首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ribosomal 60S subunits active in polyphenylalanine synthesis can be reconstituted from core particles lacking 20–40% of the total protein. These core particles were obtained by treatment of yeast 60S subunits with dimethylmaleic anhydride, a reagent for protein amino groups. Upon reconstitution a complementary amount of split proteins is incorporated into the ribosomal particles, which have the sedimentation coefficient of the original subunits. Ribosomal protein fractions obtained by extraction with 1.25 M NH4Cl, 4 M LiCl, 7 M LiCl, or 67% acetic acid, are much less efficient in the reconstitution of active subunits from these core particles than the corresponding released fraction prepared with dimethylmaleic anhydride. Attempts to reconstitute active subunits from protein-deficient particles obtained with 1.25 M NH4Cl plus different preparations of ribosomal proteins, including the fraction released with dimethylmaleic anhydride, were unsuccessful. Therefore, under our conditions, of the disassembly procedures assayed only dimethylmaleic anhydride allows partial reconstitution of active 60S subunits.Abbreviation DMMA dimethylmaleic anhydride  相似文献   

2.
It has been shown by electron microscopy that the selective removal of the stalk from 50S ribosomal subunits of two representative archaebacteria, namely Methanococcus vaniellii and Sulfolobus solfataricus, is accompanied by loss of the archaebacterial L10 and L12 proteins. The stalk was reformed if archaebacterial core particles were reconstituted with their corresponding split proteins. Next, structurally intact chimeric 50S subunits have been reconstituted in vitro by addition of Escherichia coli ribosomal proteins L10 and L7/L12 to 50S core particles from M vaniellii or S solfataricus, respectively. In the reverse experiment, using core particles from E coli and split proteins from M vaniellii, stalk-bearing 50S particles were also obtained. Analysis of the reconstituted 50S subunits by immunoblotting revealed that E coli L10 was incorporated into archaebacterial core particles in both presence or absence of E coli L7/L12. In contrast, incorporation of E coli L7/L12 into archaebacterial cores was only possible in the presence of E coli L10. Our results suggest that in archaebacteria - as in E coli - the stalk is formed by archaebacterial L12 proteins that bind to the ribosome via L10. The structural equivalence of eubacterial and archaebacterial L10 and L12 proteins has thus for the first time been established. The chimeric reconstitution experiments provide evidence that the domain of protein L10 that interacts with the ribosomal particle is highly conserved between eubacteria and archaebacteria.  相似文献   

3.
Bacillus stearothermophilus 50 S ribosomal subunits have been reconstituted from a mixture of purified RNA and protein components. The protein fraction of 50 S subunits was separated into 27 components by a combination of various methods including ion exchange and gel filtration chromatography. The individual proteins showed single bands in a variety of polyacrylamide gel electrophoresis systems, and nearly all showed single spots on two-dimensional polyacrylamide gels. The molecular weights of the proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An equimolar mixture of the purified proteins was combined with 23 S RNA and 5 S RNA to reconstitute active 50 S subunits by the procedure of Nomura and Erdmann (Nomura, M., and Erdmann, V. A. (1970) Nature 226, 1214-1218). Reconstituted 52 S subunits containing purified proteins were slightly more active than subunits reconstituted with an unfractionated total protein extract in poly(U)-dependent polyphenylalanine synthesis and showed comparable activity in various assays for ribosomal function. The reconstitution proceeded more rapidly with the mixture of purified proteins than with the total protein extract. Reconstituted 50 S subunits containing purified proteins co-sedimented with native 50 S subunits on sucrose gradients and had a similar protein compsoition. Initial experiments on the roles of the individual proteins in ribosomal structure and function were performed. B. stearothermophilus protein 13 was extracted from 50 S subunits under the same conditions as escherichia coli L7/L12, and the extraction had a similar effect on ribosomal function. When single proteins were omitted from reconstitution mixtures, in most cases the reconstituted 50 S subunits showed decreased activity in polypheylalanine synthesis.  相似文献   

4.
5.
E. coli 16S rRNA deprived of 160 nucleotides from its 3′ end was obtained by digestion with polynucleotide phosphorylase. Such rRNA was used for the reconstitution of 30S subunits and the resulting particles contained all proteins present in native 30S ribosomes. Their sedimentation coefficient was estimated as 26.5S. Poly AUG-dependent binding of fMet-tRNA to subunits reconstituted with shortened rRNA was the same as to 30S particles reconstituted with the native 16S rRNA. Subunits reconstituted with shortened rRNA were also active in poly U-dependent phenylalanine incorporation; however, their activity reached only 50% of that obtained with 30S subunits reconstituted with native 16S rRNA.  相似文献   

6.
Proteins extracted from the 60 S rat liver ribosomal subunit with 50% ethanol/0.5 M K Cl produced only a partial reactivation of the corresponding core particles. In contrast, the same split proteins were able to reactivate the core particles prepared with dimethyl-maleic anhydride (DMMA) to the same level as that observed using the DMMA-split proteins, i.e. 60-80% of the control according to the catalytic activities tested. Comparative analysis of the two split protein fractions showed only four common proteins: P1-P2, which alone restored part of the activities, especially the EF-2-dependent GTPase one, and L10a, L12, which must be responsible for the additional reactivation. The poor ability of the ethanol/KCl core particles to be reactivated was shown to be probably related to a conformational alteration which destabilized the 5 S RNA-protein complex. Proteins present in the ethanol/KCl wash of Saccharomyces cerevisiae 60 S subunits were found to be partly active in subunit reconstitution using rat liver DMMA core particles.  相似文献   

7.
A set of Escherichia coli 16S rRNA having unique breaks were prepared using the method of oligodeoxyribonucleotide-directed fragmentation with RNAse H. 16S RNA remained compact or dissociated to separate fragments, depending on the cleavage site location in the RNA structure. 16S rRNAs which have been split at different sites or their isolated fragments were used for a reconstitution of the 30S ribosomal subunits. These reconstituted 30S subunits carrying unique breaks at positions 301, 772, 1047 have the same sedimentation coefficients and electron microscopy images as the native subunit. They were active in the poly(U)-directed cell-free system of synthesis of polyphenylalanine.  相似文献   

8.
Stimulation of peptidyltransferase reactions by a soluble protein   总被引:1,自引:0,他引:1  
The requirements for peptide-bond synthesis and transesterification reactions of Escherichia coli 70S ribosomes, 50S native or reconstructed 50S subunits were examined using fMet-tRNA as donor substrate and puromycin or alpha-hydroxypuromycin as acceptors. We report that the soluble protein EF-P, purified to apparent homogeneity, stimulates the synthesis of N-formylmethionylpuromycin or N-formylmethionylhydroxypuromycin by 70S ribosomes or reassociated 30S and 50S subunits. In the presence of EF-P, 70S ribosomes are significantly more efficient than 50S particles in catalysing either peptide-bond synthesis or transesterification. The involvement of 50S subunit proteins in EF-P-stimulated peptide-bond formation and transesterification was studied. 50S subunits were dissociated by 2.0 M LiCl into core particles and 'split' proteins, several of which were purified to homogeneity. When added to 30S X A-U-G X f[35S]Met-tRNA, 50S cores or 50S cores reconstituted with L6 or L11 promoted peptide-bond synthesis or transesterification poorly. EF-P stimulated peptide-bond synthesis by both these types of core particles to approximately the same extent. On the other hand, EF-P stimulated a low level of transesterification by cores reconstituted with L6 and L11. In contrast, core particles reconstituted with L16 exhibited both peptide-bond-forming and transesterification activities and EF-P stimulated both reactions twentyfold and fortyfold respectively. Thus different proteins differentially stimulate the intrinsic or EF-P-stimulated peptide-bond and transesterification reactions of the peptidyl transferase. Ethoxyformylation of either 50S subunits or purified L16 used to reconstitute core particles, resulted in loss of peptide-bond formation and transesterification. Similarly ethoxyformylation of EF-P resulted in a 25-50% loss of its ability to stimulate both reactions. 30S subunits were resistant to treatment by this reagent. These results suggest the involvement of histidine residues in peptidyltransferase activities. The role of EF-P in the catalytic mechanism of peptidyltransferase is discussed.  相似文献   

9.
Functionally active “hybrid” 50 S ribosomal subunits can be reconstituted using 23 S RNA from Staphylococcus aureus (strain 1206) and 5 S RNA, as well as 50 S ribosomal proteins from Bacillus stearothermophilus. Using this system, resistance of S. aureus 50 S subunits to lincomycin and spiramycin was analyzed. When 23 S RNA from either phenotypically resistant (“induced resistance”) S. aureuscells or derived genetically resistant (“constitutive resistance”) S. aureus cells, were used, the reconstituted 50 S subunits showed the resistant phenotype similar to that seen in native 50 S subunits obtained from resistant cells; only very weak inhibition by the antibiotics was observed in poly (U) - directed polyphenylalanine synthesis involving these 50 S subunits. In contrast, the 50 S particles reconstituted using 23 S RNA from uninduced (sensitive) S. aureus were subject to greater inhibition by the antibiotics in cell-free poly-peptide synthesis. It is concluded that modification of 23 S RNA, presumably the previously observed methylation to form dimethyladenine, is responsible for the resistance to the antibiotics in this strain of S. aureus.  相似文献   

10.
The role of 5 S RNA within the large ribosomal subunit of the extremely thermophilic archaebacterium Sulfolobus solfataricus has been analysed by means of in vitro reconstitution procedures. It is shown that Sulfolobus 50 S subunits reconstituted in the absence of 5 S RNA are inactive in protein synthesis and lack 2-3 ribosomal proteins. Furthermore, it has been determined that in the course of the in vitro assembly process Sulfolobus 5 S RNA can be replaced by the correspondent RNA species of E.coli; Sulfolobus reconstituted particles containing the eubacterial 5 S molecule are stable and active in polypeptide synthesis at high temperatures.  相似文献   

11.
Rat liver 60S ribosomal subunits were treated with dimethylmaleic anhydride, a reagent for protein amino groups, at a 1/15,000 mol/mol ratio. This caused the dissociation of specific proteins, which were separated from the 56S residual core particles by centrifugation and identified by two-dimensional gel electrophoresis. The core particles lacking 30% of the total proteins retained most of the initial activity measured by the puromycin reaction but only small percentages of activities measured by polyphenylalanine synthesis, elongation-factor-2(EF-2)-dependent GTP hydrolysis and EF-2-mediated GDP binding. Upon reconstitution, the complementary amount of split proteins was incorporated into ribosomal particles, which had almost the same catalytic activities and biophysical properties (density, sedimentation coefficient and capability to reassociate to 40S subunits) as the original subunits.  相似文献   

12.
Summary Modification of 60S ribosomal subunits from rat liver with dimethylmaleic anhydride (60 ol/ml) is accompanied by release of 35% of the protein. The acidic ribosomal proteins, as well as 9 basic proteins, are selectively liberated from the ribosomal subunits. Reconstitution of the protein-deficient particles with the corresponding split proteins is accompanied by substantial recovery of the original polyphenylalanine synthetic activity. The described reconstitution procedure can be used to investigate the roles played by the released proteins and the functional similarities of proteins from different sources. Hybrid reconstitution of residual ribosomal particles from rat liver or yeast with the corresponding heterologous split proteins produces subunits which have incorporated heterologous proteins but are inactive in polyphenylalanine synthesis.Abbreviation DMMA Dimethylmaleic Anhydride  相似文献   

13.
Previous studies have shown that the 30S ribosomal subunit of Escherichia coli can be reconstituted in vitro from individually purified ribosomal proteins and 16S ribosomal RNA, which were isolated from natural 30S subunits. We have developed a 30S subunit reconstitution system that uses only recombinant ribosomal protein components. The genes encoding E. coli ribosomal proteins S2-S21 were cloned, and all twenty of the individual proteins were overexpressed and purified. Reconstitution, following standard procedures, using the complete set of recombinant proteins and purified 16S ribosomal RNA is highly inefficient. Efficient reconstitution of 30S subunits using these components requires sequential addition of proteins, following either the 30S subunit assembly map (Mizushima & Nomura, 1970, Nature 226:1214-1218; Held et al., 1974, J Biol Chem 249:3103-3111) or following the order of protein assembly predicted from in vitro assembly kinetics (Powers et al., 1993, J MoI Biol 232:362-374). In the first procedure, the proteins were divided into three groups, Group I (S4, S7, S8, S15, S17, and S20), Group II (S5, S6, S9, Sll, S12, S13, S16, S18, and S19), and Group III (S2, S3, S10, S14, and S21), which were sequentially added to 16S rRNA with a 20 min incubation at 42 degrees C following the addition of each group. In the second procedure, the proteins were divided into Group I (S4, S6, S11, S15, S16, S17, S18, and S20), Group II (S7, S8, S9, S13, and S19), Group II' (S5 and S12) and Group III (S2, S3, S10, S14, and S21). Similarly efficient reconstitution is observed whether the proteins are grouped according to the assembly map or according to the results of in vitro 30S subunit assembly kinetics. Although reconstitution of 30S subunits using the recombinant proteins is slightly less efficient than reconstitution using a mixture of total proteins isolated from 30S subunits, it is much more efficient than reconstitution using proteins that were individually isolated from ribosomes. Particles reconstituted from the recombinant proteins sediment at 30S in sucrose gradients, bind tRNA in a template-dependent manner, and associate with 50S subunits to form 70S ribosomes that are active in poly(U)-directed polyphenylalanine synthesis. Both the protein composition and the dimethyl sulfate modification pattern of 16S ribosomal RNA are similar for 30S subunits reconstituted with either recombinant proteins or proteins isolated as a mixture from ribosomal subunits as well as for natural 30S subunits.  相似文献   

14.
The reactivity of protein S4-specific antibody preparations with 30 S ribosomal subunits and intermediates of in vitro subunit reconstitution has been characterized using a quantitative antibody binding assay. Anti-S4 antibody preparations did not react with native 30 S ribosomal subunits; however, they did react with various subunit assembly intermediates that lacked proteins S5 and S12. The inclusion of proteins S5 and S12 in reconstituted particles resulted in a large decrease in anti-S4 reactivity, and it was concluded that proteins S5 and S12 are primarily responsible for the masking of S4 antigenic determinants in the 30 S subunit. The effect of S5 and S12 on S4 accessibility is consistent with data from a variety of other approaches, suggesting that these proteins form a structural and functional domain in the small ribosomal subunit.  相似文献   

15.
Transient incubation of bacterial ribosomes with virginiamycin M produces a lasting damage of 50 S ribosomal subunits, whereby the elongation of peptide chains is still blocked after removal of the antibiotic. To elucidate the mechanism of this inactivation, ribosomal proteins were stepwise removed from 50 S subunits previously incubated with virginiamycin M, and cores were submitted to three functional tests. Total removal of proteins L7, L8, L12 and L16, and partial removal of L6, L9, L10 and L11, resulted in a loss of the virginiamycin M-induced alteration. When the split protein fractions were added back to these cores, unaltered functional particles were obtained. The reconstituted subunits, on the other hand, proved fully sensitive to virginiamycin M in vitro as they underwent, upon transient contact with the antibiotic, an alteration comparable to that of native particles. It is concluded that the virginiamycin M-induced ribosome damage is due to the production of a stable conformational change of the 50 S subunit. These data parallel those of an accompanying paper (Cocito, C., Vanlinden, F. and Branlant, C. (1983) Biochim. Biophys. Acta 739, 158-163) showing the intactness of all rRNA species from ribosomes treated in vivo and in vitro with virginiamycin M.  相似文献   

16.
Using reverse phase HPLC, we have been able to quantify the protein compositions of reconstituted 30S ribosomal subunits, formed either with the full complement of 30S proteins in the reconstitution mix or with a single protein omitted. We denote particles formed in the latter case as SPORE (single protein omission reconstitution) particles. An important goal in 30S reconstitution studies is the formation of reconstituted subunits having uniform protein composition, preferably corresponding to one copy of each protein per reconstituted particle. Here we describe procedures involving variation of the protein:rRNA ratio that approach this goal. In SPORE particles the omission of one protein often results in the partial loss in uptake of other proteins. We also describe procedures to increase the uptake of such proteins into SPORE particles, thus enhancing the utility of the SPORE approach in defining the role of specific proteins in 30S structure and function. The losses of proteins other than the omitted protein provide a measure of protein:protein interaction within the 30S subunit. Most of these losses are predictable on the basis of other such measures. However, we do find evidence for several long-range protein:protein interactions (S6:S3, S6:S12, S10:S16, and S6:S4) that have not been described previously.  相似文献   

17.
Small (30 S) ribosomal subunits from Escherichia coli strain TPR 201 were photoaffinity-labeled with [3H]puromycin in the presence of chloramphenicol under conditions in which more than 1 mol of antibiotic was incorporated per mol of ribosomes. The subunits were than washed with 3 M NH4Cl to yield core particles and a split protein fraction; the split proteins were further fractionated with ammonium sulfate. Subunits were then reconstituted using one fraction (core, split proteins, or ammonium sulfate supernatant) from photoaffinity-modified subunits and other components from unmodified (control) subunits. The distribution of [3H]puromycin in ribosomal proteins was monitored by one-dimensional polyacrylamide gel electrophoresis, and the sites of puromycin binding were visualized by immunoelectron microscopy. Two areas of puromycin binding were identified. A high affinity puromycin site, found on the upper third of the subunit and distant from the platform, is identical to the primary site previously identified (Olson, H. M., Grant, P. G., Glitz, D. G., and Cooperman, B. S. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 890-894). Binding at this site is maximal in subunits reconstituted with high levels of puromycin-modified protein S14, and is decreased when unmodified S14 is incorporated. Because the percentage of antibody binding at the primary site always exceeds the percentage of puromycin label in protein S14, the primary site must include components other than S14. A secondary puromycin site of lower affinity is found on the subunit platform. This site is enriched in subunits reconstituted from puromycin-modified core particles and may include protein S7. Our results demonstrate the feasibility of localizing specifically modified components in reconstituted ribosomal subunits.  相似文献   

18.
A membrane protein fraction was obtained from rat liver rough microsomes by affinity chromatography on a concanavalin A-Sepharose column and then a chelating-Sepharose column. This protein fraction comprised about 2% of the total membrane proteins of rough microsomes and the ribosome-binding activity of ribosome-stripped rough microsomes was predominantly found in this protein fraction, as determined with a liposome assay system. To identify the essential components responsible for the ribosome binding, two approaches were employed. Trypsin treatment of liposomes reconstituted with this protein fraction resulted in the loss of the ribosome-binding activity in parallel with the loss of a dominant band, estimated Mr 34,000, in SDS-polyacrylamide gels. Next, the direct interaction between the binding sites on the membrane of reconstituted liposomes and 60S ribosomal subunits was investigated by photocrosslinking using sulfosuccinimidyl 2-(m-azido-o-nitrobenzamido)-ethyl-1,3'-dithiopropionate (SAND). The photocrosslinked complex was formed between 60S ribosomal subunits pretreated with SAND and binding-site proteins on the membrane of the liposomes. Then, after the liposomes were solubilized, the complex was isolated by sucrose gradient centrifugation of the binding mixture. The crosslinked proteins were released from 60S ribosomal subunits by cleavage of of crosslinks with beta-ME and analyzed by SDS-polyacrylamide gel electrophoresis and 125I-autoradiography. The 34-kDa protein (p34) was the predominant component that crosslinked to the 60S ribosomal subunits and was found in proportion to the amount of 60S ribosomal subunits added to the system. The p34 was distinguishable by immunoblot analysis from urate oxidase, which is the 34-kDa protein of peroxisomal cores contaminating rough microsomes. These results suggest that the present p34 is a likely candidate molecule for the ribosome-binding activity of rough microsomes.  相似文献   

19.
30-S ribosomal subunits which have been reconstituted using heat-denatured 16-S rRNA can participate in the synthesis of lysosyme in vitro. Therefore all the information contributed by 16-S rRNA to the reconstitution process is carried in the primary sequence of this RNA. The specific protein-synthesizing activity of 30-S subunits reconstituted from 30-S subunit proteins and heat-denatured 16-S rRNA is about one third of that observed if unheated 16-S rRNA is used and is comparable to the activity of 30-S particles isolated after dissociation of 70-S ribosomes in the presence of 0.1 mM Mg2+.  相似文献   

20.
Effect of polyamines on in vitro reconstitution of ribosomal subunits   总被引:1,自引:0,他引:1  
The effect of polyamines on in vitro reconstitution of Escherichia coli 30S and 50S ribosomal subunits has been studied. Spermidine stimulated the reconstitution of 30S particles from 16S rRNA lacking the methyl groups on two neighboring adenines and total proteins of 30S subunits at least 1.6-fold. The reconstitution of 30S particles from normal 16S rRNA and total proteins of 30S subunits exhibited only slight spermidine stimulation. However, the optimal Mg2+ concentration of the reconstitution was decreased from 20 mM to 16 mM in the presence of 3 mM spermidine. In the absence of spermidine the assembly of 30S particles from normal 16S rRNA was more rapid than the assembly from 16S rRNA lacking the methyl groups on two neighboring adenines. The reconstitution of 50S particles from 23S and 5S rRNA and total proteins of 50S subunits was not influenced greatly by spermidine. Gel electrophoresis results, from reconstitution experiments of 30S particles from 16S rRNA lacking the methyl groups on two neighboring adenines and total proteins of 30S subunits, showed that the assembly of S1 and S9 proteins to 23S core particles was stimulated by spermidine during reconstitution. The relationship of polyamine effects on in vitro ribosome assembly from its constituents to in vivo ribosome assembly is discussed. The reconstitution of Bacillus subtilis 30S particles from 16S rRNA and total proteins of 30S subunits was also stimulated approximately 1.3-fold by 3 mM spermidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号