首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine how gamma- and epsilon-cleavages of beta-amyloid precursor protein (APP) are related, each cleavage site was replaced with a stretch of Trp that cannot be cleaved by gamma-secretase. Replacement of the gamma- or epsilon-site significantly suppressed secretion of amyloid beta-protein (Abeta), and produced longer Abeta or longer APP intracellular domain, respectively. This cleavage at the midportion between gamma- and epsilon-sites was also gamma-secretase-dependent. Blocking this cleavage with a Trp stretch remarkably suppressed Abeta generation, indicating that the midportion cleavage is required for the generation of Abeta.  相似文献   

2.
Polymorphisms in the apolipoprotein E (APOE) gene affect the risk of Alzheimer disease and the amount of amyloid beta-protein (Abeta) deposited in the brain. The apoE protein reduces Abeta levels in conditioned media from cells in culture, possibly through Abeta clearance mechanisms. To explore this effect, we treated multiple neural and non-neural cell lines for 24 h with apoE at concentrations similar to those found in the cerebrospinal fluid (1-5 microg/mL). The apoE treatment reduced Abeta40 by 60-80% and Abeta42 to a lesser extent (20-30%) in the conditioned media. Surprisingly, apoE treatment resulted in an accumulation of amyloid precursor protein (APP)-C-terminal fragments in cell extracts and a marked reduction of APP intracellular domain-mediated signaling, consistent with diminished gamma-secretase processing of APP. All three isoforms of apoE, E2, E3 and E4, had similar effects on Abeta and APP-C-terminal fragments, and the effects were independent of the low-density lipoprotein receptor family. Apolipoprotein E had minimal effects on Notch cleavage and signaling in cell-based assays. These data suggest that apoE reduces gamma-secretase cleavage of APP, lowering secreted Abeta levels, with stronger effects on Abeta40. The apoE modulation of Abeta production and APP signaling is a potential mechanism affecting Alzheimer disease risk.  相似文献   

3.
Overwhelming evidence supports the amyloid hypothesis of Alzheimer's disease that stipulates that the relative level of the 42 amino acid beta-amyloid peptide (Abeta(42)) in relationship to Abeta(40) is critical to the pathogenesis of the disease. While it is clear that the multi-subunit gamma secretase is responsible for cleavage of the amyloid precursor protein (APP) into Abeta(42) and Abeta(40), the exact molecular mechanisms regulating the production of the various Abeta species remain elusive. To elucidate the underlying mechanisms, we replaced individual amino acid residues from positions 43 to 52 of Abeta with phenylalanine to examine the effects on the production of Abeta(40) and Abeta(42). All mutants, except for V50F, resulted in a decrease in total Abeta with a more prominent reduction in Abeta for residues 45, 48, and 51, following an every three residue repetition pattern. In addition, the mutations with the strongest reductions in total Abeta had the largest increases in the ratio of Abeta(42)/Abeta(40). Curiously, the T43F, V44F, and T48F mutations caused a striking decrease in the accumulation of membrane bound Abeta(46), albeit by a different mechanism. Our data suggest that initial cleavage of APP at the epsilon site is crucial in the generation of Abeta. The implicated sequential cleavage and an alpha-helical model may lead to a better understanding of the gamma-secretase-mediated APP processing and may also provide useful information for therapy and drug design aimed at altering Abeta production.  相似文献   

4.
Insoluble deposits of tau and amyloid precursor protein (APP) peptides Abeta characterize Alzheimer's disease. We studied the role of tau in the metabolism of APP in cells stably expressing APP Swedish mutation (CHOsw). Transient expression of tau in CHOsw cells caused morphological changes, bundling of microtubules and perinuclear aggregation of Golgi-derived vesicles. It also reduced the secretion of Abeta(1-40) and Abeta(1-42) without altering the APP steady state levels. This was accompanied by a reduction in the gamma-secretase and an increase in the insulin degrading enzyme activities. Our results suggest that tau may play an inhibitory role in the amyloidogenic activity of APP.  相似文献   

5.
Cleavage of the amyloid precursor protein (APP) is a crucial event in Alzheimer disease pathogenesis that creates the amyloid-beta peptide (Abeta) and liberates the carboxy-terminal APP intracellular domain (AICD) into the cytosol. The interaction of the APP C terminus with the adaptor protein Fe65 mediates APP trafficking and signalling, and is thought to regulate APP processing and Abeta generation. We determined the crystal structure of the AICD in complex with the C-terminal phosphotyrosine-binding (PTB) domain of Fe65. The unique interface involves the NPxY PTB-binding motif and two alpha helices. The amino-terminal helix of the AICD is capped by threonine T(668), an Alzheimer disease-relevant phosphorylation site involved in Fe65-binding regulation. The structure together with mutational studies, isothermal titration calorimetry and nuclear magnetic resonance experiments sets the stage for understanding T(668) phosphorylation-dependent complex regulation at a molecular level. A molecular switch model is proposed.  相似文献   

6.
The Alzheimer's disease (AD) brain pathology is characterized by extracellular deposits of amyloid-beta (Abeta) peptides and intraneuronal fibrillar structures. These pathological features may be functionally linked, but the mechanism by which Abeta accumulation relates to neuronal degeneration is still poorly understood. Abeta peptides are fragments cleaved from the amyloid precursor protein (APP), a transmembrane protein ubiquitously expressed in the nervous system. Although the proteolytic processing of APP has been implicated in AD, the physiological function of APP and the subcellular site of APP cleavages remain unknown. The overall structure of the protein and its fast anterograde transport along the axon support the idea that APP functions as a vesicular receptor for cytoskeletal motor proteins. In the current study, we test the hypothesis that myosin II, important contributor to the cytoskeleton of neuronal cells, may influence the trafficking and/or the processing of APP. Our results demonstrate that downregulation of myosin II-B, the major myosin isoform in neurons, is able to increase Abeta deposition, concomitantly altering the subcellular localization of APP. These new insights might be important for the understanding of the function of APP and provide a novel conceptual framework in which to analyze its pathological role.  相似文献   

7.
Divergent roles of GSK3 and CDK5 in APP processing   总被引:8,自引:0,他引:8  
Glycogen synthase kinase-3 (GSK3) and cyclin-dependent kinase 5 (CDK5) are related serine/threonine kinases that have been well studied for their role in tau hyperphosphorylation, however, little is known about their significance in APP processing. Here we report that GSK3 and CDK5 are involved in APP processing in a divergent manner. Specific inhibition of cellular GSK3 by lithium or GSK3beta antisense elicits a reduction in Abeta. Conversely, negative modulation of cellular CDK5 activity by CDK5 inhibitor, roscovitine, or CDK5 antisense stimulates Abeta production. Neither GSK3 nor CDK5 inhibition by these means significantly affected cellular APP levels or APP maturation. Moreover, oral administration of lithium significantly reduces Abeta production whereas direct ICV administration of roscovitine augmented Abeta production in the brains of PDAPP (APP(V717F)) mice. Our data support a function for both GSK3 and CDK5 in APP processing, further implicating these two kinases in the pathogenesis of Alzheimer's disease.  相似文献   

8.
APP processing is regulated by cytoplasmic phosphorylation   总被引:14,自引:0,他引:14       下载免费PDF全文
Amyloid-beta peptide (Abeta) aggregate in senile plaque is a key characteristic of Alzheimer's disease (AD). Here, we show that phosphorylation of amyloid precursor protein (APP) on threonine 668 (P-APP) may play a role in APP metabolism. In AD brains, P-APP accumulates in large vesicular structures in afflicted hippocampal pyramidal neurons that costain with antibodies against endosome markers and the beta-secretase, BACE1. Western blot analysis reveals increased levels of T668-phosphorylated APP COOH-terminal fragments in hippocampal lysates from many AD but not control subjects. Importantly, P-APP cofractionates with endosome markers and BACE1 in an iodixanol gradient and displays extensive colocalization with BACE1 in rat primary cortical neurons. Furthermore, APP COOH-terminal fragments generated by BACE1 are preferentially phosphorylated on T668 verses those produced by alpha-secretase. The production of Abeta is significantly reduced when phosphorylation of T668 is either abolished by mutation or inhibited by T668 kinase inhibitors. Together, these results suggest that T668 phosphorylation may facilitate the BACE1 cleavage of APP to increase Abeta generation.  相似文献   

9.
Berberine is an isoquinoline alkaloid isolated from Coptidis rhizoma, a major herb widely used in Chinese herbal medicine. Berberine's biological activity includes antidiarrheal, antimicrobial, and anti-inflammatory effects. Recent findings show that berberine prevents neuronal damage due to ischemia or oxidative stress and that it might act as a novel cholesterol-lowering compound. The accumulation of amyloid-beta peptide (Abeta) derived from amyloid precursor protein (APP) is a triggering event leading to the pathological cascade of Alzheimer's disease (AD); therefore the inhibition of Abeta production should be a rational therapeutic strategy in the prevention and treatment of AD. Here, we report that berberine reduces Abeta levels by modulating APP processing in human neuroglioma H4 cells stably expressing Swedish-type of APP at the range of berberine concentration without cellular toxicity. Our results indicate that berberine would be a promising candidate for the treatment of AD.  相似文献   

10.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major component of the plaques, amyloid beta peptide (Abeta), is generated from amyloid precursor protein (APP) by beta- and gamma-secretase-mediated cleavage. Because beta-secretase/beta-site APP cleaving enzyme 1 (BACE1) knockout mice produce much less Abeta and grow normally, a beta-secretase inhibitor is thought to be one of the most attractive targets for the development of therapeutic interventions for AD without apparent side-effects. Here, we report the in vivo inhibitory effects of a novel beta-secretase inhibitor, KMI-429, a transition-state mimic, which effectively inhibits beta-secretase activity in cultured cells in a dose-dependent manner. We injected KMI-429 into the hippocampus of APP transgenic mice. KMI-429 significantly reduced Abeta production in vivo in the soluble fraction compared with vehicle, but the level of Abeta in the insoluble fraction was unaffected. In contrast, an intrahippocampal injection of KMI-429 in wild-type mice remarkably reduced Abeta production in both the soluble and insoluble fractions. Our results indicate that the beta-secretase inhibitor KMI-429 is a promising candidate for the treatment of AD.  相似文献   

11.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of senile plaques which contain an amyloid core made of beta-amyloid peptide (Abeta). Abeta is produced by the cleavage of the amyloid precursor protein (APP). Since impairment of neuronal calcium signalling has been causally implicated in ageing and AD, we have investigated the influence of an influx of extracellular calcium on the metabolism of human APP in rat cortical neurones. We report that a high cytosolic calcium concentration, induced by neuronal depolarization, inhibits the alpha-secretase cleavage of APP and triggers the accumulation of intraneuronal C-terminal fragments produced by the beta-cleavage of the protein (CTFbeta). Increase in cytosolic calcium concentration specifically induces the production of large amounts of intraneuronal Abeta1-42, which is inhibited by nimodipine, a specific antagonist of l-type calcium channels. Moreover, calcium release from endoplasmic reticulum is not sufficient to induce the production of intraneuronal Abeta, which requires influx of extracellular calcium mediated by the capacitative calcium entry mechanism. Therefore, a sustained high concentration of cytosolic calcium is needed to induce the production of intraneuronal Abeta1-42 from human APP. Our results show that this accumulation of intraneuronal Abeta1-42 induces neuronal death, which is prevented by a functional gamma-secretase inhibitor.  相似文献   

12.
Accumulation in brain of the beta-amyloid peptide (Abeta) is considered as crucial pathogenic event causing Alzheimer's disease (AD). Anti-Abeta immune therapy is a powerful means for Abeta clearance from the brain. We recently showed that intravenous injections of anti-Abeta antibodies led to reduction, elevation or no change in brain Abeta42 concentrations of an AD mouse model. We report here, in a second passive immunization protocol, a different bioactivity of same antibodies to alter brain Abeta42 concentrations. Comparing the bioactivity of anti-Abeta antibodies in these two passive immunization paradigms underscores the potential of immune therapy for AD treatment and suggests that both the epitope recognized by the antibody and the mode of antibody administration are crucial for its biological activity.  相似文献   

13.
BACE1 interacts with nicastrin   总被引:4,自引:0,他引:4  
Beta-amyloid peptide (Abeta) is generated through the proteolytic cleavage of beta-amyloid precursor protein (APP) by beta- and gamma-secretases. The beta-secretase, BACE1, initiates Abeta formation followed by gamma-cleavage within the APP transmembrane domain. Although BACE1 localizes in the transGolgi network (TGN), its physiological substrates and modulators are not known. In addition, the relationship to other secretase(s) also remains unidentified. Here, we demonstrate that BACE1 binds to nicastrin, a component of gamma-secretase complexes, in vitro, and that nicastrin activates beta-secretase activity in COS-7 cells.  相似文献   

14.
15.
Detergent-resistant lipid rafts are required for the generation of Abeta as they concentrate not only amyloid precursor protein (APP), but also the beta- and gamma-secretase that convert APP to Abeta. Recently, Abeta has been shown to be oligomerized, which results in neuronal cytotoxicity and synaptic failure. In this study, we have demonstrated that Abeta oligomers appeared immediately after the incubation of Abeta with lipid rafts isolated from the brain tissues of rats, and were converted into few Abeta fibrils, even after longer periods of incubation. The oligomerization of Abeta was not abolished after the brain lipid rafts were treated with heat, or with protease K, implying that the lipid raft proteins were determined not to be prerequisites for Abeta oligomerization. The cholesterol present in the lipid rafts might not be essential to Abeta oligomerization because Abeta oligomerization was not prevented after the cholesterol was removed from the lipid rafts with methyl-beta-cyclodextrin (MbetaCD). The Abeta oligomerization was accelerated by the application of lipid rafts isolated from ganglioside-rich cells, C2C12 cells, whereas this was not observed with the lipid rafts isolated from ganglioside-poor cells SK-N-MC and HeLa cells. In addition, lipid raft-induced Abeta oligomerization was shown to be inhibited in CHO-K1 cells which were defective with regard to ganglioside biosynthesis. This indicates that Abeta oligomerization requires gangliosides that are enriched in the lipid rafts.  相似文献   

16.
The familial Alzheimer's disease gene product beta-amyloid (Abeta) precursor protein (APP) is processed by the beta- and gamma-secretases to produce Abeta as well as AID (APP Intracellular Domain) which is derived from the extreme carboxyl terminus of APP. AID was originally shown to lower the cellular threshold to apoptosis and more recently has been shown to modulate gene expression such that it represses Notch-dependent gene expression while in combination with Fe65 it enhances gene activation. Here we report that the two other members of the APP family, beta-amyloid precursor-like protein-1 and -2 (APLP1 and APLP2), are also processed by the gamma-secretase in a Presenilin 1-dependent manner. Furthermore, the extreme carboxyl-terminal fragments produced by this processing (here termed APP-like Intracellular Domain or ALID1 and ALID2) are able to enhance Fe65-dependent gene activation, similar to what has been reported for AID. Considering that only APP and not the APLPs have been linked to familial Alzheimer's disease (AD), this data should help in understanding the physiologic roles of the APP family members and in differentiating these functions from the pathologic role of APP in Alzheimer's disease.  相似文献   

17.
BACE1 suppression by RNA interference in primary cortical neurons   总被引:19,自引:0,他引:19  
Extracellular deposition of amyloid-beta (Abeta) aggregates in the brain represents one of the histopathological hallmarks of Alzheimer's disease (AD). Abeta peptides are generated from proteolysis of the amyloid precursor proteins (APPs) by beta- and gamma-secretases. Beta-secretase (BACE1) is a type I integral membrane glycoprotein that can cleave APP first to generate C-terminal 99- or 89-amino acid membrane-bound fragments containing the N terminus of Abeta peptides (betaCTF). As BACE1 cleavage is an essential step for Abeta generation, it is proposed as a key therapeutic target for treating AD. In this study, we show that small interfering RNA (siRNA) specifically targeted to BACE1 can suppress BACE1 (but not BACE2) protein expression in different cell systems. Furthermore, BACE1 siRNA reduced APP betaCTF and Abeta production in primary cortical neurons derived from both wild-type and transgenic mice harboring the Swedish APP mutant. The subcellular distribution of APP and presenilin-1 did not appear to differ in BACE1 suppressed cells. Importantly, pretreating neurons with BACE1 siRNA reduced the neurotoxicity induced by H2O2 oxidative stress. Our results indicate that BACE1 siRNA specifically impacts on beta-cleavage of APP and may be a potential therapeutic approach for treating AD.  相似文献   

18.
Mutations within the amyloid-beta (Abeta) domain of the amyloid precursor protein (APP) typically generate hemorrhagic strokes and vascular amyloid angiopathy. In contrast, the Arctic mutation (APP E693G) results in Alzheimer's disease. Little is known about the pathologic mechanisms that result from the Arctic mutation, although increased formation of Abeta protofibrils in vitro and intraneuronal Abeta aggregates in vivo suggest that early steps in the amyloidogenic pathway are facilitated. Here we show that the Arctic mutation favors proamyloidogenic APP processing by increased beta-secretase cleavage, as demonstrated by altered levels of N- and C-terminal APP fragments. Although the Arctic mutation is located close to the alpha-secretase site, APP harboring the Arctic mutation is not an inferior substrate to a disintegrin and metalloprotease-10, a major alpha-secretase. Instead, the localization of Arctic APP is altered, with reduced levels at the cell surface making Arctic APP less available for alpha-secretase cleavage. As a result, the extent and subcellular location of Abeta formation is changed, as revealed by increased Abeta levels, especially at intracellular locations. Our findings suggest that the unique clinical symptomatology and neuropathology associated with the Arctic mutation, but not with other intra-Abeta mutations, could relate to altered APP processing with increased steady-state levels of Arctic Abeta, particularly at intracellular locations.  相似文献   

19.
The subcellular location of the secretases processing the beta-amyloid precursor protein (APP) is not established yet. We analyzed the generation of the beta-amyloid peptide (Abeta) in human embryonic kidney 293 cell lines stably expressing wild-type and noninternalizing mutants of human APP. APP lacking the entire cytoplasmic domain or with both tyrosine residues of the motif GYENPTY mutated to alanine showed at least fivefold reduced endocytosis. In these cell lines, the production of Abeta1-40 was substantially reduced, but accompanied by the appearance of two prominent alternative Abeta peptides differing at the amino-termini. Based on antibody reactivity and mobility in high-resolution gels in comparison with defined Abeta fragments, these peptides were identified as Abeta3-40 and Abeta5-40. Notably, these alternative Abeta peptides were not generated when the APP mutants were retained in the early secretory pathway by treatment with brefeldin A. These results indicate that the alternative processing is the result of APP accumulation at the plasma membrane and provide evidence of distinct beta-secretase activities. Cleavage amino-terminal to position 1 of Abeta occurs predominantly in endosomes, whereas the processing at positions 3 or 5 takes place at the plasma membrane.  相似文献   

20.
One of the hallmarks of Alzheimer's disease is the accumulation of senile plaques in brain, extracellular lesions comprised mostly of aggregates of the amyloid beta-peptide (Abeta). Abeta is proteolytically derived from the Alzheimer's amyloid precursor protein (APP). The generation of Abeta and nonamyloidogenic derivatives of APP involves utilization of alternative processing pathways and multiple subcellular compartments. To improve our understanding of the regulation of APP processing, we investigated the effects of wortmannin, a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, on APP processing. PI3-kinases form a multifaceted family of enzymes that represent converging points for multiple signal transduction pathways and also act as key regulators of vesicular trafficking. In N2a neuroblastoma cells expressing either wild-type APP or the "Swedish" familial Alzheimer's disease-associated mutant variant of APP, wortmannin treatment resulted in decreased release of both Abeta and soluble APPalpha. In parallel, full-length APP and both processed derivatives accumulated inside the cells. These effects were not present at nanomolar concentrations of wortmannin, but only at micromolar concentrations, implying the possible involvement of a recently described trans-Golgi network (TGN)-associated PI3-kinase that is resistant to nanomolar concentrations of the inhibitor, but sensitive to micromolar concentrations. All effects were reversible when the drug was removed from the cell culture medium. Given the suspected site of action of this novel PI3-kinase activity at the TGN, it is tempting to speculate that the unexpected increase in the levels of both intracellular soluble APPalpha and intracellular Abeta might be due to wortmannin-induced covesiculation of APP together with its respective secretase enzymes within the TGN, leading to the execution of alpha-, beta-, and gamma-secretase reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号