首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The third reading frame of the envelope gene from HIV-1 codes for a protein homologous to the human selenoprotein glutathione peroxidase (GPX). Cells stably or transiently transfected with a HIV-1 GPX construct are protected against the loss of the mitochondrial transmembrane potential and subsequent cell death induced by exogenous reactive oxygen species (ROS) as well as mitochondrion-generated ROS. However, HIV-1 GPX does not confer a general apoptosis resistance, because HIV-1 GPX-transfected cells were not protected against cell death induced by staurosporine or oligomycin. The inhibition of cell death induced by the ROS donor tert-butylhydroperoxide was also observed in cells depleted from endogenous glutathione (GSH), suggesting that GSH is not the sole electron acceptor for HIV-1 GPX. Clinical HIV-1 isolates from long-term non-progressors (untreated patients with diagnosed HIV-1 infection for > 10 years, with CD4 T cell count of > 500 cells/mm3) mostly possess an intact GPX gene (with only 18% of loss-of-function mutations), while HIV-1 isolates from patients developing AIDS contain non-functional GPX mutants in 9 out of 17 cases (53%). Altogether, these data suggest that HIV-1 GPX possesses a cytoprotective, pathophysiologically relevant function.  相似文献   

2.
There is increasing evidence showing dual functions of antioxidant enzymes in coping with reactive oxygen species (ROS) versus reactive nitrogen species (RNS). The objective of this study was to compare the impacts of knockout of Cu, Zn-superoxide dismutase (SOD1) and Se-dependent glutathione peroxidase-1 (GPX1) on cell death and related signaling mediated by acetaminophen (APAP), a RNS inducer in liver. Two groups of young adult knockout mice (SOD1(-/-) and GPX1(-/-)), along with their wild types (WT), were killed 5 hrs after an ip injection of saline or APAP (300 mg/kg body wt). While the WT mice showed more hepatic necrosis and DNA breakage than the GPX1(-/-) mice, the SOD1(-/-) mice had essentially no positive response compared with their saline-injected controls. The APAP treatment activated liver c-jun N-terminal kinase (JNK) in the WT and GPX1(-/-) mice, but not in the SOD1(-/-) mice. The APAP-induced changes in other cell death-related signal proteins such as p21, caspase-3, and poly(ADP-ribose) polymerase (PARP) also were obviated in the SOD1(-/-) mice. In conclusion, knockout of GPX1 did not potentiate APAP-induced cell death and related signaling, whereas the SOD1 null blocked APAP-induced hepatic JNK phosphorylation and cell death.  相似文献   

3.
Fan S  Li L  Chen S  Yu Y  Qi M  Tashiro S  Onodera S  Ikejima T 《Free radical research》2011,45(11-12):1307-1324
Silibinin, as the major active constituent of silymarin, has its various biological effects. Here, we investigated the inhibitory effects of silibinin on HeLa cell growth in relation to autophagy and apoptosis induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. Silibinin dose and time-dependently decreased cell growth cultured in medium containing 10% fetal bovine serum or in serum free media (SFM) with an IC(50) of approximately 80-100 and 40-60 μM at 24 h, respectively. Silibinin induced autophagy at 12 h, confirmed by monodansylcadervarine (MDC) staining and up-regulation of beclin-1, and induced apoptosis at 24 h, detected by observation of apoptotic bodies and activation of caspase-3. 3-methyladenine (3-MA) inhibited silibinin-induced autophagy and attenuated the silibinin's inhibitory effect on cell viability, suggesting that autophagy enhanced silibinin-induced cell death. Silibinin increased ROS levels at 12 h, and ROS scavenger, N-acetylcysteine (NAC), significantly reversed the cytotoxicity of silibinin through inhibiting both autophagy and apoptosis. Specific antioxidants were applied and results indicated that hydroxyl radical (·OH) was the major ROS induced by silibinin, and OH scavenger glutathione (GSH) inhibited apoptosis and autophagy. Silibinin also generated RNS production in the cells at 12 h. High concentration of N omega-nitro-l-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor attenuated the cytotoxicity of silibinin by decreasing ROS levels, leading to down-regulation of apoptosis. Silibinin also could interrupt the respiring functions of mitochondria, leading to ROS production and oxidative damage.  相似文献   

4.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

5.
《Free radical research》2013,47(11-12):1307-1324
Abstract

Silibinin, as the major active constituent of silymarin, has its various biological effects. Here, we investigated the inhibitory effects of silibinin on HeLa cell growth in relation to autophagy and apoptosis induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. Silibinin dose and time-dependently decreased cell growth cultured in medium containing 10% fetal bovine serum or in serum free media (SFM) with an IC50 of approximately 80–100 and 40–60 μM at 24 h, respectively. Silibinin induced autophagy at 12 h, confirmed by monodansylcadervarine (MDC) staining and up-regulation of beclin-1, and induced apoptosis at 24 h, detected by observation of apoptotic bodies and activation of caspase-3. 3-methyladenine (3-MA) inhibited silibinin-induced autophagy and attenuated the silibinin's inhibitory effect on cell viability, suggesting that autophagy enhanced silibinin-induced cell death. Silibinin increased ROS levels at 12 h, and ROS scavenger, N-acetylcysteine (NAC), significantly reversed the cytotoxicity of silibinin through inhibiting both autophagy and apoptosis. Specific antioxidants were applied and results indicated that hydroxyl radical (·OH) was the major ROS induced by silibinin, and OH scavenger glutathione (GSH) inhibited apoptosis and autophagy. Silibinin also generated RNS production in the cells at 12 h. High concentration of N omega-nitro-l-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor attenuated the cytotoxicity of silibinin by decreasing ROS levels, leading to down-regulation of apoptosis. Silibinin also could interrupt the respiring functions of mitochondria, leading to ROS production and oxidative damage.  相似文献   

6.
This study was conducted to determine the impact of knockout of selenium (Se)-dependent glutathione peroxidase-1 (GPX1-/-) or double knockout of GPX1 and copper, zinc (Cu,Zn)-super-oxide dismutase (SOD1) on cell death induced by acetaminophen (APAP) and its major toxic metabolite N-acetyl-P-benzoquinoneimine (NAPQI). Primary hepatocytes were isolated from GPX1-/-, double knockout of GPX1 and SOD1 (DKO), and their wild-type (WT) mice and were treated with 5 mM APAP or 100 microM NAPQI for 0, 6, and 12 hrs. Compared with the WT cells, the GPX1-/- and DKO hepatocytes were more resistant (P < 0.05) to the APAP-induced cell death but less resistant to the NAPQI-induced cell death. The APAP-mediated glutathione (GSH) depletion was greater (P < 0.05) at 6 hrs in the WT cells than in the GPX1-/- and DKO cells, whereas there was no genotype effect on the NAPQI-mediated GSH depletion. The DKO cells had lower (P < 0.05) microsomal cytochrome P450 2E1 activities, but higher (P < 0.05) glutathione reductase and thioredoxin reductase activities than the WT cells at 0 hrs, and they responded differently to the APAP and NAPQI treatments. Glutathione-S-transferase activity was not affected by genotypes or treatments. Neither APAP nor NAPQI induced nitric oxide production or protein nitration in cells of any genotype. However, the GPX1-/- and DKO cells were more resistant to peroxynitrite-mediated protein nitration than were the WT cells. In conclusion, double null of GPX1 and SOD1 enhanced the resistance of mouse primary hepatocytes to APAP toxicity by affecting events prior to or at NAPQI formation. While the double knockout attenuated the peroxynitrite-mediated protein nitration in hepatocytes, no protein nitration was detected in these cells treated with APAP or NAPQI.  相似文献   

7.
Fan S  Yu Y  Qi M  Sun Z  Li L  Yao G  Tashiro S  Onodera S  Ikejima T 《Free radical research》2012,46(9):1082-1092
Silibinin is an active constituent extracted from the blessed milk thistle (Silybum marianum). In a previous study, we demonstrated that silibinin treatment induced the generation of reactive nitrogen species (RNS), which were associated with reactive oxygen species (ROS), and caused apoptosis and autophagy in HeLa cells. Another study reported that silibinin treatment attenuated the apoptotic effect of sodium nitroprusside (SNP) by generating ROS in rat pheochromocytoma PC12 cells [ 1 ]. To clarify the relationship between RNS and nitric oxide (NO) in HeLa cells, we chose SNP as a NO donor to inhibit the cell viability. We found that silibinin treatment did not reduce the cytotoxicity of NO by reducing the ROS-induced RNS levels; conversely, silibinin treatment enhanced the cytotoxicity of NO. Pre-treatment with the NO scavenger PTIO preserved the viability of SNP- or silibinin-treated cells. Buthionine sulfoximine (BSO) treatment was also used to deplete the level of glutathione (GSH) and subsequently enhance the cytotoxicity of NO. Pre-treatment with BSO enhanced the SNP-induced reduction of cell viability but had no such effects in the silibinin-treated cells. These results led us to investigate whether silibinin treatment could induce the depletion of GSH. JNK and p53 have been shown to mediate the depletion of GSH [ 2 , 3 ], and we previously demonstrated the existence of a ROS-JNK-p53 cycle in silibinin-treated HeLa cells [ 4 ]. Thus, we speculated that p53 also plays a crucial role in the silibinin-induced GSH depletion. To elucidate the role of p53 in this process, A431 cells were used because they are naturally devoid of a functional p53 (p53His273 mutation). To our surprise, silibinin treatment did not lower the GSH level in A431 cells but rather elevated the GSH level. Unlike the ROS level, the NO level was still up-regulated by silibinin treatment in A431 cells. Cumulatively, these findings support the idea that the silibinin-induced GSH depletion, which is mediated by p53, enhances the cytotoxicity of NO in HeLa cells.  相似文献   

8.
Oxidative stress results from the imbalance between reactive oxygen species (ROS) and ROS-scavenging molecules. Among them, cytosolic glutathione peroxidase (GPX1) plays a major role as it reduces a large part of intracellular ROS. Endothelial cells are a barrier for potentially aggressive molecules circulating in the blood stream and, therefore, are often under great oxidative stress. Thus, we investigated the potentially protective effects of GPX1 overexpression in the endothelial cell line, ECV304. We found that chronic GPX1 overexpression delays cell growth without affecting viability or decreasing resistance to hydrogen peroxide-induced oxidative stress. As GPX1 overexpression could drain the cellular reduced glutathione (GSH) pool, we also tested the effects of extracellular GSH supplementation on cell growth. Despite its largely referenced beneficial effects for cells, GSH was toxic for ECV304 cells in a dose-dependent manner but GSH-induced toxicity was reduced in selenium supplemented cultures and completely abolished in ECV304 overexpressing GPX1, compared to control. In summary, GPX1 overexpression delays cell growth and protects them from GSH and H(2)O(2) toxicity.  相似文献   

9.
There is mounting evidence implicating the accumulation of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease. Recently, considerable attention has been focused on identifying naturally occurring antioxidants that are able to reduce excess ROS and RNS, thereby protecting against oxidative stress and neuron death. The present study investigated the possible protective effects of piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), which is present in grapes and other foods, on hydrogen-peroxide- and peroxynitrite-induced oxidative cell death. PC12 rat pheochromocytoma (PC12) cells treated with hydrogen peroxide or SIN-1 (a peroxynitrite-generating compound) exhibited apoptotic death, as determined by nucleus condensation and cleavage of poly(ADP-ribose)polymerase (PARP). Piceatannol treatment attenuated hydrogen-peroxide- and peroxynitrite-induced cytotoxicity, apoptotic features, PARP cleavage and intracellular ROS and RNS accumulation. Treatment of PC12 cells with hydrogen peroxide or SIN-1 led to down-regulation of Bcl-X(L) and activation of caspase-3 and -8, which were also inhibited by piceatannol treatment. Hydrogen peroxide or SIN-1 treatment induced phosphorylation of the c-Jun-N-terminal kinase (JNK), which was inhibited by piceatannol treatment. Moreover, SP600125 (a JNK inhibitor) significantly inhibited hydrogen-peroxide- and peroxynitrite-induced PC12 cell death, revealing inactivation of the JNK pathway as a possible molecular mechanism for the protective effects of piceatannol against hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells. Collectively, these findings suggest that the protective effect of piceatannol against hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells is associated with blocking the activation of JNK and the down-regulation of Bcl-XL.  相似文献   

10.
Adiponectin, produced predominantly by differentiating adipocytes, is a protein hormone with antidiabetic and immunosuppressive properties. Here, we report evidence that treatment with globular adiponectin (gAd) induces apoptosis in murine macrophage-like RAW264 cells through the generation of reactive oxygen and/or nitrogen species (ROS/RNS). Treatment with gAd induced apoptosis and enhanced the activities of caspase-3 and -9, but not caspase-8. The gAd stimulation increased ROS generation and significantly reduced the ratio of NADPH to total NADP. Pretreatment with diphenyleneiodonium or apocynin reduced ROS and apoptosis in gAd-treated cells. In addition, transfection with p47(phox)- or gp91(phox)-specific small interfering RNA (siRNA) partially reduced ROS and apoptosis in response to gAd treatment. These results suggest that the administration of gAd induces apoptosis after ROS generation involving activation of NADPH oxidases. The gAd stimulation increased the release of NO into the culture medium, the activity of nitric oxide synthase (NOS), and the expression of inducible NOS (iNOS) mRNA in RAW264 cells. l-NAME reduced gAd-induced apoptotic cell death. In addition, transfection with an iNOS-specific siRNA markedly reduced the generation of NO and the population of apoptotic cells. Taken together, these results demonstrate that the gAd-induced apoptotic process in RAW264 cells involves ROS and RNS, which are generated by NADPH oxidases and iNOS, respectively.  相似文献   

11.
Atmospheric pressure room temperature plasma jets (APRTP-Js) that can emit a mixture of different active species have recently found entry in various medical applications. Apoptosis is a key event in APRTP-Js-induced cellular toxicity, but the exact biological mechanisms underlying remain elusive. Here, we explored the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in APRTP-Js-induced apoptosis using in vitro model of HepG2 cells. We found that APRTP-Js facilitated the accumulation of ROS and RNS in cells, which resulted in the compromised cellular antioxidant defense system, as evidenced by the inactivation of cellular antioxidants including glutathione (GSH), superoxide dismutase (SOD) and catalase. Nitrotyrosine and protein carbonyl content analysis indicated that APRTP-Js treatment caused nitrative and oxidative injury of cells. Meanwhile, intracellular calcium homeostasis was disturbed along with the alteration in the expressions of GRP78, CHOP and pro-caspase12. These effects accumulated and eventually culminated into the cellular dysfunction and endoplasmic reticulum stress (ER stress)-mediated apoptosis. The apoptosis could be markedly attenuated by N-acetylcysteine (NAC, a free radical scavenger), which confirmed the involvement of oxidative and nitrative stress in the process leading to HepG2 cell apoptosis by APRTP-Js treatment.  相似文献   

12.
Both carbon monoxide (CO) and nitric oxide (NO) play fundamental roles in plant responses to environmental stress. Glutathione (GSH) homeostasis through the glutathione-ascorbate cycle regulates the cellular redox status and protects the plant from damage due to reactive oxygen species (ROS) or reactive nitrogen species (RNS). Most recalcitrant seeds are sensitive to chilling stress, but the roles of and cross talk among CO, NO, ROS, and GSH in recalcitrant seeds under low temperature are not well understood. Here, we report that the germination of recalcitrant Baccaurea ramiflora seeds shows sensitivity to chilling stress, but application of exogenous CO or NO markedly increased GSH accumulation, enhanced the activities of antioxidant enzymes involved in the glutathione-ascorbate cycle, decreased the content of H(2)O(2) and RNS, and improved the tolerance of seeds to low-temperature stress. Compared to orthodox seeds such as maize, only transient accumulation of CO and NO was induced and only a moderate increase in GSH was shown in the recalcitrant B. ramiflora seeds. Exogenous CO or NO treatment further increased the GSH accumulation and S-nitrosoglutathione reductase (GSNOR) activity in B. ramiflora seeds under chilling stress. In contrast, suppressing CO or NO generation, removing GSH, or blocking GSNOR activity resulted in increases in ROS and RNS and impaired the germination of CO- or NO-induced seeds under chilling stress. Based on these results, we propose that CO acts as a novel regulator to improve the tolerance of recalcitrant seeds to low temperatures through NO-mediated glutathione homeostasis.  相似文献   

13.
This study investigated the role of glutathione peroxidase-1 (GPX1) in protein oxidation in peritoneal macrophages. Macrophages isolated from both wild-type (WT) and GPX1 knockout (KO) mice were activated by lipopolysaccharide (LPS, 1 microg/ml) and interferon-gamma (IFN, 10 U/ml for 24 or 48 h in the presence or absence of 1 microM diquat (DQ), 250 microM aminoguanidine (AG, an inhibitor of inducible nitric oxide synthase), and (or) 100 microM diethyldithiocarbamate (DETC, an inhibitor of Cu,Zn-SOD). In the KO macrophages, there was no protein band detected by Western blot with anti-GPX1 antibody and 98% reduction in total GPX activity compared with WT cells. Nitric oxide (NO) synthesis was greatly enhanced after 24 h by GPX1 knockout and DQ, but inhibited by AG or DETC. Protein carbonyl formation in total cell extract was clearly associated with NO synthesis as higher levels of protein carbonyl were detected in activated KO than WT macrophages, and DQ enhanced slightly while AG or DETC virtually blocked its formation. A similarly marginal effect of GPX1 KO was observed on protein nitration. The LPS/IFN/DQ-induced DNA fragmentation was blocked by AG, but not by DETC. Cell viability at 48 h was decreased by the LPS/IFN activation and further reduced by the addition of DQ, but restored by AG. In conclusion, GPX1 affects the NO production in activated peritoneal macrophages and protects these cells against NO-associated protein oxidation.  相似文献   

14.
Mouse embryonic fibroblasts derived from Nrf2-/- mice (N0) and Nrf2+/+ mice (WT) have been used to characterize both basal and diquat (DQ)-induced oxidative stress levels and to examine Nrf2 activation during exposure to DQ-generated superoxide anion. Microarray analysis revealed that N0 cells have similar constitutive mRNA expression of genes responsible for the direct metabolism of reactive oxygen species but decreased expression of genes responsible for the production of reducing equivalents, repair of oxidized proteins and defense against lipid peroxidation, compared to WT cells. Nonetheless, the basal levels of ROS flux and oxidative damage biomarkers in WT and N0 cells were not different. Diquat dibromide (DQ), a non-electrophilic redox cycling bipyridylium herbicide, was used to generate intracellular superoxide anion. Isolated mitochondria from both cell lines exposed to DQ produced equivalent amounts of ROS, indicating a similar cellular capacity to generate ROS. However, N0 cells exposed to DQ for 24-h exhibited markedly decreased cell viability and aconitase activity as well as increased lipid peroxidation and glutathione oxidation, relative to WT cells. 2',7'-Dichlorofluorescein fluorescence was not increased in WT and N0 cells after 30-min of DQ exposure. However, increased levels of ROS were detected in N0 cells but not WT cells after 13-h of DQ treatment. Additionally, total glutathione concentrations increased in WT, but not N0 cells following a 24-h exposure to DQ. DQ exposure resulted in activation of an antioxidant response element-luciferase reporter gene, as well as induction of Nrf2-regulated genes in WT, but not N0 cells. Thus the enhanced sensitivity of N0 cells does not reflect basal differences in antioxidative capacity, but rather an impaired ability to mount an adaptive response to sustained oxidative stress.  相似文献   

15.
Airway epithelial cells are constantly exposed to environmental insults such as air pollution or tobacco smoke that may contain high levels of reactive nitrogen and reactive oxygen species. Previous work from our laboratory demonstrated that the reactive oxygen species (ROS), hydrogen peroxide (H(2)O(2)), specifically activates neutral sphingomyelinase 2 (nSMase2) to generate ceramide and induce apoptosis in airway epithelial cells. In the current study we examine the biological consequence of exposure of human airway epithelial (HAE) cells to reactive nitrogen species (RNS). Similar to ROS, we hypothesized that RNS may modulate ceramide levels in HAE cells and induce apoptosis. We found that nitric oxide (NO) exposure via the NO donor papa-NONOate, failed to induce apoptosis in HAE cells. However, when papa-NONOate was combined with a superoxide anion donor (DMNQ) to generate peroxynitrite (ONOO(-)), apoptosis was observed. Similarly pure ONOO(-)-induced apoptosis, and ONOO(-)-induced apoptosis was associated with an increase in cellular ceramide levels. Pretreatment with the antioxidant glutathione did not prevent ONOO(-)-induced apoptosis, but did prevent H(2)O(2)-induced apoptosis. Analysis of the ceramide generating enzymes revealed a differential response by the oxidants. We confirmed our findings that H(2)O(2) specifically activated a neutral sphingomyelinase (nSMase2). However, ONOO(-) exposure did not affect neutral sphingomyelinase activity; rather, ONOO(-) specifically activated an acidic sphingomyelinase (aSMase). The specificity of each enzyme was confirmed using siRNA to knockdown both nSMase2 and aSMase. Silencing nSMase2 prevented H(2)O(2)-induced apoptosis, but had no effect on ONOO(-)-induced apoptosis. On the other hand, silencing of aSMase markedly impaired ONOO(-)-induced apoptosis, but did not affect H(2)O(2)-induced apoptosis. These findings support our hypothesis that ROS and RNS modulate ceramide levels to induce apoptosis in HAE cells. However, we found that different oxidants modulate different enzymes of the ceramide generating machinery to induce apoptosis in airway epithelial cells. These findings add to the complexity of how oxidative stress promotes lung cell injury.  相似文献   

16.
17.
Previous research has suggested that repletion of cellular glutathione peroxidase (GPX1) activity by a single injection of Se was dissociated from the Se protection against the pro-oxidant-induced liver necrosis in Se-deficient rodents. Using the GPX1 knockout (GPX1-/-) mice, TUNEL assay, and apoptosis gene expression microarray, we have demonstrated strikingly different impacts of GPX1 knockout on hepatotoxicity and the related signaling induced by an intraperitoneal injection of 12.5 mg paraquat/kg body weight (b.wt.). In both Se-deficient GPX1-/- and wild-type (WT) mice, the paraquat did not induce typical liver necrosis, rather aponecrosis or necrapoptosis, a syncretic process of cell death sharing characteristics of both apoptosis and necrosis. The severity of liver aponecrosis and the associated mortality were reduced to a much greater extent by an injection of Se (ip, 50 microg/kg b.wt. as Na2SeO3) prior to paraquat stress in the WT mice, compared with the GPX1-/- mice. The induced liver aponecrosis seemed to be more apoptotic in the GPX1-/- mice but more necrotic in the WT mice. The paraquat-mediated gene or protein expression of proapoptotic Bax, Bcl-w, and Bcl-X(S), cell survival/death factors GADD45, MDM2, c-Myc, and caspase-3 was upregulated, but that of antiapoptotic Bcl-2 was downregulated in the GPX1-/- mice vs. the WT mice. Overall, these differences between the two groups of mice were related to a low level of liver GPX1 activity in the WT mice that represented < 4% of the normal physiological level. Therefore, the low level of GPX1 activity in the Se-deficient mice can exert a potent role in defending against liver aponecrosis induced by moderate oxidative stress.  相似文献   

18.
Duan J  Kasper DL 《Glycobiology》2011,21(4):401-409
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are constantly produced and are tightly regulated to maintain a redox balance (or homeostasis) together with antioxidants (e.g. superoxide dismutase and glutathione) under normal physiological circumstances. These ROS/RNS have been shown to be critical for various biological events including signal transduction, aging, apoptosis, and development. Despite the known beneficial effects, an overproduction of ROS/RNS in the cases of receptor-mediated stimulation and disease-induced oxidative stress can inflict severe tissue damage. In particular, these ROS/RNS are capable of degrading macromolecules including proteins, lipids and nucleic acids as well as polysaccharides, and presumably lead to their dysfunction. The purpose of this review is to highlight (1) chemical mechanisms related to cell-free and cell-based depolymerization of polysaccharides initiated by individual oxidative species; (2) the effect of ROS/RNS-mediated depolymerization on the successive cleavage of the glycosidic linkage of polysaccharides by glycoside hydrolases; and (3) the potential biological outcome of ROS/RNS-mediated depolymerization of polysaccharides.  相似文献   

19.
2,4-Dinitrophenol (DNP) is an uncoupler of oxidative phosphorylation in mitochondria. Here, we investigated the in vitro effect of DNP on apoptosis and the involvement of reactive oxygen species (ROS) in As4.1 juxtaglomerular cell death. Dose- and time-dependent induction of apoptosis was evidenced by flow cytometric detection of sub-G1 DNA content and annexin V binding assay. The intracellular H(2)O(2) and O(2)(-) levels were markedly increased in DNP-treated cells. However, the reduction of intracellular H(2)O(2) level by Tiron and catalase did not prevent apoptosis induced by DNP. Moreover, DNP rapidly reduced intracellular GSH content in As4.1 cells. Taken together, apoptosis in DNP-treated As4.1 cells is correlated with the rapid change of intracellular GSH levels rather than ROS levels.  相似文献   

20.
Transketolase-like (TKTL) 1 indirectly replenishes NADPH preventing damage induced by reactive oxygen species (ROS) formed upon intestinal inflammation. We investigated the function of TKTL1 during murine colitis and ROS detoxification for prevention of tissue damage. Mucosal damage in TKTL1(-/-) and wild-type (WT) mice was assessed by miniendoscopy and histology during dextran sodium sulfate (DSS) colitis. mRNA levels of interferon (IFN)-γ, inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumor necrosis factor (TNF), transketolase (TKT), and TKTL2 were determined by PCR and/or Western blotting. To assess oxidative and nitrosative stress nitrosylation, carbonylation and antioxidative enzymes catalase (Cat), superoxide dismutase 1 and 2, as well as glutathione (GSH) were determined. Myeloperoxidase (MPO) was determined for assessment of tissue neutrophils. TKTL1 knockout or DSS treatment did not influence TKT and TKTL2 mRNA or protein expression. Mucosal damage was significantly increased in TKTL1(-/-) mice indicated by miniendoscopy as well as a significantly shorter colon and more severe histological scores compared with WT mice during DSS colitis. This was associated with higher mRNA levels of IFN-γ, iNOS, IL-6, and TNF. In addition, iNOS protein expression was significantly enhanced in TKTL1(-/-) mice as well as MPO activity. Protein modification by nitric oxide (nitrotyrosine) was induced in TKTL1(-/-) mice. However, introduction of carbonyl groups by ROS was not induced in these mice. The expression of SOD1, SOD2, Cat, as well as GSH content was not significantly changed in TKTL1(-/-) mice. We conclude that induced colitis in TKTL1(-/-) mice was more severe compared with WT. This indicates a role of TKTL1 during mucosal repair and restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号