data reported in this paper indicate that there is no rapid rebound in serum leptin concentration or leptin gene expression in contrast to the increase in serum insulin concentration and fatty acid gene expression in white adipose tissue of rats refed ad libitum after one month's food restriction.  相似文献   

10.
The mechanism(s) by which sex specific differences in regional body fat distribution develop are not known. We assessed the effects of a high-fat (HF) meal on fatty acid oxidation and uptake into regional fat depots using isotopic tracers and adipose biopsies. Thirty men (BMI 23.6 +/- 0.3 kg/m(2)) and 29 women (BMI 22.4 +/- 0.3 kg/m(2)) received a meal containing [(3)H]triolein. Twelve of the men and 13 of the women received an additional 80 g of triolein in the meal (HF) and the remainder received a normal-fat (NF) meal. Adipose tissue lipoprotein lipase (LPL) activity was measured in the fed and fasted state. After 24 h, meal fatty acid uptake into subcutaneous adipose tissue was assessed. The efficiency of meal fat uptake into upper body subcutaneous fat was similar in both sexes, but women had a greater leg fat uptake, especially in response to a HF meal (P < 0.0001). A correlation between fed-state LPL activity and meal fat uptake was found in both upper and lower body fat (P < 0.0001, r = 0.69). These studies show that, in times of net fat storage, women preferentially increase uptake in leg adipose tissue, and this is likely mediated by fed-state LPL activity.  相似文献   

11.
RNA biosynthesis in adipose tissue: effect of fasting   总被引:2,自引:0,他引:2  
RNA metabolism has been examined in intact adipose tissue and isolated fat cells from rats. The lipocyte contains three species of RNA with sedimentation rates corresponding to those of ribosomal and transfer RNA. The de novo biosynthesis of RNA by adipose tissue cells in vitro was demonstrated. The base ratios of the RNA formed indicate that it was synthesized from a DNA template. Actinomycin D administered in vivo and in vitro decreased total RNA synthesis with the most marked effect on the synthesis of the heavy RNA components. Actinomycin D or puromycin added in vitro was not toxic: they did not inhibit total fatty acid biosynthesis or glucose utilization by the fat pad nor did they inhibit the immediate stimulation of fatty acid biosynthesis and glucose uptake by the addition of insulin in vitro. Starvation for 48-72 hr significantly depressed the synthesis of the heavy RNA components as measured by in vitro uridine incorporation into the individual RNA classes. Refeeding the fasted rat with glucose repaired the defect in RNA biosynthesis before the biosynthesis of monoenoic fatty acid was completely restored. Actinomycin D administered at the time of refeeding prevented the repair of monoenoic fatty acid synthesis. It is concluded that RNA metabolism is intimately involved in the control of biosynthetic reactions in adipose tissue.  相似文献   

12.
Seasonal changes in subcutaneous adipose tissue metabolism and serum metabolite and hormone concentrations are described in virgin ewes fed a fixed amount of a cereal mixture plus hay ad libitum. Body weight, adipocyte mean cell volume, the rates of fatty acid and acylglycerol glycerol synthesis, and lipoprotein lipase activity increased from October to May and then decreased over the following five months. These changes are probably due to an increase in voluntary food intake leading to increased availability of acetate for fatty acid synthesis and also a probable rise in serum insulin concentration. Seasonal changes in adipose tissue metabolism in sheep are modulated by pregnancy and lactation, possibly mediated in part by changes in the serum insulin: growth hormone ratio. Although seasonal changes in adipose tissue metabolism are paralleled by changes in serum prolactin concentration, prolactin probably does not have a direct effect on adipose tissue metabolism.  相似文献   

13.
1. Regulation of lipogenesis and lipolysis by insulin was studied on adipocytes isolated from 100 kg Large white male pigs. Two adipose tissues were studied: subcutaneous and perirenal. Animals were fed either a control low fat diet or a diet containing 14.7% sunflower seed oil. 2. The cell diameter was higher in the group fed the sunflower diet. 3. De novo lipogenesis was decreased for each adipose tissue in the group fed the sunflower diet. The perirenal site had a higher lipogenic activity than subcutaneous site whatever the diet. 4. Insulin did not significantly stimulate lipogenesis but had an important antilipolytic effect on stimulated lipolysis by isoproterenol. 5. The antilipolytic action of insulin was higher in perirenal adipocytes with the control diet. With the sunflower diet, the decrease was about 54.4% for subcutaneous adipocytes, whereas the inhibition was decreased in perirenal adipocytes. Addition of theophylline reversed the antilipolytic action of insulin. 6. Insulin binding was not affected neither by the dietary fat nor by the adipose tissue location. 7. Absence of de novo lipogenesis stimulation by insulin was not due to an impairment in insulin binding. 8. The different effects of dietary fat and adipose tissue location on the antilipolytic action of insulin could not be explained by a modification of insulin binding but rather by a latter event, probably at a post-insulin binding stage.  相似文献   

14.
The production of pork with moderate amounts of intramuscular fat (IMF) without an increase in subcutaneous fat is highly desirable for the meat industry. Several studies indicate that dietary protein reduction during the growing–finishing period of pigs enhances IMF content, but its consequence on carcass fat deposition is still contradictory. In this study, we hypothesized that the effects of reduced protein diets (RPD), corrected or not with the limiting amino acid lysine, on subcutaneous fat deposition from pigs with distinct genotypes are mediated by adipose membranes biophysical properties. In total, 36 crossbred (Large White×Landrace×Pietrain – a lean genotype) and purebred (Alentejana breed – a fatty genotype) male pigs were randomly assigned to the control group, the RPD group or the reduced protein diet equilibrated for lysine (RPDL) group, allowing a 2×3 factorial arrangement (n=6). Backfat thickness and total fatty acid content were higher in Alentejana relative to crossbred pigs. Although dietary treatments did not change backfat thickness, RPD and RPDL increased total fatty acids content of subcutaneous fat. In order to understand this effect, adipose tissue membranes isolated from pig’s subcutaneous fat were assayed for glycerol permeability and fluidity, using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-(trimethylamino)-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) probes. The glycerol transport across adipose membranes was not mediated by aquaglyceroporins and remained unchanged across dietary groups. Regardless of lysine correction, RPD increased membrane fluidity at the hydrocarbon region (lower DPH fluorescence anisotropy) in both genotypes of pigs. This result was associated with a lower ratio between oleic acid and linoleic acid on membrane’s fatty acid composition. Adipose membrane’s cholesterol content was independent from genotype and diet. Taken together, the present study shows that dietary protein reduction is successful in maintaining backfat thickness, although a negative side effect was observed on total fatty acids in subcutaneous fat, which may be due to changes in the fluidity of adipose membranes.  相似文献   

15.
16.
The influence of maternal and formula milk on lipid metabolism was studied in 7-day-old pigs. Lipid content, fatty acid composition, lipogenic enzyme activities and expression of GLUT4 mRNA were determined in subcutaneous adipose tissue and skeletal muscle from pigs that were bottle-fed formula milk (F) or sow milk (SM), or were sow-reared (SR). Bottle-fed pigs were isoenergetically fed and achieved similar daily body weight gain. SR pigs have a higher (P < 0.05) body weight gain than bottle-fed pigs. Lipid content of adipose tissue was lower (P < 0.05) in F than in SM and SR pigs. In muscle, lipid content did not differ significantly between groups. In adipose tissue, acetyl-CoA-carboxylase (CBX), fatty acid synthase (FAS), malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PDH) and lipoprotein lipase (LPL) activities and GLUT4 mRNA levels were higher (P < 0.05) in SR than in bottle-fed pigs. In muscle, ME and G6PDH activities and GLUT4 mRNA were higher (P < 0.05) in F than in SM and SR pigs; LPL was not detected. The present study indicates that lipogenic enzyme activities and GLUT4 mRNA expression are regulated differently in subcutaneous adipose tissue and skeletal muscle in the neonatal pig.  相似文献   

17.
18.
Oxidation and adipose tissue uptake of dietary fat can be measured by adding fatty acid tracers to meals. These studies were conducted to measure between-study variability of these types of experiments and assess whether dietary fatty acids are handled differently in the follicular vs. luteal phase of the menstrual cycle. Healthy normal-weight men (n = 12) and women (n = 12) participated in these studies, which were block randomized to control for study order, isotope ([3H]triolein vs. [14C]triolein), and menstrual cycle. Energy expenditure (indirect calorimetry), meal fatty acid oxidation, and meal fatty acid uptake into upper body and lower body subcutaneous fat (biopsies) 24 h after the experimental meal were measured. A greater portion of meal fatty acids was stored in upper body subcutaneous adipose tissue (24 +/- 2 vs. 16 +/- 2%, P < 0.005) and lower body fat (12 +/- 1 vs. 7 +/- 1%, P < 0.005) in women than in men. Meal fatty acid oxidation (3H2O generation) was greater in men than in women (52 +/- 3 vs. 45 +/- 2%, P = 0.04). Leg adipose tissue uptake of meal fatty acids was 15 +/- 2% in the follicular phase of the menstrual cycle and 10 +/- 1% in the luteal phase (P = NS). Variance in meal fatty acid uptake was somewhat (P = NS) greater in women than in men, although menstrual cycle factors did not contribute significantly. We conclude that leg uptake of dietary fat is slightly more variable in women than in men, but that there are no major effects of menstrual cycle on meal fatty acid disposal.  相似文献   

19.
Obesity consists in fat accumulation leading to increase in adipose cells number and size. Adipocyte membrane biophysical properties are critical to maintain cellular viability in metabolically healthy obesity. This study investigated the effect of the genetic background and dietary protein restriction on fat tissue lipid composition, adipocyte membrane fluidity and water permeability using the pig as experimental model. Twenty-four male pigs from distinct genotypes, lean and obese, were fed on normal and reduced protein diets within a 2 × 2 factorial arrangement (two genotypes and two diets). Backfat thickness was twofold higher in obese than in lean pigs but unrelated to dietary protein level. In contrast, total fatty acids in the subcutaneous adipose tissue were dependent on both breed and diet, with increased lipid content promoted by the fatty genotype and by the restriction of dietary protein. Adipose membranes isolated from obese pig's subcutaneous fat tissue showed higher permeability to water, in line with an increased fluidity. Moreover, the reduced content of dietary protein influenced positively the fluidity of adipose membranes. Neither genotype nor diet affected total cholesterol concentration in the adipose membranes. Membrane-saturated fatty acids' content was influenced by genotype, while membrane-polyunsaturated fatty acids, particularly from the n-6 family, was influenced by diet. The ratio of oleic (18:1c9)/linoleic (18:2n-6) acids was positively correlated with membrane fluidity. All together, these findings reinforce the genetic background as a determinant player on adipose membrane biophysical properties and point to the dietary protein level as an important factor for subcutaneous lipid deposition as well as for regulation of membrane function, factors that may have impact on human obesity and metabolic syndrome.  相似文献   

20.
Factors influencing the utilization of ketone bodies by mouse adipose tissue in vitro were studied. Epididymal fat pads can oxidize DL-Beta-hydroxybutyrate-3-(14)C and acetoacetate-3-(14)C to (14)CO(2) as well as convert these compounds to fatty acid-(14)C. An increased output of (14)CO(2) from Beta-hydroxybutyrate-3-(14)C was noted in response to glucose plus insulin, succinate, oxaloacetate, L-asparate, and L-malate. Fatty acid synthesis from Beta-hydroxybutyrate was enhanced by glucose plus insulin, L-aspartate, L-malate, oxaloacetate, and citrate. Nicotinamide stimulated the oxidation of Beta-hydroxybutyrate but not of acetoacetate to CO(2), and did not affect fatty acid synthesis from either ketone body. Nicotinamide increased NAD(+) and NADP(+) levels in epididymal fat pads without affecting the concentration of NADH and NADPH. "Superlipogenesis" caused by fasting the mice for 48 hr and re-feeding them for 24 hr sharply enhanced CO(2) output and lipogenesis from Beta-hydroxybutyrate. The activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconic dehydrogenase, NADP-malic dehydrogenase, and citrate cleavage enzyme from mouse adipose tissue were increased during "superlipogenesis." Free fatty acid release by epididymal fat pads in vitro was slightly increased by Beta-hydroxybutyrate. The relationship of ketone body metabolism and lipogenesis in adipose tissue is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号