首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lo EH  Ooi VE  Fung KP 《Life sciences》2002,72(6):677-687
Doxorubicin (Dox) was coupled into human low density lipoprotein (LDL) to form a complex LDL-Dox. In in vitro studies, the accumulation of LDL-Dox in human resistant hepatoma (R-HepG2) cells was found to be higher than that of free Dox in the cells, resulting in an increase of the cytotoxic effect on the cells. Moreover, in in vivo studies, under the same dosage of drugs (1 mg/kg), the anti-proliferative effect on the tumor cells of LDL-Dox in nude mice bearing R-HepG2 cells was higher than that of free Dox as evidenced by the larger reduction in tumor volumes and tumor weights in LDL-Dox treated group. Histological studies showed that LDL-Dox treatment did not cause any heart damage when compared with the control group. In contrast, Dox treatment caused disruption and vacuolization of myocardial filament. Plasma lactate dehydrogenase activity and plasma creatine kinase activity in nude mice bearing R-HepG2 cells were found to be elevated in the Dox-treated group but remained unchanged in LDL-Dox-treated group. The present studies indicate that when Dox is coupled with LDL, the multidrug resistance can be circumvented and the cardiotoxicity can be reduced.  相似文献   

2.
Doxorubicin (DOX) is a broad-spectrum anthracycline antibiotic that has cardiotoxicity as a major side effect. One mechanism of this toxicity is believed to involve the reactive oxygen radical species (ROS); these agents likely account for the pathophysiology of DOX-induced cardiomyopathy. Aminoguanidine (AG) is an effective antioxidant and free radical scavenger which has long been known to protect against ROS formation. We investigated the effects of AG on DOX-induced changes in thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) content. The rats were divided into four groups:1) Control; 2) DOX group; injected intraperitoneally (i.p.) with DOX 20 mg/kg in a single dose 3) AG-treated group; injected i.p. in single dose of 20 mg/kg DOX plus 100 mg/kg AG 1 h before the DOX for 3 days, 4) AG group; injected i.p. with AG 100 mg/kg for 3 days. DOX administration to control rats increased TBARS and decreased GSH levels. AG administration before DOX injection caused significant decrease in TBARS and increase in GSH levels in the heart tissue when compared with DOX only. Morphological changes, including severe myocardial fibrosis and inflammatory cell infiltration were clearly observed in the DOX-treated heart. AG reversed the DOX-induced heart damage. Therefore AG could protect the heart tissue against free radical injury. The application of AG during cancer chemotherapy may attenuate tissue damage and improve the therapeutic index of DOX.  相似文献   

3.
Doxorubicin (DOX) is a highly effective treatment for several forms of cancer. However, clinical experience shows that DOX induces a cumulative and dose-dependent cardiomyopathy that has been ascribed to redox-cycling of the drug on the mitochondrial respiratory chain generating free radicals and oxidative stress in the process. Mitochondrial dysfunction including induction of the mitochondrial permeability transition (MPT) and inhibition of mitochondrial respiration have been implicated as major determinants in the pathogenesis of DOX cardiotoxicity. The present work was aimed at investigating whether the inhibition of mitochondrial respiration occurs secondarily to MPT induction in heart mitochondria isolated from DOX-treated rats and whether one or both consequences of DOX treatment are related with oxidation of protein thiol residues. DOX-induced oxidative stress was associated with the accumulation of products of lipid peroxidation and the depletion of alpha-tocopherol in cardiac mitochondrial membranes. No changes in mitochondrial coenzyme Q9 and Q10 concentrations were detected in hearts of DOX-treated rats. Cardiac mitochondria from DOX-treated rats were more susceptible to diamide-dependent induction of the MPT. Although DOX treatment did not affect state 4 respiration, state 3 respiration was decreased in heart mitochondria isolated from DOX-treated rats, which was reversed in part by adding either cyclosporin A or dithiothreitol, but not Trolox. The results suggest that in DOX-treated rats, (i) induction of the MPT is at least in part responsible for decreased mitochondrial respiration, (ii) heart mitochondria are more susceptible to diamide induced-MPT, (iii) thiol-dependent alteration of mitochondrial respiration is partially reversible ex vivo with dithiothreitol. Collectively, these data are consistent with the thesis that thiol-dependent alteration of MPT and respiration is an important factor in DOX-induced mitochondrial dysfunction.  相似文献   

4.
To examine the basis of the immune modulation induced by the anticancer agent doxorubicin (DOX), the immunophenotype, tumoricidal activity, cytokine protein and mRNA expression were determined using peritoneal exudate cells (PEC) from saline-treated (untreated) and DOX-treated mice. A greater percentage of PEC from DOX-treated mice than from untreated mice were adherent to plastic, had characteristics of granulocytes, and were positive for the NK1.1, CD11b/Mac-1, and CD3 markers. DOX decreased the percentage of CD45R/B220+ cells. PEC from DOX-treated mice had greater tumoricidal potential than those from untreated mice since IL2, LPS, or IFNgamma alone increased the cytolytic activity of PEC from DOX-treated mice, whereas PEC from untreated mice required both LPS and IFNgamma to become cytolytic. DOX treatment modulated the expression of specific cytokines. Following stimulation in culture, PEC from DOX-treated mice produced more TNF, IL1, and IFNgamma than PEC from untreated mice. DOX treatment increased the levels of TNF, but not IL1, mRNA and decreased the levels of IL6 mRNA and protein. These data demonstrate that a single DOX injection induces specific effects in PEC and, as a consequence, increases the tumoricidal potential of cells of the macrophage and natural killer types.  相似文献   

5.
6.
Doxorubicin (DOX) is a DNA topoisomerase II inhibitor widely used in anticancer treatment, however, it can lead to irreversible cardiac damage with severe debilitation. TBP-binding associated factor 1 (TAF1) is increased in DOX damaged hearts in vivo and in cardiomyocytes in vitro. To identify the functional role for TAF1 in DOX-treated heart we overexpressed wild type and mutant TAF1 in H9c2 cells. Overexpression of wild-type TAF1, but not N-terminal kinase domain mutants, increased tolerance to DOX in confluent cells. DOX treatment can cause prolonged G1 arrest. We found increased cdk2 activity coupled to increased cyclin E protein and decreased p21(waf1Cip1) and p27(Kip1) protein to correlate only with increased DOX tolerance and wild-type TAF1. DOX sensitivity was restored when the cdk2-inhibitor Roscovitine was co-administered with DOX. Overexpression of cdk2-alone increased resistance to DOX. Thus, TAF1 induced DOX tolerance in confluent cells through an increase in cdk2 activity is directed by the TAF1 N-terminal domain. These studies suggest new avenues for myocardial protection against DOX toxicity and suggest a role for cdk2 in chemorefractory cells.  相似文献   

7.

Background

Senescence marker protein 30 (SMP30), which was originally identified as an aging marker protein, is assumed to act as a novel anti-aging factor in the liver, lungs and brain. We hypothesized that SMP30 has cardio-protective function due to its anti-aging and anti-oxidant effects on doxorubicin (DOX)-induced cardiac dysfunction.

Methods and Results

SMP30 knockout (SMP30 KO) mice, SMP30 transgenic (SMP30 TG) mice with cardiac-specific overexpression of SMP30 gene and wild-type (WT) littermate mice at 12–14 weeks of age were given intra-peritoneal injection of DOX (20 mg/kg) or saline. Five days after DOX injection, echocardiography revealed that left ventricular ejection fraction was more severely reduced in the DOX-treated SMP30 KO mice than in the DOX-treated WT mice, but was preserved in the DOX-treated SMP30 TG mice. Generation of reactive oxygen species and oxidative DNA damage in the myocardium were greater in the DOX-treated SMP30 KO mice than in the DOX-treated WT mice, but much less in the SMP30 TG mice. The numbers of deoxynucleotidyltransferase-mediated dUTP nick end-labeling positive nuclei in the myocardium, apoptotic signaling pathways such as caspase-3 activity, Bax/Bcl-2 ratio and phosphorylation activity of c-Jun N-terminal kinase were increased in SMP30 KO mice and decreased in SMP30 TG mice compared with WT mice after DOX injection.

Conclusions

SMP30 has a cardio-protective role by anti-oxidative and anti-apoptotic effects in DOX-induced cardiotoxicity, and can be a new therapeutic target to prevent DOX-induced heart failure.  相似文献   

8.
目的:青蒿素及其衍生物具有抗癌活性,本研究旨在探讨阿霉素(DOX)与青蒿素半乳糖苷(AG)联合用药对乳腺癌细胞的体外抑制作用及机制。方法:DOX与AG联合对乳腺癌MCF-7细胞株进行干预,MTT法评价二者对癌细胞增殖的影响;流式细胞计量术检测细胞凋亡;免疫印迹法检测凋亡相关蛋白表达情况。结果:DOX与AG联合作用对MCF-7细胞增殖抑制率最高可达91.6%,均显著高于同浓度DOX或AG抑制效果(P〈0.01),且浓度分别为10IzM和20μM量效比最佳。10斗MDOX+20μMAG联合干预纽癌细胞凋亡率为19.8%,显著高于对照组及单用10μMDOX或20/zMAG干预组。DOX与AG联合给药比单独应用其中一种均更加显著激活caspase级联信号通路,进而更加有效的促进癌细胞凋亡。结论:DOX和AG联合用药对人乳腺癌MCF-7细胞具有协同抑制效应,其机制可能与caspase家族介导的蛋白酶级联反应以及PARP裂解失活有关。这项研究为提高DoX治疗乳腺癌的有效性提供了新的思路。  相似文献   

9.
A PEG-based, folate mediated, active tumor targeting drug delivery system using DOX-hyd-PEG-FA nanoparticles (NPs) were prepared. DOX-hyd-PEG-FA NPs showed a significantly faster DOX release in pH 5.0 medium than in pH 7.4 medium. Compared with DOX-hyd-PEG NPs, DOX-hyd-PEG-FA NPs increased the intracellular accumulation of DOX and showed a DOX translocation from lysosomes to nucleus. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was much higher than that of free DOX, DOX-ami-PEG-FA NPs and DOX-hyd-PEG NPs. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was attenuated in the presence of exogenous folic acid. The IC50 of DOX-hyd-PEG-FA NPs and DOX-hyd-PEG NPs on A549 cells showed no significant difference. After DOX-hyd-PEG-FA NPs were intravenously administered, the amount of DOX distributed in tumor tissue was significantly increased, while the amount of DOX distributed in heart was greatly decreased as compared with free DOX. Compared with free DOX, NPs yielded improved survival rate, prolonged life span, delayed tumor growth and reduced the cardiotoxicity in tumor bearing mice model. These results indicated that the acid sensitivity, passive and active tumor targeting abilities were likely to act synergistically to enhance the drug delivery efficiency of DOX-hyd-PEG-FA NPs. Therefore, DOX-hyd-PEG-FA NPs are a promising drug delivery system for targeted cancer therapy.  相似文献   

10.
Doxorubicin (DOX), a potent chemotherapeutic agent, is widely used for the treatment of various malignancies. However, its clinical uses are limited due to its dose-dependent adverse effects particularly cardiac and testicular toxicities. DOX-induced toxicity is mainly due to the induction of oxidative stress. Atorvastatin (ATV), a 3-hydroxy 3-methyl glutaryl coenzyme A reductase inhibitor, with lipid-lowering activity, acts as an antioxidant at lower doses. It possesses pleiotropic effects independent of cholesterol-lowering property usually shown at lower doses, which include antioxidant and anti-inflammatory activities. The present study was aimed to investigate the possible protection exerted by atorvastatin against oxidative stress and DNA damage induced by DOX in the heart and testes of mice. The protective role of ATV in the heart and testes of DOX-treated mice was evident from the amelioration of oxidative stress, DNA and cellular damage. The present study clearly indicates that ATV offers a significant protection against DOX-induced oxidative stress and DNA damage in the heart and testes of mice.  相似文献   

11.
Carvedilol (CAR) is a vasodilating beta-blocker which also has antioxidant properties. CAR produces dose-related reduction in mortality in patients with congestive heart failure. In the present study, we tested the hypothesis that CAR protects against doxorubicin (DOX)-induced cardiomyopathy in rats. Sprague-Dawley rats were treated with DOX, CAR, CAR+DOX, or atenolol (ATN)+DOX. DOX (cumulative dose, 15 mg/kg) was administered intraperitoneally, and CAR (30 mg/kg daily) or ATN (150 mg/kg daily) was administered orally. Three weeks after the completion of these treatments, cardiac performance and myocardial lipid peroxidation were assessed. Mortality was observed in the DOX (25%) and ATN+DOX (12.5%) groups. Compared with control rats, DOX significantly decreased systolic blood pressure (104+/-4 vs. 120+/-4 mmHg, P<0.05) and left ventricular fractional shortening (38.8+/-3.1 vs. 55.4+/-1.3%, P<0.01), and resulted in a significant accumulation of ascites (14.4+/-4.9 vs. 0 ml, P<0.01). CAR significantly prevented the cardiomyopathic changes caused by DOX, while ATN did not. The myocardial thiobarbituric acid reactive substances (TBARS) content was significantly higher in DOX-treated rats than in control rats (80.4+/-7.1 vs. 51.5+/-1.2 nmol/g heart, p<0.01). CAR prevented the increase in TBARS content (48.8+/-3.0 nmol/g heart, P<0.01 vs. DOX group), whereas ATN had no significant effect (74.3+/-5.2 nmol/g heart). CAR also significantly prevented the increase in both myocardial and plasma cholesterol concentrations caused by DOX. These data indicate that CAR protects against DOX-induced cardiomyopathy and that this effect may be attributed to the antioxidant and lipid-lowering properties of CAR, not to its beta-blocking property.  相似文献   

12.
Doxorubicin (DOX), one of the most effective anticancer drugs, is known to generate progressive cardiac damage, which is due, in part, to DOX-induced reactive oxygen species (ROS). The elevated ROS often induce oxidative protein modifications that result in alteration of protein functions. This study demonstrates that the level of proteins adducted by 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product, is significantly increased in mouse heart mitochondria after DOX treatment. A redox proteomics method involving two-dimensional electrophoresis followed by mass spectrometry and investigation of protein databases identified several HNE-modified mitochondrial proteins, which were verified by HNE-specific immunoprecipitation in cardiac mitochondria from the DOX-treated mice. The majority of the identified proteins are related to mitochondrial energy metabolism. These include proteins in the citric acid cycle and electron transport chain. The enzymatic activities of the HNE-adducted proteins were significantly reduced in DOX-treated mice. Consistent with the decline in the function of the HNE-adducted proteins, the respiratory function of cardiac mitochondria as determined by oxygen consumption rate was also significantly reduced after DOX treatment. Treatment with Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, an SOD mimic, averted the doxorubicin-induced mitochondrial dysfunctions as well as the HNE–protein adductions. Together, the results demonstrate that free radical-mediated alteration of energy metabolism is an important mechanism mediating DOX-induced cardiac injury, suggesting that metabolic intervention may represent a novel approach to preventing cardiac injury after chemotherapy.  相似文献   

13.
Doxorubicin-induced cardiomyopathy in cancer patients is well established. The proposed mechanism of cardiac damage includes generation of reactive oxygen species, mitochondrial dysfunction and cardiomyocyte apoptosis. Exposure of adult rat cardiomyocytes to low levels of DOX for 48h induced apoptosis. Analysis of protein expression showed a differential regulation of several key proteins including the voltage dependent anion selective channel protein 2 and methylmalonate semialdehyde dehydrogenase. In comparison, proteomic evaluation of DOX-treated rat heart showed a slightly different set of protein changes that suggests nuclear accumulation of DOX. Using a new solubilization technique, changes in low abundant protein profiles were monitored. Altered protein expression, modification and function related to oxidative stress response may play an important role in DOX cardiotoxicity.  相似文献   

14.
The impact of cancer therapies on adult cardiac function is becoming a concern as more children survive their initial cancer. Cardiovascular disease is now a significant problem to adult survivors of childhood cancer. Specifically, doxorubicin (DOX) may be particularly harmful in young girls. The objective of this study was to characterize DOX damage and determine the ability of dexrazoxane (DEX) to reduce DOX-mediated cardiac damage in sedentary and swim-trained female rats. Female Sprague-Dawley rats were left intact or ovariectomized (OVX) at weaning then injected with DEX (60 mg/kg) before DOX (3 mg/kg), DOX alone, or PBS. Rats were separated into sedentary and swim cohorts. Body weight was reduced in DOX:DEX- but not PBS- or DOX-treated rats. Echocardiographic parameters were similar in sedentary rats. Swim training revealed greater concentric remodeling in DOX-treated rats and reduced fractional shortening in DOX:DEX-treated rats. Calsequestrin 2 was reduced with DOX and increased with DOX:DEX postswim. Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a was reduced and calsequestrin 2 reduced further by swim training only in intact rats. OVX rats were heavier and developed eccentric remodeling post-swim with DOX and eccentric hypertrophy with DOX:DEX. Changes in SERCA2a and calsequestrin 2 expression were not observed. Ovariectomized DOX- and DOX:DEX-treated rats stopped growing during swim training. DEX coinjection did not relieve DOX-mediated cardiotoxicity in intact or hormone-deficient rats. DOX-mediated reductions in growth, cardiac function, and expression of calcium homeostasis proteins were exacerbated by swim. DEX coadministration did not substantially relieve DOX-mediated cardiotoxicity in young female rats. Ovarian hormones reduce DOX-induced cardiotoxicity.  相似文献   

15.
Yan J  Ye Z  Chen M  Liu Z  Xiao Y  Zhang Y  Zhou Y  Tan W  Lang M 《Biomacromolecules》2011,12(7):2562-2572
This study aimed to optimize poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-b-PCL)-based amphiphilic block copolymers for achieving a better micellar drug delivery system (DDS) with improved solubilization and delivery of doxorubicin (DOX). First, the Flory-Huggins interaction parameters between DOX and the core-forming segments [i.e., poly(ε-caprolactone) (PCL) and poly[(ε-caprolactone-co-γ-(carbamic acid benzyl ester)-ε-caprolactone] (P(CL-co-CABCL))] was calculated to assess the drug-polymer compatibility. The results indicated a better compatibility between DOX and P(CL-co-CABCL) than that between DOX and PCL, motivating the synthesis of monomethoxy-poly(ethylene glycol)-b-poly[(ε-caprolactone-co-γ-(carbamic acid benzyl ester)-ε-caprolactone] (mPEG-b-P(CL-co-CABCL)) block copolymer. Second, two novel block copolymers of mPEG-b-P(CL-co-CABCL) with different compositions were prepared via ring-opening polymerization of CL and CABCL using mPEG as a macroinitiator and characterized by (1)H NMR, FT-IR, GPC, WAXD, and DSC techniques. It was found that the introduction of CABCL decreased the crystallinity of mPEG-b-PCL copolymer. Micellar formation of the copolymers in aqueous solution was investigated with fluorescence spectroscopy, DLS and TEM. mPEG-b-P(CL-co-CABCL) copolymers had a lower critical micelle concentration (CMC) than mPEG-b-PCL and subsequently led to an improved stability of prepared micelles. Furthermore, both higher loading capacity and slower in vitro release of DOX were observed for micelles of copolymers with increased content of CABCL, attributed to both improved drug-core compatibility and favorable amorphous core structure. Meanwhile, DOX-loaded micelles facilitated better uptake of DOX by HepG2 cells and were mainly retained in the cytosol, whereas free DOX accumulated more in the nuclei. However, possibly because of the slower intracellular release of DOX, DOX-loaded micelles were less potent in inhibiting cell proliferation than free DOX in vitro. Taken together, the introduction of CABCL in the core-forming block of mPEG-b-PCL resulted in micelles with superior properties, which hold great promise for drug delivery applications.  相似文献   

16.
Doxorubicin (DOX) is used for treating various cancers. Its clinical use is, however, limited by its dose-limiting cardiomyopathy. The exact mechanism of DOX-induced cardiomyopathy still remains unknown. The goals were to investigate the molecular mechanism of DOX-induced cardiomyopathy and cardioprotection by mitoquinone (Mito-Q), a triphenylphosphonium-conjugated analog of coenzyme Q, using a rat model. Rats were treated with DOX, Mito-Q, and DOX plus Mito-Q for 12 weeks. The left ventricular function as measured by two-dimensional echocardiography decreased in DOX-treated rats but was preserved during Mito-Q plus DOX treatment. Using low-temperature ex vivo electron paramagnetic resonance (EPR), a time-dependent decrease in heme signal was detected in heart tissues isolated from rats administered with a cumulative dose of DOX. DOX attenuated the EPR signals characteristic of the exchange interaction between cytochrome c oxidase (CcO)-Fe(III) heme a3 and CuB. DOX and Mito-Q together restored these EPR signals and the CcO activity in heart tissues. DOX strongly downregulated the stable expression of the CcO subunits II and Va and had a slight inhibitory effect on CcO subunit I gene expression. Mito-Q restored CcO subunit II and Va expressions in DOX-treated rats. These results suggest a novel cardioprotection mechanism by Mito-Q during DOX-induced cardiomyopathy involving CcO.  相似文献   

17.
目的:阿霉素(DOX)是常用的抗肿瘤药物,但是它的毒副作用大,而且肿瘤细胞易对DOX产生耐药,限制了其临床应用。本研究利用肿瘤细胞线粒体跨膜电位较高的特性,将亲脂性阳离子(3-丙羧基)三苯基溴化膦(TPP)与DOX相连接制备具有线粒体靶向功能的TPP-DOX,以期达到逆转肿瘤细胞耐药的目的。方法:以DOX、TPP为原料,合成TPP-DOX,通过核磁、质谱等方法进行结构鉴定。采用MTT方法研究TPP-DOX对KB细胞、A549细胞及耐DOX肿瘤细胞MDA-MB-231/ADR的体外抗肿瘤活性。采用激光共聚焦显微镜观察TPP-DOX在肿瘤细胞内的分布。结果:TPP-DOX对KB细胞和A549细胞的毒性低于DOX,TPP-DOX对耐DOX肿瘤细胞MDA-MB-231/ADR的毒性明显大于DOX。激光共聚焦显示TPP-DOX分布于细胞核和线粒体中。结论:TPP-DOX具有线粒体靶向特性,可有效逆转肿瘤耐药,有进一步研究的价值。  相似文献   

18.
BackgroundDoxorubicin (DOX) is one of the popular anti-cancer drugs in the world and several literatures have implicated it in various toxicities especially cardiotoxicity and reproductive toxicity. Diphenyl diselenide (DPDS) is well acknowledged for its compelling pharmacological effects in numerous disease models and chemically-mediated toxicity. This study was carried out to investigate the effect of DPDS on DOX-induced changes in the reproductive indices of male Wistar rats.MethodsRats were intraperitoneally injected with 7.5 mg/kg body weight of DOX alone once followed by treatment with DPDS at 5 and 10 mg/kg for seven successive days. Excised hypothalamus, testes and epididymis were processed for biochemical and histological analyses.ResultsDPDS treatment significantly (p < 0.05) abated DOX-induced oxidative damage by decreasing the levels of oxidative stress indices such as hydrogen peroxide, reactive oxygen and nitrogen species, and lipid peroxidation with a respective improvement in the level of glutathione in the hypothalamic, testicular and epididymal tissues of DOX-treated rats. The activities of antioxidant enzymes such as catalase, superoxide dismutase, glutathione S-transferase and glutathione peroxidase were upregulated in the DPDS co-treated group. DPDS co-treatment alleviates the burden of DOX-induced inflammation by significant reductions in myeloperoxidase activity, levels of nitric oxide and tumor necrosis factor alpha with concomitant decline in the activity of caspase-3, an apoptotic biomarker. Consequently, significant improvement in the spermiogram, levels of reproductive hormones (follicle stimulating hormone, luteinizing hormone, prolactin, serum testosterone and intra-testicular testosterone) levels in the DPDS co-treatment group in comparison to DOX alone-treated group were observed. Histology results of the testes and epididymis showed that DPDS significantly alleviated pathological lesions induced by DOX in the animals.ConclusionDPDS may modulate reproductive toxicity associated with DOX therapy in male cancer patients.  相似文献   

19.
Doxorubicin (DOX) and vincristine (VC) are anti-cancer drugs commonly used for lymphoma in veterinary and human medicine. However, there are several side effects caused by these drugs. In this study, the protective effects of sonicated Bordetella bronchiseptica bacterin (sBb) on dendritic cells (DCs) damaged by two anti-cancer drugs were investigated. DCs play important roles in the innate and adaptive immunity of hosts, especially activating T cells that can suppress tumor growth. The metabolic activity of DCs significantly increased after the treatment with sBb compared to that of control DCs. In addition, there was a marked change in mitochondrial integrity between DOX-treated DC and DOX + sBb-treated DCs. Flow cytometric analysis also demonstrated that sBb upregulated the expression of the surface markers of DCs, particularly CD54. In mixed lymphocyte responses, sBb significantly increased the antigen-presenting capability of DCs. In particular, sBb increased the capability of control DCs by approximately 150% and that of VC-treated DCs by 221%. These results suggest that sBb can be used as a potential immunostimulatory agent to protect DCs from anti-cancer drug-induced damage and provide fundamental information about using a combination of DCs and vincristine in immunotherapy.  相似文献   

20.
Fish oil supplementation in humans is often associated with an expanded low density lipoprotein (LDL) pool that is not thought to reflect increased production. Since data on clearance of LDL after fish oil supplementation (FO-LDL) are equivocal, normal volunteers (four men and three women) received ten capsules containing 3.6 g eicosapentaenoic acid and 2.9 g docosahexaenoic acid (approximately 2.5% total calories as methyl esters) for 2 weeks. Total plasma cholesterol was unchanged, but triglycerides decreased 30%. Low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) were unchanged. Analysis of the LDL particles revealed that increased esterified cholesterol caused the FO-LDL core/surface ratio to be greater than baseline LDL (BL-LDL), resulting in a shift in mean LDL density from 1.060 to 1.056. N-3 fatty acids in FO-LDL were also increased greater than 40% at the expense of n-6 and n-9 fatty acids. Human hepatoma HepG2 cells were used to study the effects of FO-LDL on LDL receptor activity and mRNA abundance for the LDL receptor, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, and various apolipoproteins associated with cholesterol metabolism. In this system FO-LDL reduced LDL receptor activity compared to BL-LDL. Scatchard analysis revealed that LDL receptor number (Bmax) was reduced to one-third normal (P less than 0.001) whereas particle binding affinity was unchanged. The mRNA abundance for the LDL receptor and apoA-I were also depressed, even by low concentrations (10 micrograms/ml and 20 micrograms/ml LDL protein) of FO-LDL as compared to BL-LDL. HepG2 cells incubated with FO-LDL had decreased cellular free cholesterol but increased cholesteryl esters. Thus, moderate supplementation with fish oil n-3 fatty acids in normal humans enriches their LDL particles in cholesteryl esters and n-3 fatty acids. These particles depress both LDL receptor activity and LDL receptor mRNA abundance in HepG2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号