首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Canonical Wnt/beta-catenin signaling has central roles in development and diseases, and is initiated by the action of the frizzled (Fz) receptor, its coreceptor LDL receptor-related protein 6 (Lrp6), and the cytoplasmic dishevelled (Dvl) protein. The functional relationships among Fz, Lrp6 and Dvl have long been enigmatic. We demonstrated previously that Wnt-induced Lrp6 phosphorylation via glycogen synthase kinase 3 (Gsk3) initiates Wnt/beta-catenin signaling. Here we show that both Fz and Dvl functions are critical for Wnt-induced Lrp6 phosphorylation through Fz-Lrp6 interaction. We also show that axin, a key scaffolding protein in the Wnt pathway, is required for Lrp6 phosphorylation via its ability to recruit Gsk3, and inhibition of Gsk3 at the plasma membrane blocks Wnt/beta-catenin signaling. Our results suggest a model that upon Wnt-induced Fz-Lrp6 complex formation, Fz recruitment of Dvl in turn recruits the axin-Gsk3 complex, thereby promoting Lrp6 phosphorylation to initiate beta-catenin signaling. We discuss the dual roles of the axin-Gsk3 complex and signal amplification by Lrp6-axin interaction during Wnt/beta-catenin signaling.  相似文献   

3.
Ding Y  Xi Y  Chen T  Wang JY  Tao DL  Wu ZL  Li YP  Li C  Zeng R  Li L 《The Journal of cell biology》2008,182(5):865-872
The low-density lipoprotein receptor–related proteins 5 and 6 (LRP5/6) are coreceptors for Frizzled and transmit signals from the plasma membrane to the cytosol. However, the mechanism for LRP5/6 signal transmission remains undefined. Here, we identify cytoplasmic activation/proliferation-associated protein 2 (Caprin-2) as a LRP5/6-binding protein. Our data show that Caprin-2 stabilizes cytosolic β-catenin and enhances lymphoid enhancer-binding factor 1/T cell factor–dependent reporter gene activity as well as the expression of Wnt target genes in mammalian cells. Morpholino-mediated knockdown of Caprin-2 in zebrafish embryos inhibits Wnt/β-catenin signaling and results in a dorsalized phenotype. Moreover, Caprin-2 facilitates LRP5/6 phosphorylation by glycogen synthase kinase 3, and thus enhances the interaction between Axin and LRP5/6. Therefore, Caprin-2 promotes activation of the canonical Wnt signaling pathway by regulating LRP5/6 phosphorylation.  相似文献   

4.
The loss of the SOST gene product sclerostin leads to sclerosteosis characterized by high bone mass. In this report, we found that sclerostin could antagonize canonical Wnt signaling in human embryonic kidney A293T cells and mouse osteoblastic MC3T3 cells. This sclerostin-mediated antagonism could be reversed by overexpression of Wnt co-receptor low density lipoprotein receptor-related protein (LRP) 5. In addition, we found that sclerostin bound to LRP5 as well as LRP6 and identified the first two YWTD-EGF repeat domains of LRP5 as being responsible for the binding. Although these two repeat domains are required for transduction of canonical Wnt signals, canonical Wnt did not appear to compete with sclerostin for binding to LRP5. Examination of the expression of sclerostin and Wnt7b, an autocrine canonical Wnt, during primary calvarial osteoblast differentiation revealed that sclerostin is expressed at late stages of osteoblast differentiation coinciding with the expression of osteogenic marker osteocalcin and trailing after the expression of Wnt7b. Given the plethora of evidence indicating that canonical Wnt signaling stimulates osteogenesis, we believe that the high bone mass phenotype associated with the loss of sclerostin may be attributed, at least in part, to an increase in canonical Wnt signaling resulting from the reduction in sclerostin-mediated Wnt antagonism.  相似文献   

5.
Wnt signaling through the canonical beta-catenin pathway plays essential roles in development and disease. Low-density-lipoprotein receptor-related proteins 5 and 6 (Lrp5 and Lrp6) in vertebrates, and their Drosophila ortholog Arrow, are single-span transmembrane proteins that are indispensable for Wnt/beta-catenin signaling, and are likely to act as Wnt co-receptors. This review highlights recent progress and unresolved issues in understanding the function and regulation of Arrow/Lrp5/Lrp6 in Wnt signaling. We discuss Arrow/Lrp5/Lrp6 interactions with Wnt and the Frizzled family of Wnt receptors, and with the intracellular beta-catenin degradation apparatus. We also discuss the regulation of Lrp5/Lrp6 by other extracellular ligands, and LRP5 mutations associated with familial osteoporosis and other disorders.  相似文献   

6.
Ahn VE  Chu ML  Choi HJ  Tran D  Abo A  Weis WI 《Developmental cell》2011,21(5):862-873
LDL receptor-related proteins 5 and 6 (LRP5/6) are coreceptors for Wnt growth factors, and also bind Dkk proteins, secreted inhibitors of Wnt signaling. The LRP5/6 ectodomain contains four β-propeller/EGF-like domain repeats. The first two repeats, LRP6(1-2), bind to several Wnt variants, whereas LRP6(3-4) binds other Wnts. We present the crystal structure of the Dkk1 C-terminal domain bound to LRP6(3-4), and show that the Dkk1 N-terminal domain binds to LRP6(1-2), demonstrating that a single Dkk1 molecule can bind to both portions of the LRP6 ectodomain and thereby inhibit different Wnts. Small-angle X-ray scattering analysis of LRP6(1-4) bound to a noninhibitory antibody fragment or to full-length Dkk1 shows that in both cases the ectodomain adopts a curved conformation that places the first three repeats at a similar height relative to the membrane. Thus, Wnts bound to either portion of the LRP6 ectodomain likely bear a similar spatial relationship to Frizzled coreceptors.  相似文献   

7.
Current models of canonical Wnt signaling assume that a pathway is active if beta-catenin becomes nuclearly localized and Wnt target genes are transcribed. We show that, in Xenopus, maternal LRP6 is essential in such a pathway, playing a pivotal role in causing expression of the organizer genes siamois and Xnr3, and in establishing the dorsal axis. We provide evidence that LRP6 acts by degrading axin protein during the early cleavage stage of development. In the full-grown oocyte, before maturation, we find that axin levels are also regulated by Wnt11 and LRP6. In the oocyte, Wnt11 and/or LRP6 regulates axin to maintain beta-catenin at a low level, while in the embryo, asymmetrical Wnt11/LRP6 signaling stabilizes beta-catenin and enriches it on the dorsal side. This suggests that canonical Wnt signaling may not exist in simple off or on states, but may also include a third, steady-state, modality.  相似文献   

8.
Wnt and Dickkopf (Dkk) regulate the stabilization of beta-catenin antagonistically in the Wnt signaling pathway; however, the molecular mechanism is not clear. In this study, we found that Wnt3a acts in parallel to induce the caveolin-dependent internalization of low-density-lipoprotein receptor-related protein 6 (LRP6), as well as the phosphorylation of LRP6 and the recruitment of Axin to LRP6 on the cell surface membrane. The phosphorylation and internalization of LRP6 occurred independently of one another, and both were necessary for the accumulation of beta-catenin. In contrast, Dkk1, which inhibits Wnt3a-dependent stabilization of beta-catenin, induced the internalization of LRP6 with clathrin. Knockdown of clathrin suppressed the Dkk1-dependent inhibition of the Wnt3a response. Furthermore, Dkk1 reduced the distribution of LRP6 in the lipid raft fraction where caveolin is associated. These results indicate that Wnt3a and Dkk1 shunt LRP6 to distinct internalization pathways in order to activate and inhibit the beta-catenin signaling, respectively.  相似文献   

9.
Low density lipoprotein receptor-related protein 6 (LRP6) and its homologue LRP5 serve as Wnt co-receptors that are essential for the Wnt/beta-catenin pathway. Wnt activation of LRP6 leads to recruitment of the scaffolding protein Axin and inhibition of Axin-mediated phosphorylation/destruction of beta-catenin. We showed that five conserved PPPSP motifs in the LRP6 intracellular domain are required for LRP6 function, and mutation of these motifs together abolishes LRP6 signaling activity. We further showed that Wnt induces the phosphorylation of a prototypic PPPSP motif, which provides a docking site for Axin and is sufficient to transfer signaling activity to a heterologous receptor. However, the activity, regulation, and functionality of multiple PPPSP motifs in LRP6 have not been characterized. Here we provide a comprehensive analysis of all five PPPSP motifs in LRP6. We define the core amino acid residues of a prototypic PPPSP motif via alanine scanning mutagenesis and demonstrate that each of the five PPPSP motifs exhibits signaling and Axin binding activity in isolation. We generated two novel phosphorylation-specific antibodies to additional PPPSP motifs and show that Wnt induces phosphorylation of these motifs in the endogenous LRP6 through glycogen synthase kinase 3. Finally, we uncover the critical cooperativity of PPPSP motifs in the full-length LRP6 by demonstrating that LRP6 mutants lacking a single PPPSP motif display compromised function, whereas LRP6 mutants lacking two of the five PPPSP motifs are mostly inactive. This cooperativity appears to reflect the ability of PPPSP motifs to promote the phosphorylation of one another and to interact with Axin synergistically. These results establish the critical role and a common phosphorylation/activation mechanism for the PPPSP motifs in LRP6 and suggest that the conserved multiplicity and cooperativity of the PPPSP motifs represents a built-in amplifier for Wnt signaling by the LRP6 family of receptors.  相似文献   

10.
11.
12.
Low‐density lipoprotein receptor‐related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt‐induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture‐based cDNA expression screen, we identified the non‐receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6‐Wnt signalling. Epistatically, they function upstream of β‐catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer‐induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de‐represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over‐activation of Wnt signalling at the level of the Wnt receptor, LRP6.  相似文献   

13.
During regional patterning of the anterior neural plate, a medially positioned domain of cells is specified to adopt retinal identity. These eye field cells remain coherent as they undergo morphogenetic events distinct from other prospective forebrain domains. We show that two branches of the Wnt signaling pathway coordinate cell fate determination with cell behavior during eye field formation. Wnt/beta-catenin signaling antagonizes eye specification through the activity of Wnt8b and Fz8a. In contrast, Wnt11 and Fz5 promote eye field development, at least in part, through local antagonism of Wnt/beta-catenin signaling. Additionally, Wnt11 regulates the behavior of eye field cells, promoting their cohesion. Together, these results allow us to postulate a model in which Wnt11 and Fz5 signaling promotes early eye development through the coordinated antagonism of signals that suppress retinal identity and promotion of coherence of eye field cells.  相似文献   

14.
Specification of embryonic polarity and pattern formation in multicellular organisms requires inductive signals from neighboring cells. One approach toward understanding these interactions is to study mutations that disrupt development. Here, we demonstrate that mesd, a gene identified in the mesoderm development (mesd) deletion interval on mouse chromosome 7, is essential for specification of embryonic polarity and mesoderm induction. MESD functions in the endoplasmic reticulum as a specific chaperone for LRP5 and LRP6, which in conjunction with Frizzled, are coreceptors for canonical WNT signal transduction. Disruption of embryonic polarity and mesoderm differentiation in mesd-deficient embryos likely results from a primary defect in WNT signaling. However, phenotypic differences between mesd-deficient and wnt3(-)(/)(-) embryos suggest that MESD may function on related members of the low-density lipoprotein receptor (LDLR) family, whose members mediate diverse cellular processes ranging from cargo transport to signaling.  相似文献   

15.
16.
Phosphorylation of the Wnt receptor low-density lipoprotein receptor-related protein 6 (LRP6) by glycogen synthase kinase 3β (GSK3β) and casein kinase 1γ (CK1γ) is a key step in Wnt/β-catenin signalling, which requires Wnt-induced formation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). Here, we show that adenomatous polyposis coli membrane recruitment 1 (Amer1) (also called WTX), a membrane associated PtdIns(4,5)P(2)-binding protein, is essential for the activation of Wnt signalling at the LRP6 receptor level. Knockdown of Amer1 reduces Wnt-induced LRP6 phosphorylation, Axin translocation to the plasma membrane and formation of LRP6 signalosomes. Overexpression of Amer1 promotes LRP6 phosphorylation, which requires interaction of Amer1 with PtdIns(4,5)P(2). Amer1 translocates to the plasma membrane in a PtdIns(4,5)P(2)-dependent manner after Wnt treatment and is required for LRP6 phosphorylation stimulated by application of PtdIns(4,5)P(2). Amer1 binds CK1γ, recruits Axin and GSK3β to the plasma membrane and promotes complex formation between Axin and LRP6. Fusion of Amer1 to the cytoplasmic domain of LRP6 induces LRP6 phosphorylation and stimulates robust Wnt/β-catenin signalling. We propose a mechanism for Wnt receptor activation by which generation of PtdIns(4,5)P(2) leads to recruitment of Amer1 to the plasma membrane, which acts as a scaffold protein to stimulate phosphorylation of LRP6.  相似文献   

17.
Glioblastoma (GBM) continues to show a poor prognosis despite advances in diagnostic and therapeutic approaches. The discovery of reliable prognostic indicators may significantly improve treatment outcome of GBM. In this study, we aimed to explore the function of verbascoside (VB) in GBM and its effects on GBM cell biological processes via let-7g-5p and HMGA2. Differentially expressed GBM-related microRNAs (miRNAs) were initially screened. Different concentrations of VB were applied to U87 and U251 GBM cells, and 50 µmol/L of VB was selected for subsequent experiments. Cells were transfected with let-7g-5p inhibitor or mimic, and overexpression of HMGA2 or siRNA against HMGA2 was induced, followed by treatment with VB. The regulatory relationships between VB, let-7g-5p, HMGA2 and Wnt/β-catenin signalling pathway were determined. The results showed that HMGA2 was a direct target gene of let-7g-5p. VB treatment or let-7g-5p overexpression inhibited HMGA2 expression and the activation of Wnt/β-catenin signalling pathway, which further inhibited cell viability, invasion, migration, tumour growth and promoted GBM cell apoptosis and autophagy. On the contrary, HMGA2 overexpression promoted cell viability, invasion, migration, tumour growth while inhibiting GBM cell apoptosis and autophagy. We demonstrated that VB inhibits cell viability and promotes cell autophagy in GBM cells by up-regulating let-7g-5p and down-regulating HMGA2 via Wnt/β-catenin signalling blockade.  相似文献   

18.
BAG-1 (Bcl-2-associated athanogene-1) proteins interact with the HSC70 and HSP70 heat shock proteins and have been proposed to promote cell survival by coordinating the function of these chaperones with the proteasome to facilitate protein degradation. Consistent with this proposal, previous analyses in cancer cells have demonstrated that BAG-1 requires protein domains important for HSC70/HSP70 and proteasome binding in order to interfere with the growth inhibition induced by heat shock (Townsend, P. A., Cutress, R. I., Sharp, A., Brimmell, M., and Packham, G. (2003) Cancer Res., 63, 4150-4157). Moreover, cellular stress triggered the relocalization of the cytoplasmic BAG-1S (approximately 36 kDa) isoform to the nucleus, and both BAG-1S and the constitutively nuclear localized BAG-1L (approximately 50 kDa) isoform suppressed heat shock-induced apoptosis to the same extent, suggesting a critical role in the nucleus. Because ischemia (I) and reperfusion (R) are important stress signals in acute and chronic heart disease, we have examined the expression and function of BAG-1 proteins in primary cardiac myocytes (CMs) and the Langendorff-perfused intact heart. The expression of both BAG-1 isoforms, BAG-1S and BAG-1L, was rapidly induced following ischemia in rat CM, and this was maintained during subsequent reperfusion. In control hearts, BAG-1S and BAG-1L were readily detectable in both the nucleus and the cytoplasm. However, BAG-1S did not relocate to the nucleus following simulated I/R. BAG-1 interacted with both RAF-1 and HSC70 in CMs and the whole heart, and binding to HSC70 was increased following I/R. Overexpression of the human BAG-1S and BAG-1 M isoforms significantly reduced CM apoptosis following simulated I/R. By contrast, BAG-1L or BAG-1S fused to a heterologous nuclear localization sequence failed to protect CM. Finally, overexpression of BAG-1 deletion and point mutants unable to bind HSC70/HSP70 failed to offer cardioprotection. Surprisingly, a deletion mutant lacking the N-terminal ubiquitin-like domain, which mediates interaction with the proteasome, still promoted cardioprotection. Therefore, BAG-1 has a novel cardioprotective role, mediated via association with HSC70/HSP70, which is critical upon cytoplasmic localization but independent of the BAG-1 ubiquitin-like domain. Our studies demonstrate that BAG-1 can influence cellular response to stress by multiple mechanisms, potentially influenced by the cell type and nature of the stress signal.  相似文献   

19.
Sprouty proteins are recently identified receptor tyrosine kinase (RTK) inhibitors potentially involved in many developmental processes. Here, we report that Sprouty proteins become tyrosine phosphorylated after growth factor treatment. We identified Tyr55 as a key residue for Sprouty2 phosphorylation and showed that phosphorylation was required for Sprouty2 to inhibit RTK signaling, because a mutant Sprouty2 lacking Tyr55 augmented signaling. We found that tyrosine phosphorylation of Sprouty2 affected neither its subcellular localization nor its interaction with Grb2, FRS2/SNT, or other Sprouty proteins. In contrast, Sprouty2 tyrosine phosphorylation was necessary for its binding to the Src homology 2-like domain of c-Cbl after fibroblast growth factor (FGF) stimulation. To determine whether c-Cbl was required for Sprouty2-dependent cellular events, Sprouty2 was introduced into c-Cbl-wild-type and -null fibroblasts. Sprouty2 efficiently inhibited FGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 in c-Cbl-null fibroblasts, thus indicating that the FGF-dependent binding of c-Cbl to Sprouty2 was dispensable for its inhibitory activity. However, c-Cbl mediates polyubiquitylation/proteasomal degradation of Sprouty2 in response to FGF. Last, using Src-family pharmacological inhibitors and dominant-negative Src, we showed that a Src-like kinase was required for tyrosine phosphorylation of Sprouty2 by growth factors. Thus, these data highlight a novel negative and positive regulatory loop that allows for the controlled, homeostatic inhibition of RTK signaling.  相似文献   

20.
Human osteoblasts produce interleukin-6 (IL-6) and respond to IL-6 in the presence of soluble IL-6 receptor (sIL-6R), but the cell surface expression of IL-6R and the mechanism of sIL-6R production are largely unknown. Three different human osteoblast-like cell lines (MG-63, HOS, and SaOS-2) and bone marrow-derived primary human osteoblasts expressed both IL-6R and gp130 as determined by flow cytometry and immunoprecipitation. However, the membrane-bound IL-6R was nonfunctional, as significant tyrosine phosphorylation of gp130 did not occur in the presence of IL-6. Phorbol myristate acetate induced a dramatic increase of both IL-6R shedding (i.e. the production of sIL-6R) and IL-6 release in osteoblast cultures, but the cell surface expression of gp130 remained unchanged. IL-6 complexed with sIL-6R, either exogenously introduced or derived from the nonfunctional cell surface form by shedding, induced rapid tyrosine phosphorylation of gp130. This effect was inhibited by neutralizing antibodies to either sIL-6R or gp130, indicating that the gp130 activation was induced by IL-6/sIL-6R/gp130 interaction. Protein kinase C inhibitors blocked phorbol myristate acetate-induced and spontaneous shedding of IL-6R resulting in the absence of sIL-6R in the culture medium, which in turn also prevented the activation of gp130. In conclusion, human osteoblasts express cell surface IL-6R, which is unable to transmit IL-6-induced signals until it is shed into its soluble form. This unique mechanism provides the flexibility for osteoblasts to control their own responsiveness to IL-6 via the activation of an IL-6R sheddase, resulting in an immediate production of functionally active osteoblast-derived sIL-6R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号