共查询到20条相似文献,搜索用时 78 毫秒
1.
肺炎克雷伯菌是肠杆菌科家族中的一员,在各种环境中广泛存在,可导致诸如奶牛乳房炎在内的多种动物疫病,引起人类的肺炎、尿路感染、菌血症、伤口性感染和化脓性脓肿在内的多种临床感染。该菌对抗生素的耐受日趋严重,而且高毒力菌株不断出现,给该菌的防控带来了巨大挑战。噬菌体是一种裂解细菌的病毒,因其具有治疗耐药细菌感染的潜力而备受关注,世界各地均有使用噬菌体成功治疗耐药细菌感染的案例。本文基于国内外对肺炎克雷伯菌及其噬菌体的研究数据,综述了肺炎克雷伯菌的流行病学调查情况和噬菌体在治疗肺炎克雷伯菌感染方面的应用,以期为基于肺炎克雷伯菌噬菌体的抗菌研究和临床应用提供参考。 相似文献
2.
3.
噬菌体是自然界中广泛存在的细菌病毒,作为细菌的天然杀手,在细菌性感染尤其是多重耐药菌感染的治疗方面具有抗生素无法比拟的优势。综述了利用活噬菌体治疗细菌性感染的早期研究及近几年的初步临床试验结果、利用噬菌体裂解酶治疗细菌性感染的最新进展,指出了噬菌体治疗真正得以应用所面临的主要障碍并综述分析了一些具有一定可行性的解决方案,以期为噬菌体治疗的研究和应用提供参考,并推动噬菌体治疗研究的进一步发展。 相似文献
4.
鱼类细菌性病害对发展鱼类养殖业构成了严重的威胁,而抗生素的滥用和病原菌耐药性的出现对鱼类养殖产量、水产品质量和养殖环境造成了严重的影响。为了推动鱼类健康养殖产业的发展,亟待创新研究鱼类病害的绿色防控技术。噬菌体作为一种天然、无残留的细菌杀手,具有特异性强、裂解效率高等特点,利用噬菌体治疗鱼类细菌性病害将是一种重要的技术途径。本文综述了噬菌体的重要资源挖掘、鱼类细菌性病害防控中的作用机制及其应用前景,并提出了在鱼类健康养殖领域加快研究噬菌体治疗技术的措施,对鱼类的健康养殖具有重要意义。 相似文献
5.
【目的】本研究旨在通过驯化提高噬菌体的裂解能力并降低其宿主菌耐受性产生的速度,从而提高对重要病原菌-碳青霉烯类耐药肺炎克雷伯菌(carbapenem-resistant Klebsiella pneumoniae, CRKp)的杀菌效果。【方法】以临床CRKp菌株Kp2092为宿主菌,利用双层琼脂平板法从污水中分离噬菌体并分析其裂解谱;对其中的广谱强裂解性噬菌体通过透射电镜观察其形态特征并进行全基因组测序;通过噬菌体-宿主连续培养进行噬菌体驯化,并比较驯化前后噬菌体生物学特性的差异。【结果】分离得到的9株肺炎克雷伯菌噬菌体中,噬菌体P55anc裂解能力强且裂解谱广,透射电镜观察发现其为短尾噬菌体。P55anc基因组全长40 301 bp,包含51个编码序列,其中27个具有已知功能,主要涉及核酸代谢、噬菌体结构蛋白、DNA包装和细胞裂解等。噬菌体P55anc经9 d的驯化后,得到3株驯化噬菌体。驯化后噬菌体杀菌能力增强,主要表现为细菌生长曲线显著下降、噬菌体暴发量增多、裂解谱扩大,且宿主菌对其产生抗性的概率显著降低。与此同时,驯化后的噬菌体在热处理、紫外暴露以及血清等环境下保持较好的稳定性。【结论】利用噬菌体-宿主连续培养的方法可对噬菌体进行驯化和筛选,驯化后的噬菌体杀菌效果更强,且在不同压力处理下的稳定性良好,而细菌产生噬菌体抗性的概率也降低。 相似文献
6.
噬菌体广泛存在于生态环境中。细菌在与噬菌体长期的共进化过程中,衍化出了多种针对噬茵体感染的抗性机制。我们从宿主菌的抑制吸附、阻止噬菌体DNA注入、切断噬菌体DNA和影响其功能及流产感染等方面,对宿主菌抵抗噬菌体感染的机制进行了综述。 相似文献
7.
随着细菌的进化以及部分抗生素的滥用,耐药细菌的感染已成为21世纪主要的公共卫生挑战之一。其中,耐药肺炎克雷伯菌(Klebsiella pneumoniae)问题尤为突出。噬菌体在治疗耐药细菌感染引起的疾病方面展现出一定的潜力及独特优势,但目前噬菌体治疗尚缺乏统一的临床指导规范。虽然临床上有少数将噬菌体用于治疗肺炎克雷伯菌感染的成功案例,但多数情况下是采用噬菌体配合抗生素疗法,噬菌体在其中的作用仍不明确。本文综合评述国内外研究数据,回顾与噬菌体治疗肺炎克雷伯菌感染相关的数个重点问题,包括噬菌体的特性以及影响其疗效的因素,旨在为肺炎克雷伯菌和其他耐药细菌的噬菌体治疗提供参考。 相似文献
8.
抗生素治疗尽管有几十年有效治疗的历史,但随着越来越多耐/抗药性细菌的出现,细菌对抗生素的抗药性已成为一个大问题。噬菌体治疗是使用噬菌体作为抗菌剂来感染细菌株系,它一直是人们倡导的一个很有前途的常规抗生素治疗的替代方案。然而,由于细菌与噬菌体的协同进化中,细菌可以通过多种机制获得对噬菌体的抗性。因此,人们对噬菌体治疗抱有期望的同时,也关注噬菌体治疗长时间的使用之后,是否会与抗生素使用之后结果相类似,导致抗性细菌病原菌感染的治疗困难。综述了细菌-噬菌体协同进化中细菌病原菌对有感染能力的噬菌体是否会产生抗性,及其在噬菌体治疗中影响的争论,并展望了噬菌体治疗的潜在前景。 相似文献
9.
主要医院感染病原菌的变迁及其耐药性分析 总被引:2,自引:1,他引:2
目的 分析永康市第一人民医院主要医院感染病原体和耐药性变迁,指导临床合理使用抗菌药物,防治医院感染。方法 用全国医院感染监测网软件,统计2000年1月~2003年12月医院感染主要病原体及其药敏结果,χ^2检验分析。结果 该院主要医院感染病原体依次是鲍曼不动杆菌、大肠埃希菌、金黄色葡萄球菌、肺炎克雷伯菌、铜绿假单胞菌、类白喉棒状杆菌、表皮葡萄球菌和阴沟肠杆菌。耐药率呈逐年增高趋势,但不同的细菌耐药率各具特点。革兰阳性(G^+)菌对万古霉素的耐药率均为0,对利福平的耐药率均较低(0%~13.6%),类白喉棒状杆菌对米诺四环素、妥布霉索和头孢哌酮的耐药率也较低。革兰阴性(G^-)菌对亚胺培南的耐药率均低(0%~36.8%),鲍曼不动杆菌和阴沟肠杆菌具有多重高耐药性,铜绿假单胞菌对头孢吡肟、氨基糖苷类和环丙沙星的耐药率尚在较低水平(0%~36.4%),大肠埃希菌和肺炎克雷伯菌的耐药性相似,对哌拉西林-他唑巴坦、头孢西丁的耐药率较低(0%~38.6%)。结论 细菌的耐药性与抗菌药物的使用及细菌自身复杂的耐药特性有关,及时送检感染部位标本,根据细菌药敏,合理使用抗菌药物控制感染,对降低细菌耐药率有现实意义。 相似文献
10.
11.
噬菌体治疗——旧概念, 新阶段 总被引:2,自引:0,他引:2
噬菌体治疗技术由来已久.噬菌体治疗的研究始于上世纪初,之后由于抗生素的出现及其他原因在美国和西欧等国家中断.近年来,全球范围的细菌耐药性使得科学家们重新审视和评估噬菌体治疗技术,显示出巨大潜力.论述噬菌体发现历程及早期研究、人类及动物细菌感染的应用、噬菌体治疗与抗生素的不同之处、存在的问题等,并探讨噬菌体技术可能的发展... 相似文献
12.
Bacteriophage (phi Sb01) of Streptococcus bovis, isolated from pooled rumen fluid of cattle, was a small siphovirus of morphotype B1. It contained double-stranded DNA of length 30.9 kb, which was digested by the restriction endonucleases, EcoRI, HindIII, and PvuII. Bacteria which survived phi Sb01 infection (strain 2BAr) grew in long chains (100-200 cells), ultimately forming large clumps of cells. This growth habit was in distinct contrast to that of the parent host strain which grew predominantly in the form of single cells or diplococci. Strain 2BAr was genetically stable, resistant to phi Sb01 attack, and the observed differences in the growth characteristics of the parent strain and 2BAr indicated that cells of 2BAr were more adherent. In the rumen ecosystem, the selection of phage-resistant bacteria with altered growth characteristics may be a factor in modifying bacterial phenotypes, and thus increasing variability among bacteria which are closely related genetically. 相似文献
13.
14.
At present there are no known procedures for preventing or treating infectious diseases of corals. Toward this end, the use
of phage therapy has been investigated. Lytic bacteriophages (phages) were isolated for two bacterial pathogens that are responsible
for coral diseases, Vibrio coralliilyticus, which is the causative agent of bleaching and tissue lysis of Pocillopora damicornis, and Thalosomonas loyaeana, which causes the white plague-like disease of Favia favus. By using these phages in controlled aquaria experiments, it was demonstrated that each of these diseases could be controlled
by the pathogen-specific phage. The data indicate that initially the phages bind to the pathogen in seawater and are then
brought to the coral surface where they multiply and lyse the pathogen. The phages remained associated with the coral and
could prevent subsequent infections. These data suggest that phage therapy has the potential to control the spread of infectious
coral diseases. 相似文献
15.
16.
《Saudi Journal of Biological Sciences》2022,29(5):3380-3389
Avian pathogenic Escherichia coli (APEC) is considered a severe issue to both poultry business and health of the general public. In that context, 50 samples from 250 diseased broiler chickens in 10 chicken farms were employed to Escherichia coli isolation. Microbiological techniques were employed to detect isolates of E. coli from 250 diseased broiler chickens which were examined by antimicrobial susceptibility profiles against 11 antimicrobial agents using disc diffusion technique as well as their biofilm forming capacity were detected. In addition to, study the isolation and purification of phages based on spot technique to verify that lytic phages are present in E. coli isolates and plaque assay for titration of bacteriophages. In the present research, we also looked at the ability of bacteriophages to inhibit and dissolve previously formed biofilms by E. coli O78 isolate. Moreover, experimental testing of E. coli O78 bacteriophages for colibacillosis prevention and control in one day old broiler chicks were done. The obtained results showed that twenty-six E. coli isolates out of 50 examined samples were isolated (10.4%). The most prevalent serotypes were O78, O121:H7, O146:H2, O124, O113:H4, O112:H2, O1:H7, O55:H7, O2:H6, O91:H21, O26:H11. Antibiogram results demonstrated the resistance of E. coli isolates with high percentage 100% were against, Ampicillin, Amoxicillin and Tetracycline. Biofilm quantification analysis showed that 24/26 (92.3%) isolates were considered biofilm producer isolates. The characterization and the lytic activity of bacteriophage were performed based on Transmission electron microscopy and showed the greatest lytic activity against the evaluated host strains with effective activity at concentration of 107 at 24 h and strong significant reduction of the established E. coli O 78 biofilm within 12 h. The result of experimental infection showed that the performance indicators of phage in treated and challenged group showed high significant increase in body weight, weight gain and improved FCR than infected –antibiotic treated and infected bacteriophage and antibiotic treated. Total viable cell counts of E. coli in the lungs of birds revealed that there is highly significant difference between the six groups count results. We concluded that phage therapy found to be an attractive option to prevent and control multidrug resistant colibacillosis in broilers. 相似文献
17.
《Saudi Journal of Biological Sciences》2022,29(5):3308-3312
Infections caused by Salmonella remain a major public health problem worldwide. Animal food products, including poultry meat and eggs, are considered essential components in the individual’s daily nutrition. However, chicken continues to be the main reservoir for Salmonella spp.Poultry farmers use several types of antibiotics to treat pathogens. This can pose a health risk as pathogens can build antibiotic resistance in addition to the possibility of accumulation of these antibiotics in food products. The use of phages in treating poultry pathogens is increasing worldwide due to its potential use as an effective alternative to antibiotics. Phages have several advantages over antibiotics; phages are very specific to target bacteria, less chances of developing secondary infections, and they only replicate at the site of infection.Here we report the isolation of a bacteriophage from chicken feces. The isolated bacteriophage hosts on Salmonella Gallinarum, a common zoonotic infection that causes fowl typhoid, known to cause major losses to poultry sector. The isolated bacteriophage was partially characterized as a DNA virus resistant to RNase digestion with approximately 20 Kb genome. SDS-PAGE analysis of total viral proteins showed at least five major bands (21, 28, 42, 55 and 68 kDa), indicating that this virus is relatively small compared to other known poultry phages. The isolated bacteriophage has the potential to be an alternative to antibiotics and possibly reducing antibiotic resistance in poultry farms. 相似文献
18.
Golec P Dąbrowski K Hejnowicz MS Gozdek A Loś JM Węgrzyn G Lobocka MB Loś M 《Journal of microbiological methods》2011,84(3):486-489
A universal and effective method for long-term storage of bacteriophages has not yet been described. We show that randomly selected tailed phages could be stored inside the infected cells at −80 °C without a major loss of phage and host viability. Our results suggest the suitability of this method as a standard for phage preservation. 相似文献
19.
Researchers increasingly believe that microbial, molecular and synthetic biology techniques along with genetic engineering will facilitate the treatment of persistent infectious diseases. However, such therapy has been plagued by the emergence of antibiotic-resistant bacteria, resulting in significant obstacles to treatment. Phage therapy is one promising alternative to antibiotics, especially now that recent modifications to ubiquitous phages have made them more controllable. Additionally, convincing in vitro and in vivo studies of genetically modified lytic phages and engineered non-lytic phages have confirmed the advantages of novel, specific bactericidal agents over antibiotics in some cases. There is still a need for a better understanding of phage therapy, however, before it can be adopted widely. 相似文献
20.
Eyer L Pantůcek R Zdráhal Z Konecná H Kaspárek P Růzicková V Hernychová L Preisler J Doskar J 《Proteomics》2007,7(1):64-72
Phage 812 is a polyvalent phage with a very broad host range in the genus Staphylococcus, which makes it a suitable candidate for phage therapy of staphylococcal infections. This proteomic study, combining the results of both 1-DE and 2-DE followed by PMF, led to the identification of 24 virion proteins. Twenty new proteins, not yet identified by proteome analysis of closely related staphylococcal phages K and G1 were identified using this approach. Fifteen proteins were assigned unambiguously to the head-tail genome module; the remaining nine proteins are encoded by genes of the left or right arms of the phage genome. As expected, the most abundant proteins in the electrophoretic patterns are the major capsid protein, the major tail sheath protein and proteins identical to ORF 50 and ORF 95 of phage K, although their function is only putative. Identification of these 20 new proteins contributes substantially to a detailed characterization of phage virions, knowledge of which is necessary for rational phage therapy. 相似文献