首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinal spreading depression and the extracellular milieu   总被引:1,自引:0,他引:1  
We used isolated chick retina in vitro to study the participation of the extracellular milieu in the occurrence and propagation of spreading depression. The propagation was followed by visual observation or microphotometry and the ionic changes in the extracellular compartment were recorded with double-barreled ion-selective microelectrodes. The front of the spreading wave is accompanied by increased light scattering in the tissue and by decrease of Cl-, Na+, and Ca2+, increase of K+, and an alkaline-acid shift in the extracellular space, concomitant with the slow voltage changes characteristic of the wave. As the spread is related to the chemical steady-state of the extracellular milieu, the velocity of propagation is influenced by a balanced interplay of the chemical constituents of the superfusing solution, e.g., K+, HCO-3, and glucose facilitate, while Cl- and Mg2+ hinder the wave. Steady-state alterations induced by physical factors (temperature) or related to experimental conditions (speed and direction of superfusate flow) change markedly the velocity of propagation. Generally the procedures that cause increase of velocity augment the susceptibility of the preparation to the reaction and eventually may trigger it. Propagated spreading depression is considered as a chemical diffusion reaction pervading more intensively the inner plexiform layer of the retina.  相似文献   

2.
Abstract: The isolated turtle cerebellum was used as a model system to study effects of depolarizing conditions on interstitial ascorbic acid concentration. The depolarizing stimulus was Leão's spreading depression, which is characterized by transient negative extracellular potentials, high potassium levels (20–60 μM), and local depression of neuronal activity. Interstitial concentrations of ascorbate (200–400 μM) and other electroactive species were monitored voltammetrically, using graphite fiber microelectrodes. Total tissue ascorbate (1,810 nmol/g tissue wet weight) was similar to mammalian levels and was several orders of magnitude higher than catecholamine and indoleamine content. During spreading depression, a large (up to 200 μM) increase in concentration of interstitial electroactive species was monitored. Use of Nafion-and ascorbate oxidase-coated electrodes and uricase confirmed that ascorbate was the only substance detected. Simultaneous monitoring of ascorbate, extracellular potential, and extracellular volume (using tetramethylammonium and ion-selective microelectrodes) indicated that (a) the ascorbate increase began with the decrease in extracellular volume during spreading depression, and (b) much of the increase was the result of extracellular volume decrease. In sucrose-substituted medium, in which volume changes are eliminated, a 50 μM increase in interstitial ascorbate, caused by release from intracellular stores, was also seen. The ascorbate concentration increase was prolonged in sucrose medium, suggesting that an uptake process involving sodium may further regulate interstitial ascorbate concentration.  相似文献   

3.
Cortical spreading depression (CSD) waves can occur in the cortices of various brain structures and are associated with the spread of depression of the electroencephalogram signal. In this paper, we present a continuum neuronal model for the instigation and spreading of CSD. Our model assumes that the brain-cell microenvironment can be treated as a porous medium consisting of extra- and intracellular compartments. The main mechanisms in our model for the transport of ions into and out of neurons are cross-membrane ionic currents and (active) pumps, coupled with diffusion in the extracellular space. To demonstrate the applicability of our model, we have carried out extensive numerical simulations under different initial conditions and inclusion of various mechanisms. Our results show that CSD waves can be instigated by injecting cross-membrane ionic currents or by applying KCl in the extracellular space. Furthermore, the estimated speeds of CSD waves are within the experimentally observed range. Effects of specific ion channels, background ion concentrations, extracellular volume fractions, and cell swelling on the propagation speed of CSD are also investigated.  相似文献   

4.
Brain ion homeostasis is severely perturbed during spreading depression of Leao and during anoxia. The ionic composition of the extracellular space changes abruptly and approaches the intracellular concentrations owing to an increase in cell permeability. In spreading depression, synchronous transmitter efflux caused by a depolarization of the presynaptic terminals has been implicated as a possible mechanism that would explain the concomitant movement of ions. Anoxia, having many features in common with spreading depression, may follow the same mechanism. We have measured the concentrations of extracellular potassium with ion-selective microelectrodes and dopamine by in vivo voltammetry with carbon fiber microelectrodes during spreading depression and anoxia to compare the temporal relationship between the release of dopamine and ion movements in the striatum. There is a pronounced release of dopamine during both spreading depression and anoxia. In spreading depression, the sharp increase of potassium concentration that follows an initial smaller and slower increase of potassium is accompanied by the release of dopamine. In anoxia, the dopamine release clearly precedes the fast rise of extracellular potassium concentration. We conclude that in striatum, there is a pronounced dopamine release during spreading depression and anoxia, but that the relationships between ionic changes and transmitter release for these two phenomena are different and probably reflect different mechanisms.  相似文献   

5.
Astrocytes, a special type of glial cells, were considered to have supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by neurotransmitters and use a form of signaling, in which ATP acts as an extracellular messenger. Pathological conditions, such as spreading depression, have been linked to abnormal range of wave propagation in astrocytic cellular networks. Nevertheless, the underlying intra- and inter-cellular signaling mechanisms remain unclear. Motivated by the above, we constructed a model to understand the relationship between single-cell signal transduction mechanisms and wave propagation and blocking in astrocytic networks. The model incorporates ATP-mediated IP3 production, the subsequent Ca2+ release from the ER through IP3R channels and ATP release into the extracellular space. For the latter, two hypotheses were tested: Ca2+- or IP3-dependent ATP release. In the first case, single astrocytes can exhibit excitable behavior and frequency-encoded oscillations. Homogeneous, one-dimensional astrocytic networks can propagate waves with infinite range, while in two dimensions, spiral waves can be generated. However, in the IP3-dependent ATP release case, the specific coupling of the driver ATP-IP3 system with the driven Ca2+ subsystem leads to one- and two-dimensional wave patterns with finite range of propagation.  相似文献   

6.
The current study used measurements of metabolites and markers of membrane integrity to determine the most suitable time point for microdialysis experiments following probe implantation. Leakage of Evans blue and sodium fluorescein indicated increased BBB permeability only immediately (15 min), but not 1.5 and 24 h following probe implantation. Acute implantation decreased glucose and lactate levels relative to the levels after 24 h (to 13–37% and 25–60%, respectively). No change in extracellular levels of glutamate or glycerol was seen. In comparison to acute probe implantation, the pattern of damage under brain ischemia (middle cerebral artery occlusion) differed: While glucose levels dropped, lactate levels rose after ischemia, and glutamate (tenfold) and glycerol (eightfold) increased sharply. In conclusion, acute implantation of a microdialysis probe causes transient depression of the energy metabolites, glucose and lactate, likely due to injury-induced hypermetabolism. However, no massive tissue damage or severe ischemic conditions around the probe occur.  相似文献   

7.
We have isolated a codominant Arabidopsis mutant, radical-induced cell death1 (rcd1), in which ozone (O(3)) and extracellular superoxide (O(2)(*)-), but not hydrogen peroxide, induce cellular O(2)(*)- accumulation and transient spreading lesions. The cellular O(2)(*)- accumulation is ethylene dependent, occurs ahead of the expanding lesions before visible symptoms appear, and is required for lesion propagation. Exogenous ethylene increased O(2)(*)--dependent cell death, whereas impairment of ethylene perception by norbornadiene in rcd1 or ethylene insensitivity in the ethylene-insensitive mutant ein2 and in the rcd1 ein2 double mutant blocked O(2)(*)- accumulation and lesion propagation. Exogenous methyl jasmonate inhibited propagation of cell death in rcd1. Accordingly, the O(3)-exposed jasmonate-insensitive mutant jar1 displayed spreading cell death and a prolonged O(2)(*)- accumulation pattern. These results suggest that ethylene acts as a promoting factor during the propagation phase of developing oxyradical-dependent lesions, whereas jasmonates have a role in lesion containment. Interaction and balance between these pathways may serve to fine-tune propagation and containment processes, resulting in alternate lesion size and formation kinetics.  相似文献   

8.
Inhibitory signaling in the ventral tegmental area (VTA) is involved in the mechanism of action for many drugs of abuse. Although drugs of abuse have been shown to alter extracellular γ-aminobutyric acid (GABA) concentration in the VTA, knowledge on how uptake mechanisms are regulated in vivo is limited. Quantitative (no-net-flux) microdialysis is commonly used to examine the extracellular concentration and clearance of monoamine neurotransmitters, however it is unclear whether this method is sensitive to changes in clearance for amino acid neurotransmitters such as GABA. The purpose of this study was to determine whether changes in GABA uptake are reflected by in vivo extraction fraction within the VTA. Using quantitative (no-net-flux) microdialysis adapted for transient conditions, we examined the effects of local perfusion with the GABA uptake inhibitor, nipecotic acid, in the VTA of Long Evans rats. Basal extracellular GABA concentration and in vivo extraction fraction were 44.4?±?1.9 nM (x-intercepts from 4 baseline regressions using a total of 24 rats) and 0.19?±?0.01 (slopes from 4 baseline regressions using a total of 24 rats), respectively. Nipecotic acid (50 μM) significantly increased extracellular GABA concentration to 170?±?4 nM and reduced in vivo extraction fraction to 0.112?±?0.003. Extraction fraction returned to baseline following removal of nipecotic acid from the perfusate. Conventional microdialysis substantially underestimated the increase of extracellular GABA concentration due to nipecotic acid perfusion compared with that obtained from the quantitative analysis. Together, these results show that inhibiting GABA uptake mechanisms within the VTA alters in vivo extraction fraction measured using microdialysis and that in vivo extraction fraction may be an indirect measure of GABA clearance.  相似文献   

9.
Abstract: The purpose of this study was to establish whether excessive lactate production associated with local application of K+ is reflected at the extracellular level during or after the K+ challenge. Changes in extracellular lactate were continuously monitored by microdialysis coupled to on-line fluorimetric analysis. K+-induced changes in dialysate lactate were closely related to those of the direct current potential. High K+ evoked a large and sustained negative shift of direct current potential onto which were superimposed a variable number of transient peaks of further depolarisation. The initial negative shift in direct current potential was associated with a decrease in dialysate lactate, but after each transient depolarisation, the positive shift in direct current potential indicating cell repolarisation was associated with a marked increase in extracellular lactate. When repetitive transient depolarisations occurred during a stimulus, only a small increase after each depolarisation was observed. However, recordings consistently revealed a marked and rapid increase in extracellular lactate after the K+ stimulus. These data indicate that extracellular lactate mostly increased during periods of repolarisation. This suggests strongly that lactic acid transport out of brain cells may be impaired when their transmembrane ionic gradients are disrupted.  相似文献   

10.
We report the effects exerted by the cortex upon the intralaminar thalamic nucleic, as revealed by reversible blockade of the cortex with spreading depression in awake rats. Extracellular recordings of spontaneous activity were made simultaneously at thalamic and cortical sites. The effect of peripheral receptive field stimulation was to decrease activity of intralaminar thalamic cells. Cortical recordings revealed the cortical regions affected by spreading depression. Two type of cells were identified depending on the changes in their sensorial responses during the cortical spreading depression propagation. The first exhibited a tonic facilitating cortical control when the cortical spreading depression was located at A 8.0 to A 10.0. The second type exhibited a disappearance of the sensorial responses when cortical spreading depression was located at A 4.0 to A 8.0 and also displayed the tonic facilitating control. This indicates that two different identified cortical regions influenced the thalamic activity.  相似文献   

11.
12.
Summary. Taurine and glutamate were monitored by microdialysis technique during various cerebral insults: a. Application of K+ triggered a cortical spreading depression (CSD). Taurine and glutamate increased concomitantly but recovery of glutamate was faster than that of taurine. b. Application of NMDA induced also CSD but only taurine increased. c. Induction of an infarct triggered repetitive CSDs. Taurine increased rapidly whereas glutamate rose slowly starting with some delay. d. After induction of ischemia, taurine and glutamate increased after onset of depolarisation. The increase of glutamate occurred late after a small, transient increase in parallel with the depolarisation. These data suggest a close functional relationship between the changes of both amino acids. Therefore, they should be monitored together especially in clinical settings: during excitation, only taurine will increase; during overexcitation, taurine will also increase but to a higher maximum followed by a moderate rise of glutamate; after energy failure, taurine will accumulate to its highest level followed by a continuous rise of glutamate. Received January 25, 2000/Accepted January 31, 2000  相似文献   

13.
We previously reported a 50% reduction in cortical infarct volume following transient focal cerebral ischemia in rats preconditioned 3 days earlier with cortical spreading depression (CSD). The mechanism of the protective effect of prior CSD remains unknown. Recent studies demonstrate reversal of excitatory amino acid transporters (EAATs) to be a principal cause for elevated extracellular glutamate levels during cerebral ischemia. The present study measured the effect of CSD preconditioning on (a) intraischemic glutamate levels and (b) regulation of glutamate transporters within the ischemic cortex of the rat. Three days following either CSD or sham preconditioning, rats were subjected to 200 min of focal cerebral ischemia, and extracellular glutamate concentration was measured by in vivo microdialysis. Cortical glutamate exposure decreased 70% from 1,772.4 +/- 1,469.2 microM-min in sham-treated (n = 8) to 569.0 +/- 707.8 microM-min in CSD-treated (n = 13) rats (p <0.05). The effect of CSD preconditioning on glutamate transporter levels in plasma membranes (PMs) prepared from rat cerebral cortex was assessed by western blot analysis. Down-regulation of the glial glutamate transporter isoforms EAAT2 and EAAT1 from the PM fraction was observed at 1, 3, and 7 days but not at 0 or 21 days after CSD. Semiquantitative lane analysis showed a maximal decrease of 90% for EAAT2 and 50% for EAAT1 at 3 days post-CSD. The neuronal isoform EAAT3 was unaffected by CSD. This period of down-regulation coincides with the time frame reported for induced ischemic tolerance. These data are consistent with reversal of glutamate transporter function contributing to glutamate release during ischemia and suggest that down-regulation of these transporters may contribute to ischemic tolerance induced by CSD.  相似文献   

14.
Dreier JP 《Nature medicine》2011,17(4):439-447
The term spreading depolarization describes a wave in the gray matter of the central nervous system characterized by swelling of neurons, distortion of dendritic spines, a large change of the slow electrical potential and silencing of brain electrical activity (spreading depression). In the clinic, unequivocal electrophysiological evidence now exists that spreading depolarizations occur abundantly in individuals with aneurismal subarachnoid hemorrhage, delayed ischemic stroke after subarachnoid hemorrhage, malignant hemispheric stroke, spontaneous intracerebral hemorrhage or traumatic brain injury. Spreading depolarization is induced experimentally by various noxious conditions including chemicals such as potassium, glutamate, inhibitors of the sodium pump, status epilepticus, hypoxia, hypoglycemia and ischemia, but it can can also invade healthy, naive tissue. Resistance vessels respond to it with tone alterations, causing either transient hyperperfusion (physiological hemodynamic response) in healthy tissue or severe hypoperfusion (inverse hemodynamic response, or spreading ischemia) in tissue at risk for progressive damage, which contributes to lesion progression. Therapies that target spreading depolarization or the inverse hemodynamic response may potentially treat these neurological conditions.  相似文献   

15.
Microdialysis zero-net-flux (ZNF) method is commonly used to monitor drug-induced changes in neurotransmitter baseline and release/uptake processes. Recent studies in this field suggest that microdialysis ZNF method seriously underestimates the resting concentration of extracellular dopamine in the rat neostriatum because probe implantation preferentially damages nearby dopamine release sites and that dopamine uptake inhibition increases the relative recovery of dopamine by microdialysis. This study assessed the validity of these claims by examining current data on extracellular dopamine levels at rest and after drug application obtained by voltammetry, a technique thought to induce less tissue disruption than microdialysis. To obtain the extracellular baseline value for dopamine from the evoked overflow data, we modified the existing dopamine kinetic model to suit both the resting and stimulated circumstances. It was found that dopamine uptake inhibition did in fact decrease the microdialysis relative recovery of dopamine, implying that the average basal extracellular dopamine level is within the range of 7-20 nm in rat striatum. This study concludes that the microdialysis ZNF method indeed underestimates the extracellular dopamine concentration, although not by as much as had been thought. Chronic microdialysis damages both neurotransmitter release and uptake, but it does so in a somewhat relative and proportional way for both processes. Thus the validity of the microdialysis ZNF method is not seriously undermined.  相似文献   

16.
The early detection and appropriate treatment of brain ischemia is of paramount importance. The interstitial concentrations of neurotransmitter amino acids are often used as an index of neuronal injury. However, monitoring of non-neurotransmitter amino acids may be equally important. We have studied the behavior of 10 amino acids during K+-induced spreading depression (application of 70 mM KCl during 40 min) and global forebrain ischemia (two-vessel occlusion with hypotension during 20 min). The concentrations of glutamate, aspartate, taurine, GABA, glycine, and alanine, measured in the rat striatum by microdialysis, increased during both ischemia and spreading depression, whereas glutamine concentrations decreased in both cases. Only ischemia, but not spreading depression, led to enhanced release of serine, threonine, and asparagine. We thus conclude that an elevation in the interstitial concentrations of non-neurotransmitter amino acids is specific to deep ischemic injury to nervous tissue. We propose the monitoring of serine, asparagine, and threonine, together with excitatory amino acids, as an index of the degree of ischemic brain injury.  相似文献   

17.
Abstract: In the present study, extracellular levels of the neuropeptide cholecystokinin (CCK), of the monoamine dopamine and its metabolites 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and of the excitatory amino acids glutamate and aspartate were simultaneously monitored by microdialysis in the neostriatum of halothane-anesthetized rats under basal and K+-depolarizing conditions. Extracellular CCK and dopamine levels, but not glutamate and aspartate levels, were decreased by perfusion with a Ca2+-free medium, under both basal and K+-depolarizing conditions. HPLC revealed that the majority of the CCK-like immunoreactivity in the perfusates coeluted with CCK octapeptide. Striatal extracellular CCK levels were decreased by decortication plus callosotomy, with a parallel decrease in glutamate levels. Striatal extracellular levels of dopamine, DOPAC., and HVA were significantly decreased in animals treated previously with a unilateral 6-hydroxydopamine injection into the medial forebrain bundle. In these animals, however, the effect of decortication plus callosotomy on CCK and glutamate levels was not further augmented. Thus, this study supports the hypothesis of a neuronal origin of extracellular CCK and dopamine monitored with microdialysis in the striatum of the rat, and also supports the idea of a partly contralateral origin of corticostriatal CCK and glutamate inputs.  相似文献   

18.
It is suggested that norepinephrine (NE) plays a role during transient forebrain ischemia. NE may have a protective action against neuronal cell death in the hippocampus, or it may be one of the causes of injurious ischemic effects. We used the microdialysis technique to study extracellular NE levels in the rat hippocampus before, during, and after 30 min of transient incomplete forebrain ischemia (induced by four-vessel occlusion) to describe the time course of NE in this condition. There was a maximal increase (fivefold) in extracellular NE after 10 min of reflow only when the electroencephalogram was isoelectric. NE levels returned to baseline 40 min after release of the carotid clamps and remained constant for the next 80 min. Thus there appears to be a transient NE overflow in the hippocampus during ischemia, closely related to the complete loss of brain electrical activity.  相似文献   

19.
Cortical spreading depression (CSD) is an intriguing phenomenon consisting of massive slow brain depolarizations that affects neurons and glial cells. It has been recognized since 1944, but its pathogenesis has only been uncovered during the last decade. Acute brain injuries can be further complicated by CSD in > 50% of severe cases. This phenomenon is repetitive and produces a metabolic overload that increments secondary damage. Propagation of CSD is known to be linked to excitotoxicity, but the mechanisms associated with its initiation remain less understood. It has been shown that CSD can be initiated by increases in extracellular [K+] ([K+]e), and animal models use high [K+]e to promote CSD. Connexin hemichannel activity increases due to high [K+]e and low extracellular [Ca2 +], conditions that occur after brain injury. Moreover, glial cell gap junction channels are fundamental in controlling extracellular medium composition, particularly in maintaining normal extracellular glutamate and K+ concentrations through “spatial buffering”. However, the role of astrocytic gap junctions under tissue stress can change to damage spread in the acute damage zone whereas the reduced communication in adjacent zone would reduce cell dead propagation. Here, we review the main findings associated with CSD, and discuss the possible involvement of astrocytic connexin-based channels in secondary damage propagation. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

20.
Abstract: The effect of clinical, spontaneous-onset seizures on extracellular fluid lactate was investigated by the method of lactography, the in vivo on-line measurement of lactate levels using microdialysis. Studies of experimental animals have suggested that generation of extracellular lactate as measured by microdialysis is an index of local glucose utilization and is dependent on the activity of neurons under physiological conditions. Patients with medically refractory complex partial epilepsy underwent stereo-tactic implantation of combination depth electrode/micro-dialysis probes into both hippocampi for 7–16 days. During spontaneous complex partial seizures with secondary generalization, extracellular lactate levels rose by 91 β 32%. Moreover, this increase persisted for 60–90 min. During a unilateral hippocampal seizure that did not propagate to the contralateral hippocampus, the increase in lactate content was restricted to the side of seizure activity. Between seizures, extracellular lactate levels correlated with the frequency of interictal spikes. In summary, these data suggest that brief clinical seizures increase nonoxidative glucose metabolism significantly as measured by the generation of extracellular lactate. Furthermore, the increase in extracellular lactate level is limited to the site of seizure activity. Lactate is transported extracellularly via a lactate/proton cotransporter; therefore, the rise in extracellular lactate level may mediate the drop in pHo associated with seizure activity. As acidification of the extracellular compartment has an inhibitory effect on neuronal excitability, the rise in extracellular lactate content may be a mechanism of seizure arrest and postictal refractoriness. Moreover, extracellular lactate may also mediate the decreased seizure susceptibility associated with frequent interictal spikes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号