首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial phosphoenolpyruvate (PEP):glycose phosphotransferase system (PTS) mediates uptake/phosphorylation of sugars. The transport of all PTS sugars requires Enzyme I (EI) and a phosphocarrier histidine protein of the PTS (HPr). The PTS is stringently regulated, and a potential mechanism is the monomer/dimer transition of EI, because only the dimer accepts the phosphoryl group from PEP. EI monomer consists of two major domains, at the N and C termini (EI-N and EI-C, respectively). EI-N accepts the phosphoryl group from phospho-HPr but not PEP. However, it is phosphorylated by PEP(Mg(2+)) when complemented with EI-C. Here we report that the phosphotransfer rate increases approximately 25-fold when HPr is added to a mixture of EI-N, EI-C, and PEP(Mg(2+)). A model to explain this effect is offered. Sedimentation equilibrium results show that the association constant for dimerization of EI-C monomers is 260-fold greater than the K(a) for native EI. The ligands have no detectable effect on the secondary structure of the dimer (far UV CD) but have profound effects on the tertiary structure as determined by near UV CD spectroscopy, thermal denaturation, sedimentation equilibrium and velocity, and intrinsic fluorescence of the 2 Trp residues. The binding of PEP requires Mg(2+). For example, there is no effect of PEP on the T(m), an increase of 7 degrees C in the presence of Mg(2+), and approximately 14 degrees C when both are present. Interestingly, the dissociation constants for each of the ligands from EI-C are approximately the same as the kinetic (K(m)) constants for the ligands in the complete PTS sugar phosphorylation assays.  相似文献   

2.
Enzyme I of the bacterial phosphoenolpyruvate: glycose phosphotransferase system has 2 tryptophan residues/monomer, as determined spectrophotometrically. The tryptophan fluorescence has been investigated with the aid of nanosecond time-resolved techniques. The decay of the fluorescence intensity was analyzed in terms of a biexponential function. The contribution of the emission associated with the shorter decay constant increases from 17-19% at 1 degree C to 43-44% at room temperature. Decay-associated spectra obtained with Enzyme I indicate different spectral distributions associated with the two decay constants. The measurement of tumbling of Enzyme I as a function of temperature revealed a transition of rotational rates between 5 and 15.5 degrees C. Global analysis allowed decomposition of the anisotropy decay into a formulation consistent with monomer and dimer rotational contributions.  相似文献   

3.
Enzyme I of the bacterial phosphoenolpyruvate:glycose phosphotransferase system (PTS) exhibits a temperature-dependent monomer/dimer equilibrium. The accompanying paper (Han, M. K., Roseman, S., and Brand, L. (1990) J. Biol. Chem. 265, 1985-1995) shows that the C-terminal -SH residue (Cys-575) can be modified specifically with fluorescent probes such as pyrene maleimide. The derivative retains full enzyme activity, and is capable of forming dimers at room temperature. In the present studies, Enzyme I labeled in this way is found to exhibit a temperature-, concentration-, and pH-dependent monomer/dimer association. The kinetics of dimer formation of Enzyme I is measured in the following way. A derivatized Enzyme I sample is prepared with a pyrene moiety irreversibly attached to the C-terminal -SH residue and 5,5'-dithiobis-2-nitrobenzoic acid reversibly attached to the other 3 -SH residues. This modified enzyme does not form dimers at room temperature. Addition of dithiothreitol results in total release of the thionitrobenzoate anion within 2 min. After the three -SH groups are unblocked, steady-state and nanosecond time-resolved emission anisotropy measurements indicate the dimer is formed over a period of 30 min. In a similar experiment, little dimer formation is observed at 3 degrees C, at temperature at which the native enzyme also does not form dimers. Tryptophan fluorescence is also examined during the release of the thionitrobenzoate. After the completion of thionitrobenzoate release, additional slow steady-state tryptophan fluorescence changes are observed. These results suggest that dimer formation may be preceded by a conformational change following thionitrobenzoate release.  相似文献   

4.
Enzyme I, the first in the sequence of phosphocarrier proteins of the bacterial phosphoenolpyruvate:glycose phosphotransferase system, is a potential critical point for regulating sugar uptake. The thermal stability of Enzyme I was studied by high sensitivity differential scanning calorimetry. At pH 7.5, thermal unfolding of the protein exhibits two peaks with maxima (Tm) at 47.6 and 55.1 degrees C, indicating that the protein comprises two cooperative unfolding structures. Interaction between the two domains is markedly dependent on pH within the range 6.5-8.5. At pH 7.5, catalytic activity was unaffected by heating through the first transition but was lost by heating through the second. Cleavage of Enzyme I (63.5 kDa) by trypsin, chymotrypsin, or Staphylococcus aureus V8 protease yields a 30-kDa fragment, EI-N, containing the NH2 terminus and the active site, His-189. Protease and differential scanning calorimetry experiments show that EI-N is the structural domain corresponding to the cooperative region in the intact enzyme that unfolds at the higher Tm. EI-N catalyzes one activity of Enzyme I; it accepts a phosphoryl group from phosphohistidine-containing phosphocarrier protein but cannot be phosphorylated by phospho-Enzyme I or phosphoenolpyruvate. The phosphoryl transfer between EI-N and the histidine-containing phosphocarrier protein is reversible. Portions of the Salmonella typhimurium ptsI DNA sequence are known; the complete sequence is presented here and compared to Escherichia coli ptsI.  相似文献   

5.
The relationship of adenylate cyclase, inorganic orthophosphate and the proteins of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) was studied. A strain deleted for the genes for Enzyme I and IIIglc of the PTS was transformed with plasmids expressing either Enzyme I and HPr, IIIglc or all three proteins. The fully reconstituted strain showed a Pi-dependent stimulation of adenylate cyclase activity; in contrast, the strain expressing only IIIglc showed a Pi-dependent inhibition of adenylate cyclase activity.  相似文献   

6.
Enzyme I is the first protein of the phospho transfer sequence in the bacterial phosphoenolpyruvate:glycose phosphotransferase system. This protein exhibits a temperature-dependent monomer/dimer equilibrium. The nucleotide sequence of Escherichia coli ptsI indicates four -SH residues per subunit (Saffen, D. W., Presper, K. A., Doering, T. L., and Roseman, S. (1987) J. Biol. Chem. 262, 16241-16253). In the present experiments, the sulfhydryl groups of the E. coli enzyme were studied with various -SH-specific reagents. Titration of Enzyme I with 5,5'-dithiobis-2-nitrobenzoic acid also revealed four reacting -SH groups. The kinetics of the 5,5'-dithiobis-2-nitrobenzoic acid reaction with Enzyme I exhibit biphasic character, with pseudo-first order rate constants of 2.3 x 10(-2)/s and 2.3 x 10(-3)/s at pH 7.5, at room temperature. Fractional amplitudes associated with the rate constants were 25 +/- 5% for the fast and 75 +/- 5% for the slow rate. The "slow" rate was influenced by ligands that react with Enzyme I (the protein HPr, Mg2+, Mg2+ plus P-enolpyruvate), and also by temperature (at the temperature range where the monomer/dimer association occurs). The fractional ratio of the two rates remained at 1:3 under these conditions. Thus, under all conditions tested, two classes of -SH groups were detected, one reacting more rapidly than the other three -SH groups. Modification of the "fast" -SH group results in an active enzyme capable of forming dimer, whereas modification of the slow -SH groups results in inactive and monomeric Enzyme I. The enzyme was labeled with pyrene maleimide under conditions where only the more reactive sulfhydryl group was derivatized. Hydrolysis by trypsin followed by reverse-phase high performance liquid chromatography analysis of the peptide mixture resulted in only one fluorescent peak. This peak was not observed when the more reactive sulfhydryl residue was protected prior to pyrene maleimide labeling. Amino acid sequencing of the fluorescent peak indicated that the more reactive residue is the C-terminal amino acid residue, cysteine 575. The results provide a means for selectively labeling Enzyme I with a fluorophore at a single site while retaining full catalytic activity.  相似文献   

7.
N,N'-Diacetylchitobiose is transported/phosphorylated in Escherichia coli by the (GlcNAc)(2)-specific Enzyme II permease of the phosphoenolpyruvate:glycose phosphotransferase system. IIA(Chb), one protein of the Enzyme II complex, was cloned and purified to homogeneity. IIA(Chb) and phospho-IIA(Chb) form stable homodimers (). Phospho-IIA(Chb) behaves as a typical epsilon2-N (i.e. N-3) phospho-His protein. However, the rate constants for hydrolysis of phospho-IIA(Chb) at pH 8.0 unexpectedly increased 7-fold between 25 and 37 degrees C and increased approximately 4-fold with decreasing protein concentration at 37 degrees C (but not 25 degrees C). The data were explained by thermal denaturation studies using CD spectroscopy. IIA(Chb) and phospho-IIA(Chb) exhibit virtually identical spectra at 25 degrees C (approximately 80% alpha-helix), but phospho-IIA(Chb) loses about 30% of its helicity at 37 degrees C, whereas IIA(Chb) shows only a slight change. Furthermore, the T(m) for thermal denaturation of IIA(Chb) was 54 degrees C, only slightly affected by concentration, whereas the T(m) for phospho-IIA(Chb) was much lower, ranging from 40 to 46 degrees C, depending on concentration. In addition, divalent cations (Mg(2+), Cu(2+), and Ni(2+)) have a dramatic and differential effect on the structure, depending on the state of phosphorylation of the protein. Thus, phosphorylation destabilizes IIA(Chb) at 37 degrees C, potentially affecting the monomer/dimer transition, which correlates with its chemical instability at this temperature. The physiological consequences of this phenomenon are briefly considered.  相似文献   

8.
The first two reactions in the phosphotransfer sequence of bacterial phosphoenolpyruvate:glycose phosphotransferase systems are the autophosphorylation of Enzyme I by phosphoenolpyruvate followed by the transfer of the phospho group to the low-molecular weight protein, HPr. Transient state kinetic methods were used to estimate the second-order rate constants for both phosphotransfer reactions. These measurements support previous conclusions that only the dimer of Enzyme I, EI2, is autophosphorylated, and that the rate of formation of dimer is slow compared to the rate of its phosphorylation. The rate constants of the two autophosphorylation reactions of EI2 by PEP are 6.6 x 10(6) M(-1) s(-1), and differ from one another by a factor of less than 3. The rate constant for the transfer reaction between phospho-EI2 and HPr is unusually large for a covalent reaction between two proteins (220 x 10(6) M(-1) s(-1)), while the constant for the reverse reaction is 4.2 x 10(6) M(-1) s(-1). Using the previously reported equilibrium constant for the autophosphorylation reaction, 1.5, the overall equilibrium constant for phosphotransfer from PEP to HPr is 80, somewhat higher than that previously reported. The results also show that EI2 can phosphorylate multiple molecules of HPr without dissociating to a monomer (EI), and that EI can accept a phospho group from phospho-HPr. These results are directly applicable to predicting the rates of phosphoenolpyruvate phosphotransferase system sugar uptake in whole cells.  相似文献   

9.
The activity of enzyme I (EI), the first protein in the bacterial PEP:sugar phosphotransferase system, is regulated by a monomer-dimer equilibrium where a Mg(2+)-dependent autophosphorylation by PEP requires the homodimer. Using inactive EI(H189A), in which alanine is substituted for the active-site His189, substrate-binding effects can be separated from those of phosphorylation. Whereas 1 mM PEP (with 2 mM Mg(2+)) strongly promotes dimerization of EI(H189A) at pH 7.5 and 20 degrees C, 5 mM pyruvate (with 2 mM Mg(2+)) has the opposite effect. A correlation between the coupling of N- and C-terminal domain unfolding, measured by differential scanning calorimetry, and the dimerization constant for EI, determined by sedimentation equilibrium, is observed. That is, when the coupling between N- and C-terminal domain unfolding produced by 0.2 or 1.0 mM PEP and 2 mM Mg(2+) is inhibited by 5 mM pyruvate, the dimerization constant for EI(H189A) decreases from > 10(8) to < 5 x 10(5) or 3 x 10(7) M(-1), respectively. Incubation of the wild-type, dephospho-enzyme I with the transition-state analog phosphonopyruvate and 2 mM Mg(2+) also increases domain coupling and the dimerization constant approximately 42-fold. With 2 mM Mg(2+) at 15-25 degrees C and pH 7.5, PEP has been found to bind to one site/monomer of EI(H189A) with K(A)' approximately 10(6) M(-1) (deltaG' = -8.05 +/- 0.05 kcal/mole and deltaH = +3.9 kcal/mole at 20 degrees C); deltaC(p) = -0.33 kcal K(-1) mole(-1). The binding of PEP to EI(H189A) is synergistic with that of Mg(2+). Thus, physiological concentrations of PEP and Mg(2+) increase, whereas pyruvate and Mg(2+) decrease the amount of dimeric, active, dephospho-enzyme I.  相似文献   

10.
Adenylate cyclase (EC 4.6.1.1) and several carbohydrate permeases are inhibited by D-glucose and other substrates of the phosphoenolpyruvate:sugar phosphotransferase system. These activities are coordinately altered by sugar substrates of the phosphotransferase system in a variety of bacterial strains which contain differing cellular levels of the protein components of the phosphotransferase system: Enzyme I, a small heat-stable protein, and Enzyme II. It is suggested that the activities of adenylate cyclase and the permease proteins are subject to allosteric regulation and that the allosteric effector is a regulatory protein which can be phosphorylated by the phosphotransferase system.  相似文献   

11.
The phosphoenolpyruvate-dependent phosphorylation of glucitol has been shown to require four distinct proteins in Salmonella typhimurium: two general energy-coupling proteins, enzyme I and HPr, and two glucitol-specific proteins, enzyme IIgut and enzyme IIIgut. The enzyme IIgut was solubilized from the membrane and purified about 100-fold, free of the other protein constituents of the phosphotransferase system. Enzyme IIIgut was found in both the soluble and the membrane fractions. The soluble enzyme IIIgut was purified to near homogeneity by gel filtration, hydroxylapatite chromatography, and hydrophobic chromatography on butylagarose. It was sensitive to parital inactivation by trypsin and N-ethylmaleimide, but was stable at 80 degrees C. The protein had an approximate molecular weight of 15,000. It was phosphorylated in the presence of phosphoenolpyruvate, enzyme I, and HPr, and this phosphoprotein was dephosphorylated in the presence of enzyme IIgut and glucitol. Antibodies were raised against enzyme IIIgut. Enzyme IIIglc and enzyme IIIgut exhibited no enzymatic or immunological cross-reactivity. Enzyme IIgut, enzyme IIIgut, and glucitol phosphate dehydrogenase activities were specifically induced by growth in the presence of glucitol. These results serve to characterize the glucitol-specific proteins of the phosphotransferase system in S. typhimurium.  相似文献   

12.
Enzyme I (EI) is the first protein in the phosphotransfer sequence of the bacterial phosphoenolpyruvate:glycose phosphotransferase system. This system catalyzes sugar phosphorylation/transport and is stringently regulated. Since EI homodimer accepts the phosphoryl group from phosphoenolpyruvate (PEP), whereas the monomer does not, EI may be a major factor in controlling sugar uptake. Previous work from this and other laboratories (e.g. Dimitrova, M. N., Szczepanowski, R. H., Ruvinov, S. B., Peterkofsky, A., and Ginsburg A. (2002) Biochem. 41, 906-913), indicate that K(a) is sensitive to several parameters. We report here a systematic study of K(a) determined by sedimentation equilibrium, which showed that it varied by 1000-fold, responding to virtually every parameter tested, including temperature, phosphorylation, pH (6.5 versus 7.5), ionic strength, and especially the ligands Mg(2+) and PEP. This variability may be required for a regulatory protein. Further insight was gained by analyzing EI by sedimentation velocity, by near UV CD spectroscopy, and with a nonphosphorylatable active site mutant, EI-H189Q, which behaved virtually identically to EI. The singular properties of EI are explained by a model consistent with the results reported here and in the accompanying paper (Patel, H. V., Vyas, K. A., Mattoo, R. L., Southworth, M., Perler, F. B., Comb, D., and Roseman, S. (2006) J. Biol. Chem. 281, 17579-17587). We suggest that EI and EI-H189Q each comprise a multiplicity of conformers and progressively fewer conformers as they dimerize and bind Mg(2+) and finally PEP. Mg(2+) alone induces small or no detectable changes in structure, but large conformational changes ensue with Mg(2+)/PEP. This effect is explained by a "swiveling mechanism" (similar to that suggested for pyruvate phosphate dikinase (Herzberg, O., Chen, C. C., Kapadia, G., McGuire, M., Carroll, L. J., Noh, S. J., and Dunaway-Mariano, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 2652-2657)), which brings the C-terminal domain with the two bound ligands close to the active site His(189).  相似文献   

13.
Enzyme I of the bacterial phosphotransferase system catalyzes transfer of the phosphoryl moiety from phosphoenolpyruvate to both of the heat-stable phosphoryl carrier proteins of the phosphotransferase system, HPr and FPr. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-pressure liquid chromatography, we demonstrated the existence of covalently cross-linked enzyme I dimers and trimers. Enzyme I exchange assays and phosphorylation experiments with [32P]phosphoenolpyruvate showed that covalent dimers and trimers are catalytically active. Inhibitors of the enzyme I-catalyzed phosphoenolpyruvate-pyruvate exchange block the phosphorylation of enzyme I dimers and trimers. Inhibition of the activity of enzyme I by N-ethylmaleimide, but not that by p-chloromercuriphenylsulfonate, could be overcome by high concentrations of enzyme, suggesting that N-ethylmaleimide modification changes the associative properties of enzyme I. We present evidence for two distinct classes of sulfhydryl groups in enzyme I.  相似文献   

14.
Carbohydrate uptake and cyclic adenosine 3':5'-monophosphate (cyclic AMP) synthesis were studied employing mutant strains of Escherichia coli in which Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system was heat-labile. Partial loss of Enzyme I activity, which resulted from incubation of cells at the nonpermissive temperature, depressed the rate and extent of methyl alpha-glucoside uptake. Temperature inactivation of Enzyme I also rendered cyclic AMP synthesis and the uptake of several carbohydrates (glycerol, maltose, melibiose, and lactose) hypersensitive to inhibition by methyl alpha-glucoside. Protein synthesis did not appear to be required for these effects. The parental strains and "revertant" strains in which Enzyme I was less sensitive to temperature did not exhibit heat-enhanced regulation. Inhibition was abolished by the crr mutation. The results suggest that Enzyme I functions as a catalytic component of the regulatory system. Simple positive selection procedures are described for the isolation of bacterial mutants which are deficient for either Enzyme I or the heat-stable protein of the phosphotransferase system.  相似文献   

15.
The inducible, mannitol-specific Enzyme II of the phosphoenolpyruvate:sugar phosphotransferase system has been purified approximately 230-fold from Escherichia coli membranes. The enzyme, initially solubilized with deoxycholate, was first subjected to hydrophobic chromatography on hexyl agarose and then purified by several ion exchange steps in the presence of the nonionic detergent, Lubrol PX. The purified protein appears homogeneous by several criteria and probably consists of a single kind of polypeptide chain with a molecular weight of 60,000 (+/- 5%). In addition to catalyzing phosphoenolpyruvate-dependent phosphorylation of mannitol in the presence of the soluble enzymes of the phosphotransferase system, the purified Enzyme II also catalyzes mannitol 1-phosphate:mannitol transphosphorylation in the absence of these components. A number of other physical and catalytic properties of the enzyme are described. The availability of a stable, homogeneous Enzyme II should be invaluable for studying the mechanism of sugar translocation and phosphorylation catalyzed by the bacterial phosphotransferase system.  相似文献   

16.
The mannitol specific Enzyme II of the phosphoenolpyruvate: sugar phosphotransferase system of Escherichia coli catalyzes an exchange reaction in which a phosphoryl moiety is transferred from one molecule of the heat stable phosphocarrier protein HPr to another. An assay was developed for measuring this reaction. Unlabeled phospho-HPr and 125I-labeled free HPr were incubated together in the presence of Enzyme IImtl, and production of 125I-labeled phospho-HPr was measured. The reaction was concentration-dependent with respect to Enzyme IImtl and did not occur in its absence. The reaction occurred in the absence of Mg2+ in the presence of 10 mM EDTA. Treatment of Enzyme IImtl with the histidyl reagent diethylpyrocarbonate inactivated it with respect to the exchange reaction. Levels of N-ethylmaleimide which inactivate Enzyme IImtl with respect to both P-enolpyruvate-dependent phosphorylation of mannitol and mannitol/mannitol-1-P transphosphorylation did not affect its activity in the exchange reaction; however, treatment with another sulfhydryl reagent, p-chloromercuribenzoate, resulted in partial inactivation. The pH optimum for the Enzyme IImtl-catalyzed exchange reaction was about 7.5. Enzyme I and the glucose specific Enzyme III, two other E. coli phosphotransferase system proteins which, like Enzyme IImtl, interact directly with HPr, were also shown to catalyze 125I-HPr/HPr-P phosphoryl exchange.  相似文献   

17.
The genus Vibrio is one of the most common and widely distributed groups of marine bacteria. Studies on the physiology of marine Vibrio species were initiated by examining 15 species for the bacterial phosphoenolpyruvate:glycose phosphotransferase system (PTS). All species tested contained a PTS analogous to the glucose-specific (IIGlc) system in enteric bacteria. Crude extracts of the cells showed immunological cross-reactivity with antibodies to enzyme I, HPr, and IIIGlc from Salmonella typhimurium when assayed by the rocket-line method. Toluene-permeabilized cells of 11 species were tested and were active in phosphorylating methyl alpha-D-glucoside with phosphoenolpyruvate but not ATP as the phosphoryl donor. Membranes from 10 species were assayed, and they phosphorylated methyl alpha-D-glucoside when supplemented with a phospho-IIIGlc-generating system composed of homogeneous proteins from enteric bacteria. Toluene-permeabilized cells and membranes of seven species were assayed, as were phosphorylated fructose and 2-deoxyglucose. IIIGlc was isolated from Vibrio fluvialis and was active in phosphorylating methyl alpha-D-glucoside when supplemented with a phospho-HPr-generating system composed of homogeneous proteins from Escherichia coli and membranes from either E. coli or V. fluvialis. These results show that the bacterial PTS is widely distributed in the marine environment and that it is likely to have a significant role in marine bacterial physiology and in the marine ecosystem.  相似文献   

18.
The bacterial PEP:sugar phosphotransferase system couples the phosphorylation and translocation of specific sugars across the membrane. The activity of the first protein in this pathway, enzyme I (EI), is regulated by a monomer-dimer equilibrium where a Mg(2+)-dependent autophosphorylation by PEP requires the dimer. Dimerization constants for dephospho- and phospho-EI and inactive mutants EI(H189E) and EI(H189A) (in which Glu or Ala is substituted for the active site His189) have been measured under a variety of conditions by sedimentation equilibrium at pH 7.5 and 4 and 20 degrees C. Concurrently, thermal unfolding of these forms of EI has been monitored by differential scanning calorimetry and by changes in the intrinsic tryptophanyl residue fluorescence. Phosphorylated EI and EI(H189E) have 10-fold increased dimerization constants [ approximately 2 x 10(6) (M monomer)(-1)] compared to those of dephospho-EI and EI(H189A) at 20 degrees C. Dimerization is strongly promoted by 1 mM PEP with 2 mM MgCl(2) [K(A)' > or = 10(8) M(-1) at 4 or 20 degrees C], as demonstrated with EI(H189A) which cannot undergo autophosphorylation. Together, 1 mM PEP and 2 mM Mg(2+) also markedly stabilize and couple the unfolding of C- and N-terminal domains of EI(H189A), increasing the transition temperature (T(m)) for unfolding the C-terminal domain by approximately 18 degrees C and that for the N-terminal domain by approximately 9 degrees C to T(max) congruent with 63 degrees C, giving a value of K(D)' congruent with 3 microM PEP at 45 degrees C. PEP alone also promotes the dimerization of EI(H189A) but only increases T(m) approximately 5 degrees C for C-terminal domain unfolding without affecting N-terminal domain unfolding, giving an estimated value of K(D)' congruent with 0.2 mM for PEP dissociation in the absence of Mg(2+) at 45 degrees C. In contrast, the dimerization constant of phospho-EI at 20 degrees C is the same in the absence and presence of 5 mM PEP and 2 mM MgCl(2). Thus, the separation of substrate binding effects from those of phosphorylation by studies with the inactive EI(H189A) has shown that intracellular concentrations of PEP and Mg(2+) are important determinants of both the conformational stability and dimerization of dephospho-EI.  相似文献   

19.
20.
Enzyme I of the bacterial phosphotransferase system can exist in a monomer/dimer equilibrium which may have functional significance. Each monomer contains two tryptophan residues. It is demonstrated that the decay of both the monomer and the dimer can be described by a biexponential. The decay times depend on the temperature and at 6 degrees C the decay times are tau 1 = 0.4 ns and tau 2 = 3.2 ns for the monomer and tau 3 = 3.2 ns and tau 4 = 7.2 ns for the dimer form of the enzyme. The changes in the fluorescence decay parameters can be utilized to measure the equilibrium constant for the monomer/dimer transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号