首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 700 毫秒
1.
旨在探讨丙型肝炎病毒(hepatitis C virus, HCV)cured细胞株的易感机制。本研究将体外转录的HCV RNA电转入肝癌细胞系Huh 7细胞,建立HCV复制子细胞株,用 γ-干扰素(interferon,IFN)处理复制子细胞株,获得HCV cured Huh 7A和Huh 7B细胞株。用插入报告基因的HCV毒株Jc1-G感染上述细胞株,分别进行荧光素酶活性测定、蛋白质印迹法和荧光定量聚合酶链反应(polymerase chain reaction,PCR)检测以验证其易感性。收集Huh 7、Huh 7.5、Huh 7A和Huh 7B细胞并利用IFN-α处理,之后用蛋白质印迹法及荧光定量PCR进行检测,验证细胞株中IFN诱生信号通路中关键因子内源性表达及抗病毒活性ISGs的激活水平。结果显示,在Huh 7A和Huh 7B细胞中检测不到病毒RNA,与Huh 7细胞一致。病毒感染实验中,与Huh 7细胞相比,Huh 7A和Huh 7B细胞株中荧光素酶活性增高百倍,病毒蛋白表达和RNA水平亦显著上调,与Huh 7.5细胞株中的表达水平接近。IFN信号通路实验中,与Huh 7细胞相比,Huh 7A和Huh 7B细胞株中RIG-I/MDA5/MAVS内源性蛋白表达和mRNA水平无明显差异;IFN-α处理细胞后IFN刺激基因isg56,mx1,mx2,oax1,oax2,viperin,cxcl10,ifitm1和ifitm3激活水平亦无显著变化。结果提示,本研究制备的Huh 7A和Huh 7B细胞株可支持HCV高水平复制,将为研究病毒复制机制提供有力的支持。  相似文献   

2.
目的:建立丙型肝炎病毒NS3/4A丝氨酸蛋白酶胞内荧光检测方法。方法:利用EGFP分子内合适位点可以插入一定长度外源片段而不影响荧光性能的特性,构建EGFP分子内插入NS3/4A蛋白酶识别序列NS5AB的EGFP-5AB重组分子。将EGFP-5AB与NS3/4A蛋白酶共表达,若短肽链被切断,则EGFP的两个部分解离,荧光消失,从而可以监测HCV NS3/4A蛋白酶的存在。通过将NS5AB插入三种不同位点,寻找最合适的插入位点;将EGFP-5AB转染进入不同宿主细胞,验证其在不同细胞的表达情况并选择最佳宿主细胞。结果:确定EGFP 173-174氨基酸位点是合适的插入位点;确定CHO-K1为理想的荧光检测系统宿主细胞;在构建的细胞模型中,能够检测到EGFP被切割后的条带,但检测不到荧光信号,说明EGFP-5AB蛋白被有效切割,该方法可以检测到NS3/4A丝氨酸蛋白酶的存在。结论:成功构建了一种在哺乳动物细胞中检测NS3/4A蛋白酶切割活性的荧光检测方法。  相似文献   

3.
丙型肝炎病毒基因组结构及功能   总被引:1,自引:0,他引:1  
丙型肝炎病毒(hepatitis C virus, HCV)是单股正链的RNA 病毒,全长为9.6 kb,包括1个大的开放阅读框(ORF)和两侧的5′,3′非编码区(UTRs).核糖体通过进入HCV 5′UTR 端的内部核糖体进入位点(IRES),将HCV基因组翻译成1个聚蛋白前体.前体聚蛋白被宿主和病毒的蛋白酶共同切割成为若干个具有独立功能的HCV蛋白,根据功能的不同分别命名为C、E1、E2、p7、NS2、NS3、NS4A、NS4B、NS5A 和NS5B,它们不但在HCV的生活史中发挥着重要的作用,也影响着宿主细胞的信号传导、凋亡及物质代谢等一系列生化过程.近年来,随着HCV体外细胞摸型的不断发展,其病毒分子生物学方面的研究取得了很大的进展.本文从基因组结构及其编码的蛋白功能等方面阐述了HCV病毒的研究进展,为致病机理的研究及抗HCV药物的开发和疫苗研制等提供理论基础.  相似文献   

4.
NS3/4A是丙型肝炎病毒(hepatitis C virus,HCV)编码的丝氨酸蛋白酶复合体,是病毒完成自身复制周期的必要成分。该研究为调查NS3/4A对细胞凋亡及DNA损伤应答(DNA-damage response,DDR)的影响,在Huh7细胞中表达了外来NS3/4A基因。通过DAPI染色和MTT分析显示,外来表达NS3/4A显著诱导细胞的凋亡和增殖活力的下降。免疫荧光检测结果表明,NS3/4A可明显增加细胞内源性DNA双链断裂(double strand breaks,DSBs)损伤(γH2AX灶点升高);而进一步用X-ray诱导细胞外源性DSBs损伤后,外来表达NS3/4A的细胞显示出明显的DSBs损伤修复缺陷(减缓的γH2AX灶点消退)。免疫印迹法检测结果显示,NS3/4A可抑制喜树碱(Camptothecin,CPT)诱导的ATM第1 981位丝氨酸的磷酸化(pATM1 981)。以上结果提示,NS3/4A基因外来表达可引起细胞DNA损伤,抑制ATM介导的DSBs损伤修复信号,诱导细胞凋亡通路的活化。  相似文献   

5.
本文旨在探讨α-actinin参与丙型肝炎病毒(HCV)复制的机制。将α-actinin转染Huh7.5细胞,用JFH1感染,发现过表达α-actinin可显著增加HCVRNA水平及非结构蛋白表达,感染性HCV颗粒也同时增多。膜漂浮实验显示,α-actinin可与HCV非结构蛋白NS5A共定位于脂筏。抑制内源性α-actinin表达,可使复制子细胞内NS5A表达减少,且对非离子去污剂敏感而从脂筏脱落。免疫荧光实验显示,NS5A与内质网标志分子calnexin核周共定位消失。以上结果提示,α-actinin可通过影响非结构蛋白与脂筏的关联而参与HCV RNA的合成,为临床治疗及研制新型抗HCV药物提供理论依据和实验基础。  相似文献   

6.
丙型肝炎病毒(hepatitis C virus,HCV)持续感染可导致慢性丙型肝炎,并可发展为肝硬化和肝细胞癌。HCV NS3/4A蛋白酶在HCV复制和致病机制中起着非常关键的作用,已成为HCV研究热点。由于候选药物分子必须具有易进入细胞、稳定性好等特征,建立一种细胞水平上酶活性的测定系统对于筛选抗NS3/4A药物无疑有着重要意义。目前已有多种NS3/4A蛋白酶筛选系统开发出来,本文将对此作一综述。  相似文献   

7.
线粒体抗病毒信号蛋白(MAVS)作为一种接头蛋白在调节宿主天然免疫信号通路过程中扮演重要角色.Toll样受体(TLR)和RIG-Ⅰ样受体(RLR)等细胞模式识别受体识别入侵的病原体并将信号传递给MAVS,MAVS通过刺激下游的TBK1复合体和IKK复合体分别活化NF-κB和IRF3等信号通路,进而激活干扰素α/β表达,诱发细胞内抗感染天然免疫反应.MAVS除定位线粒体外,也可定位于过氧化物酶体上.MAVS在细胞内的不同定位决定了其在早期快速和持续性抗病毒天然免疫中的不同调节机制.MAVS只有同时定位在过氧化物酶体和线粒体上才可诱导干扰素刺激基因(ISG)快速且稳定地表达.本文通过对MAVS的发现、结构、细胞定位及其在天然免疫信号通路中的调控机制等最新进展进行综述,以期揭示MAVS蛋白在细胞内天然免疫信号通路中的重要调节作用,为研究病毒逃逸宿主天然免疫的机制和研究新型抗病毒免疫治疗策略提供新思路.  相似文献   

8.
丙型肝炎病毒(hepatitis C virus,HCV)是一种严重危害人类健康的病原体,全球感染率约3%,中国普通人群抗HCV阳性率约3.2%。然而,到目前为止,HCV感染还没有有效的治疗方法。近年的研究发现,HCV非结构蛋白NS2在HCV感染中扮演着重要角色,具有许多重要功能。NS2可以在HCV病毒的包装过程中发挥其功能,还可调节宿主细胞的基因表达及凋亡过程。此外,NS2蛋自还可参与NS5A磷酸蛋白的高度磷酸化修饰过程及为感染性HCV病毒粒子产生所必需。本文综述近几年来关于NS2蛋白的研究进展。  相似文献   

9.
丙型肝炎病毒(HCV)感染个体后在宿主细胞内长时间保持低水平复制,与慢性肝炎、肝硬化及肝细胞肝癌的发生密切相关.目前,HCV感染后肝细胞发生转化的具体机制还不清楚.非结构蛋白5B(NS5B)是HCV编码的非结构蛋白之一,具有RNA依赖的RNA聚合酶活性(RdRp),是病毒复制所需的关键酶.除参与病毒复制外,NS5B通过...  相似文献   

10.
应用PCR技术从含有丙型肝炎病毒(HCV)全长开放阅读框的质粒pBRTM/HCV1~3011中获得NS5A全长基因片段,利用基因重组技术将其克隆至真核表达载体pcDNA3.1(-)中。通过酶切、PCR及测序鉴定证实,NS5A基因已正确插入到pcDNA3.1(-)中。再利用脂质体介导转染Huh7细胞,30h后收获细胞,经Western blot验证,证实HCV的NS5A基因在Huh7细胞中已经获得表达。在培养条件完全一致的条件下,表达NS5A基因的Huh7细胞与pcDNA3.1(-)转染的细胞在转染30h后被收集起来,乙醇固定,PI染色后利用流式细胞仪检测细胞周期变化。G0/G1期由60.6%下降到49.7%,S期由23.9%上升到32.7%,而转染pcDNA3.1(-)细胞的细胞周期与正常的Huh7细胞则差别不大。从而证明HCV NS5A蛋白对Huh7细胞周期具有调节作用。  相似文献   

11.
Hepatitis C virus (HCV) infection is sensed in the host cell by the cytosolic pathogen recognition receptor RIG-I. RIG-I signaling is propagated through its signaling adaptor protein MAVS to drive activation of innate immunity. However, HCV blocks RIG-I signaling through viral NS3/4A protease cleavage of MAVS on the mitochondrion-associated endoplasmic reticulum (ER) membrane (MAM). The multifunctional HCV NS3/4A serine protease is associated with intracellular membranes, including the MAM, through membrane-targeting domains within NS4A and also at the amphipathic helix α(0) of NS3. The serine protease domain of NS3 is required for both cleavage of MAVS, a tail-anchored membrane protein, and processing the HCV polyprotein. Here, we show that hydrophobic amino acids in the NS3 helix α(0) are required for selective cleavage of membrane-anchored portions of the HCV polyprotein and for cleavage of MAVS for control of RIG-I pathway signaling of innate immunity. Further, we found that the hydrophobic composition of NS3 helix α(0) is essential to establish HCV replication and infection. Alanine substitution of individual hydrophobic amino acids in the NS3 helix α(0) impaired HCV RNA replication in cells with a functional RIG-I pathway, but viral RNA replication was rescued in cells lacking RIG-I signaling. Therefore, the hydrophobic amphipathic helix α(0) of NS3 is required for NS3/4A control of RIG-I signaling and HCV replication by directing the membrane targeting of both viral and cellular substrates.  相似文献   

12.
Understanding the mechanisms of hepatitis C virus (HCV) pathogenesis and persistence has been hampered by the lack of small, convenient animal models. GB virus B (GBV-B) is phylogenetically the closest related virus to HCV. It causes generally acute and occasionally chronic hepatitis in small primates and is used as a surrogate model for HCV. It is not known, however, whether GBV-B has evolved strategies to circumvent host innate defenses similar to those of HCV, a property that may contribute to HCV persistence in vivo. We show here in cultured tamarin hepatocytes that GBV-B NS3/4A protease, but not a related catalytically inactive mutant, effectively blocks innate intracellular antiviral responses signaled through the RNA helicase, retinoic acid-inducible gene I (RIG-I), an essential sensor molecule that initiates host defenses against many RNA viruses, including HCV. GBV-B NS3/4A protease specifically cleaves mitochondrial antiviral signaling protein (MAVS; also known as IPS-1/Cardif/VISA) and dislodges it from mitochondria, thereby disrupting its function as a RIG-I adaptor and blocking downstream activation of both interferon regulatory factor 3 and nuclear factor kappa B. MAVS cleavage and abrogation of virus-induced interferon responses were also observed in Huh7 cells supporting autonomous replication of subgenomic GBV-B RNAs. Our data indicate that, as in the case of HCV, GBV-B has evolved to utilize its major protease to disrupt RIG-I signaling and impede innate antiviral defenses. These data provide further support for the use of GBV-B infection in small primates as an accurate surrogate model for deciphering virus-host interactions in hepacivirus pathogenesis.  相似文献   

13.
Patel MR  Loo YM  Horner SM  Gale M  Malik HS 《PLoS biology》2012,10(3):e1001282
The ability to mount an interferon response on sensing viral infection is a critical component of mammalian innate immunity. Several viruses directly antagonize viral sensing pathways to block activation of the host immune response. Here, we show that recurrent viral antagonism has shaped the evolution of the host protein MAVS--a crucial component of the viral-sensing pathway in primates. From sequencing and phylogenetic analyses of MAVS from 21 simian primates, we found that MAVS has evolved under strong positive selection. We focused on how this positive selection has shaped MAVS' susceptibility to Hepatitis C virus (HCV). We functionally tested MAVS proteins from diverse primate species for their ability to resist antagonism by HCV, which uses its protease NS3/4A to cleave human MAVS. We found that MAVS from multiple primates are resistant to inhibition by the HCV protease. This resistance maps to single changes within the protease cleavage site in MAVS, which protect MAVS from getting cleaved by the HCV protease. Remarkably, most of these changes have been independently acquired at a single residue 506 that evolved under positive selection. We show that "escape" mutations lower affinity of the NS3 protease for MAVS and allow it to better restrict HCV replication. We further show that NS3 proteases from all other primate hepaciviruses, including the highly divergent GBV-A and GBV-C viruses, are functionally similar to HCV. We conclude that convergent evolution at residue 506 in multiple primates has resulted in escape from antagonism by hepaciviruses. Our study provides a model whereby insights into the ancient history of viral infections in primates can be gained using extant host and virus genes. Our analyses also provide a means by which primates might clear infections by extant hepaciviruses like HCV.  相似文献   

14.
Hepatitis C virus (HCV) infection is treated with interferon (IFN)-based therapy. The mechanisms by which IFN suppresses HCV replication are not known, and only limited efficacy is achieved with therapy because the virus directs mechanisms to resist the host IFN response. In the present study we characterized the effects of IFN action upon the replication of two distinct quasispecies of an HCV replicon whose encoded NS5A protein exhibited differential abilities to bind and inhibit protein kinase R (PKR). Metabolic labeling experiments revealed that IFN had little overall effect upon HCV protein stability or polyprotein processing but specifically blocked translation of the HCV RNA, such that the replication of both viral quasispecies was suppressed by IFN treatment of the Huh7 host cells. However, within cells expressing an NS5A variant that inhibited PKR, we observed a reduced level of eukaryotic initiation factor 2 alpha subunit (eIF2alpha) phosphorylation and a concomitant increase in HCV protein synthetic rates, enhancement of viral RNA replication, and a partial rescue of viral internal ribosome entry site (IRES) function from IFN suppression. Assessment of the ribosome distribution of the HCV replicon RNA demonstrated that the NS5A-mediated block in eIF2alpha phosphorylation resulted in enhanced recruitment of the HCV RNA into polyribosome complexes in vivo but only partially rescued the RNA from polyribosome dissociation induced by IFN treatment. Examination of cellular proteins associated with HCV-translation complexes in IFN-treated cells identified the P56 protein as an eIF3-associated factor that fractionated with the initiator ribosome-HCV RNA complex. Importantly, we found that P56 could independently suppress HCV IRES function both in vitro and in vivo, but a mutant P56 that was unable to bind eIF3 had no suppressive action. We conclude that IFN blocks HCV replication through translational control programs involving PKR and P56 to, respectively, target eIF2- and eIF3-dependent steps in the viral RNA translation initiation process.  相似文献   

15.
Hepatitis C virus (HCV) is the cause of one of the most prevalent viral infections worldwide. Upon infection, the HCV genome activates the RIG‐I‐MAVS signalling pathway leading to the production of direct antiviral effectors which prevent important steps in viral propagation. MAVS localizes at peroxisomes and mitochondria and coordinate the activation of an effective antiviral response: peroxisomal MAVS is responsible for a rapid but short‐termed antiviral response, while the mitochondrial MAVS is associated with the activation of a stable response with delayed kinetics. The HCV NS3‐4A protease was shown to specifically cleave the mitochondrial MAVS, inhibiting the downstream response. In this study, we have analysed whether HCV NS3‐4A is also able to cleave the peroxisomal MAVS and whether this would have any effect on the cellular antiviral response. We show that NS3‐4A is indeed able to specifically cleave this protein and release it into the cytosol, a mechanism that seems to occur at a similar kinetic rate as the cleavage of the mitochondrial MAVS. Under these conditions, RIG‐I‐like receptor (RLR) signalling from peroxisomes is blocked and antiviral gene expression is inhibited. Our results also show that NS3‐4A is able to localize at peroxisomes in the absence of MAVS. However, mutation studies have shown that this localization pattern is preferred in the presence of a fully cleavable MAVS. These findings present evidence of a viral evasion strategy that disrupts RLR signalling on peroxisomes and provide an excellent example of how a single viral evasion strategy can block innate immune signalling from different organelles.  相似文献   

16.
17.
18.
The hepatitis C virus NS2/3 protease   总被引:1,自引:0,他引:1  
The hepatitis C virus NS2/3 protein is a highly hydrophobic protease responsible for the cleavage of the viral polypeptide between non-structural proteins NS2 and NS3. However, many aspects of the NS2/3 protease's role in the viral life cycle and mechanism of action remain unknown. Based on the recently elucidated crystal structure of NS2, NS2/3 has been proposed to function as a cysteine protease despite its lack of sequence homology to proteases of known function. In addition, although shown to be required for HCV genome replication and persistent infection in a chimpanzee, the role of NS2/3 cleavage in the viral life cycle has not yet been fully investigated. However, several recent studies are beginning to clarify possible roles of the cleaved NS2 protein in modulation of host cell gene expression and apoptosis.  相似文献   

19.
Studies on hepatitis C virus (HCV) replication have been greatly advanced by the development of cell culture models for HCV known as replicon systems. The prototype replicon consists of a subgenomic HCV RNA in which the HCV structural region is replaced by the neomycin phosphotransferase II (NPTII) gene, and translation of the HCV proteins NS3 to NS5 is directed by the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES). The interferon (IFN)-inducible protein kinase PKR plays an important role in cell defense against virus infection by impairing protein synthesis as a result of eIF-2alpha phosphorylation. Here, we show that expression of the viral nonstructural (NS) and PKR proteins and eIF-2alpha phosphorylation are all variably regulated in proliferating replicon Huh7 cells. In proliferating cells, induction of PKR protein by IFN-alpha is inversely proportional to viral RNA replication and NS protein expression, whereas eIF-2alpha phosphorylation is induced by IFN-alpha in proliferating but not in serum-starved replicon cells. The role of PKR and eIF-2alpha phosphorylation was further addressed in transient-expression assays in Huh7 cells. These experiments demonstrated that activation of PKR results in the inhibition of EMCV IRES-driven NS protein synthesis from the subgenomic viral clone through mechanisms that are independent of eIF-2alpha phosphorylation. Unlike NS proteins, HCV IRES-driven NPTII protein synthesis from the subgenomic clone was resistant to PKR activation. Interestingly, activation of PKR could induce HCV IRES-dependent mRNA translation from dicistronic constructs, but this stimulatory effect was mitigated by the presence of the viral 3' untranslated region. Thus, PKR may assume multiple roles in modulating HCV replication and protein synthesis, and tight control of PKR activity may play an important role in maintaining virus replication and allowing infection to evade the host's IFN system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号