首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inactivation of tumor suppressor protein retinoblastoma (Rb) is important mechanism for the G1/S transition during cell cycle progression. Human breast cancer cells T47D release great amount of nitric oxide (NO), but its relation to tumor suppressor Rb is unknown. In this study, it is shown that NO induces phosphorylation and inactivation of Rb tumor suppressor protein, increasing G2/M phase and cell proliferation of breast cancer cells T47D. NO did not induce changes in p53 ser-15 phosphorylation, the most phosphorylated site of p53 during its activation. These data indicate that NO induces cell proliferation through the Rb pathway. NO phosphorylates and inactivates tumor suppressor protein Rb inducing mitosis by the p53 independent pathway in breast cancer cell.  相似文献   

2.
MicroRNA-567 (miR-567) plays a decisive role in cancers whereas its role in non-small cell lung cancer (NSCLC) is still unexplored. This study was therefore planned to explore the regulatory function of miR-567 in A549 NSCLC cells and investigate its possible molecular mechanism that may help in NSCLC treatment. In the current study, miR-567 expression was examined by quantitative real time-polymerase chain reaction (qRT-PCR) in different NSCLC cell lines in addition to normal cell line. A549 NSCLC cells were transfected by miR-567 mimic, miR-567 inhibitor, and negative control siRNA. Cell proliferation was evaluated by MTT and 5-bromo-2′deoxyuridine assays. Cell cycle distribution and apoptosis were studied by flow cytometry. Bioinformatics analysis programs were used to expect the putative target of miR-567. The expression of cyclin-dependent kinase 8 (CDK8) gene at mRNA and protein levels were evaluated by using qRT-PCR and western blotting. Our results found that miR-567 expressions decreased in all the studied NSCLC cells as compared to the normal cell line. A549 cell proliferation was suppressed by miR-567 upregulation while cell apoptosis was promoted. Also, miR-567 upregulation induced cell cycle arrest at sub-G1 and S phases. CDK8 was expected as a target gene of miR-567. MiR-567 upregulation decreased CDK8 mRNA and protein expression while the downregulation of miR-567 increased CDK8 gene expression. These findings revealed that miR-567 may be a tumor suppressor in A549 NSCLC cells through regulating CDK8 gene expression and may serve as a novel therapeutic target for NSCLC treatment.  相似文献   

3.
The retinoblastoma tumor suppressor Rb is regulated by reversible phosphorylation that is dependent upon cyclin-dependent kinase (CDK) and protein phosphatase type 1 (PP1) activity in replicating cells. Hyperphosphorylated Rb allows cells to proliferate, whereas the hypophosphorylated isoform of Rb inhibits proliferation. Of the many phosphorylation sites of Rb, there is functional information available for a very few. In this report, we show that threonine-821 (Thr-821) of Rb is dephosphorylated earlier than other phosphorylation sites when cells are grown under hypoxic conditions which leads to Rb activation and G(1) arrest. This finding is interesting because Thr-821 of Rb remains phosphorylated throughout the cell division cycle in replicating cells. We hypothesized that the phosphorylation state of Thr-821 of Rb may depend on cellular stress. We report in this study that, when nontransformed CV1 epithelial cells and Hs578T breast cancer cells are treated with the chemotherapeutic agent cytosine arabinoside (Ara-C), Thr-821 of Rb is rapidly dephosphorylated concomitant with dissociation of the PP1 regulatory subunit PNUTS (phosphatase nuclear targeting subunit) from PP1 enzyme. These data are consistent with the concept that differential regulation of Rb-directed phosphatase activity exists when cells are progressing through the cell cycle compared to that observed when cells are under stress.  相似文献   

4.
Serine 64 phosphorylation enhances the antiapoptotic function of Mcl-1   总被引:3,自引:0,他引:3  
Mcl-1 is an antiapoptotic Bcl-2 family member that is highly regulated and when dysregulated contributes to cancer. The Mcl-1 protein is phosphorylated at multiple sites in response to different signaling events. Phosphorylations at Thr163 (by ERK) and Ser159 (by glycogen-synthase kinase 3beta) have recently been shown to slow and enhance, respectively, Mcl-1 protein turnover. Phosphorylation is also known to be stimulated at other, as-yet uncharacterized sites in the G2/M phase of the cell cycle. Using an S peptide-tagged Mcl-1 T163A mutant, Ser64 was identified as a novel Mcl-1 phosphorylation site by mass spectrometry. Immunoblotting demonstrated that phosphorylation at this site was maximal in cells in G2/M phase, was enhanced by tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) treatment, was blocked by inhibitors of CDK (but not ERK or glycogen-synthase kinase 3beta), and was stimulated in vitro by CDK 1, CDK2, and JNK1. The half-life of a nonphosphorylatable S64A Mcl-1 mutant was indistinguishable from that of the wild type polypeptide. In contrast, this mutant failed to protect cells from TRAIL-mediated apoptosis, whereas reconstitution with the phosphomimetic S64E Mcl-1 mutant rendered cells TRAIL-resistant. This anti-apoptotic phenotype of the S64E Mcl-1 mutant was also associated with enhanced binding to the proapoptotic proteins Bim, Noxa, and Bak. A pharmacological CDK inhibitor that reduced Ser64 phosphorylation also sensitized cells to TRAIL cytotoxicity. Collectively, these observations not only identify G2/M-associated phosphorylation at Ser64 as a critical determinant of the antiapoptotic activity of Mcl-1 but also elucidate a novel mechanism by which CDK1/2 inhibitors can enhance the effectiveness of the cytotoxic cytokine TRAIL.  相似文献   

5.
The p53 tumor suppressor protein plays key roles in protecting cells from tumorigenesis. Phosphorylation of p53 at Ser46 (p53Ser46) is considered to be a crucial modification regulating p53-mediated apoptosis. Because the activity of p53 is impaired in most human cancers, restoration of wild-type p53 (wt-p53) function by its gene transfer or by p53-reactivating small molecules has been extensively investigated. The p53-reactivating compounds Nutlin-3 and RITA activate p53 in the absence of genotoxic stress by antagonizing the action of its negative regulator Mdm2. Although controversial, Nutlin-3 was shown to induce p53-mediated apoptosis in a manner independent of p53 phosphorylation. Recently, RITA was shown to induce apoptosis by promoting p53Ser46 phosphorylation. Here we examined whether Nutlin-3 or RITA can overcome resistance to p53-mediated apoptosis in p53-resistant tumor cell lines lacking the ability to phosphorylate p53Ser46. We show that Nutlin-3 did not rescue the apoptotic defect of a Ser46 phosphorylation-defective p53 mutant in p53-sensitive tumor cells, and that RITA neither restored p53Ser46 phosphorylation nor induced apoptosis in p53Ser46 phosphorylation-deficient cells retaining wt-p53. Furthermore, treatment with Nutlin-3 or RITA together with adenoviral p53 gene transfer also failed to induce apoptosis in p53Ser46 phosphorylation-deficient cells either expressing or lacking wt-p53. These results indicate that neither Nutlin-3 nor RITA in able to induce p53-mediated apoptosis in the absence of p53Ser46 phosphorylation. Thus, the dysregulation of this phosphorylation in tumor cells may be a critical factor that limits the efficacy of these p53-based cancer therapies.  相似文献   

6.
The retinoblastoma protein Rb is critical for the regulation of mammalian cell cycle entry. Hypophosphorylated Rb is considered to be the active form and directs G1 arrest, while hyperphosphorylated Rb permits the transition from G1 to S phase for cell proliferation. Upon stimulation by various growth factors, Rb appears to be phosphorylated by a cascade of phosphorylation events mediated mainly by kinases associated with cyclins D and E. Here we report that in prototype small intestine crypt stem cells (RIEC-6), stimulation with either epidermal growth factor or fetal bovine serum results in an unexpected rapid and sustained Rb phosphorylation at sites Ser780, Ser795, and Thr821 which precedes cyclin D1 expression, cyclin D1/cdk4 complex formation, and cdk4 kinase activity. Rb phosphorylation at Ser780 and Ser795 is prevented by MEK, but not phosphatidylinositol 3-kinase, inhibitors. In vitro, Rb is directly phosphorylated by active ERK1/2 as shown by [gamma-32P]ATP labeling. The phosphorylation sites are further directed to Ser780 and Ser795 by kinase assays using recombined active ERK1/2 or immunoprecipitated phospho-ERK1/2 from mitogen stimulated cells. Pull-down assays revealed that Rb interacts with active ERK1/2 but not their inactive unphosphorylated forms. Upon EGF stimulation, phosphorylated ERK1/2 co-immunoprecipitates together with phosphorylated Rb. Collectively, these results demonstrate a novel rapid Rb phosphorylation at specific sites induced by mitogen stimulation in epithelial cells of the small intestine. These data specifically identify ERK1/2 as the kinase responsible for Rb phosphorylation targeted to sites Ser780 and Ser795. It appears that ERK1/2 could be an important link between a mitogenic signal directly to Rb, thereby providing a rapid response mechanism between mitogen stimulation and cell cycle machinery.  相似文献   

7.
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen contained in cigarette smoke. NNK significantly contributes to smoking-related lung cancer, but the molecular mechanism remains enigmatic. Bcl2 and c-Myc are two major oncogenic proteins that cooperatively promote tumor development. We report here that NNK simultaneously stimulates Bcl2 phosphorylation exclusively at Ser(70) and c-Myc at Thr(58) and Ser(62) through activation of both ERK1/2 and PKCalpha, which is required for NNK-induced survival and proliferation of human lung cancer cells. Treatment of cells with staurosporine or PD98059 blocks both Bcl2 and c-Myc phosphorylation and results in suppression of NNK-induced proliferation. Specific depletion of c-Myc expression by RNA interference retards G(1)/S cell cycle transition and blocks NNK-induced cell proliferation. Phosphorylation of Bcl2 at Ser(70) promotes a direct interaction between Bcl2 and c-Myc in the nucleus and on the outer mitochondrial membrane that significantly enhances the half-life of the c-Myc protein. Thus, NNK-induced functional cooperation of Bcl2 and c-Myc in promoting cell survival and proliferation may occur in a novel mechanism involving their phosphorylation, which may lead to development of human lung cancer and/or chemoresistance.  相似文献   

8.
9.
The retinoblastoma gene product (Rb) is a tumor suppressor that affects apoptosis paradoxically. Most sporadic cancers inactivate Rb by preferentially targeting the pathway that regulates Rb phosphorylation, resulting in resistance to apoptosis; this contrasts with Rb inactivation by mutation, which is associated with high rates of apoptosis. How phosphorylated Rb protects cells from apoptosis is not well understood, but there is evidence that Rb may sequester a pro-apoptotic nuclear factor. pp32 (ANP32A) is a pro-apoptotic nuclear phosphoprotein, the expression of which is commonly increased in cancer. We report that hyperphosphorylated Rb interacts with pp32 but not with the closely related proteins pp32r1 and pp32r2. We further demonstrate that pp32-Rb interaction inhibits the apoptotic activity of pp32 and stimulates proliferation. These results suggest a mechanism whereby cancer cells gain both a proliferative and survival advantage when Rb is inactivated by hyperphosphorylation.  相似文献   

10.
The Retinoblastoma protein (Rb) is important in the control of cell proliferation and apoptosis. Its activity is controlled by reversible phosphorylation on several serine and threonine residues. When Rb is hypophosphorylated, it inhibits proliferation by preventing passage through the G1- S phase transition. Hyperphosphorylated Rb promotes cell cycle progression. The role of Rb phosphorylation in the control of apoptosis is largely unknown, although several apoptotic stimuli result in dephosphorylation of Rb. It may be that dephosphorylation of specific amino acids signals apoptosis vs. cell cycle arrest. Using glutamic acid mutagenesis, we have generated 15 single phosphorylation site mutants of Rb to alter serine/threonine to glutamic acid to mimic the phosphorylated state. By calcium phosphate transfection, mutant plasmids were introduced into C33A Rb-null cells, and apoptosis was induced using UV. Apoptosis was measured by ELISA detection of degraded DNA and by immunoblotting to assess proteolytic cleavage of PARP. Our results show that only mutation of threonine-821 to glutamic acid (T821E) blocked apoptosis by 50%, whereas other sites tested had little effect. In Rb-null Saos-2 and SKUT-1 cells, the T821E mutation also blocked apoptosis induced by the cdk inhibitor, Roscovitine, by 50%. In addition, we show that endogenous Rb is dephosphorylated on threonine-821 when cells are undergoing apoptosis. Thus, our data indicates that dephosphorylation of threonine-821 of Rb is required for cells to undergo apoptosis.  相似文献   

11.
The Retinoblastoma protein (Rb) is important in the control of cell proliferation and apoptosis. Its activity is controlled by reversible phosphorylation on several serine and threonine residues. When Rb is hypophosphorylated, it inhibits proliferation by preventing passage through the G1- S phase transition. Hyperphosphorylated Rb promotes cell cycle progression. The role of Rb phosphorylation in the control of apoptosis is largely unknown, although several apoptotic stimuli result in dephosphorylation of Rb. It may be that dephosphorylation of specific amino acids signals apoptosis vs. cell cycle arrest. Using glutamic acid mutagenesis, we have generated 15 single phosphorylation site mutants of Rb to alter serine/threonine to glutamic acid to mimic the phosphorylated state. By calcium phosphate transfection, mutant plasmids were introduced into C33A Rb-null cells, and apoptosis was induced using UV. Apoptosis was measured by ELISA detection of degraded DNA and by immunoblotting to assess proteolytic cleavage of PARP. Our results show that only mutation of threonine-821 to glutamic acid (T821E) blocked apoptosis by 50%, whereas other sites tested had little effect. In Rb-null Saos-2 and SKUT-1 cells, the T821E mutation also blocked apoptosis induced by the cdk inhibitor, Roscovitine, by 50%. In addition, we show that endogenous Rb is dephosphorylated on threonine-821 when cells are undergoing apoptosis. Thus, our data indicates that dephosphorylation of threonine-821 of Rb is required for cells to undergo apoptosis.  相似文献   

12.
13.
Regulators of the cell cycle machinery play a major role in modulating a variety of cellular phenomena including proliferation, quiescence, differentiation, senescence and apoptosis. Studies in the past decade have clearly established a role for the retinoblastoma tumor suppressor protein, Rb, and its primary downstream target E2F1, in the above processes. While the role of the Rb protein in the regulation of cell cycle progression has been analyzed in great detail, its potential roles in apoptosis as well as senescence are relatively less studied. It has become increasingly clear that the anti-apoptotic functions of Rb contribute significantly to the genesis and progression of tumors. This is especially relevant in neuronal systems, since terminally differentiated neurons do not proliferate; therefore the normal anti-proliferative functions of Rb in neurons are not very dominant. This chapter describes the current thoughts on the role of Rb function in the apoptosis and senescence of cells, both of neuronal and non-neuronal origin. Recent studies have also addressed how Rb function is differentially modulated by proliferative and apoptotic signals received at the cell surface, though both lead to Rb inactivation. The contribution of Rb to inducing cellular senescence has been long recognized, but the underlying molecular mechanisms are being elucidated only recently; the contribution of this function of Rb to tumor suppression remains to be understood in detail. It can be expected that an understanding of Rb function in cellular apoptosis and senescence will enhance our ability to develop novel agents and strategies to combat cancer.  相似文献   

14.
15.
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.  相似文献   

16.
We have previously shown that protein kinase Cepsilon (PKCepsilon) protects breast cancer cells from tumor necrosis factor-alpha (TNF)-induced cell death. In the present study, we have investigated if the antiapoptotic function of PKCepsilon is mediated via Akt and the mechanism by which PKCepsilon regulates Akt activity. TNF caused a transient increase in Akt phosphorylation at Ser473 in MCF-7 cells. Overexpression of PKCepsilon in MCF-7 cells increased TNF-induced Akt phosphorylation at Ser473 resulting in its activation. Knockdown of PKCepsilon by small interfering RNA (siRNA) decreased TNF-induced Akt phosphorylation/activation and increased cell death. Introduction of constitutively active Akt protected breast cancer MCF-7 cells from TNF-mediated cell death and partially restored cell survival in PKCepsilon-depleted cells. Depletion of Akt in MCF-7 cells abolished the antiapoptotic effect of PKCepsilon on TNF-mediated cell death. Akt was constitutively associated with PKCepsilon and DNA-dependent protein kinase (DNA-PK), and this association was increased by TNF treatment. Overexpression of PKCepsilon enhanced the interaction between Akt and DNA-PK. Knockdown of DNA-PK by siRNA inhibited TNF-induced Akt phosphorylation and the antiapoptotic effect of Akt and PKCepsilon. These results suggest that PKCepsilon activates Akt via DNA-PK to mediate its antiapoptotic function. Furthermore, we report for the first time that DNA-PK can regulate receptor-initiated apoptosis via Akt.  相似文献   

17.
18.
Peutz-Jeghers syndrome is an inherited cancer syndrome that results in a greatly increased risk of developing tumors in those affected. The causative gene is a protein kinase termed LKB1, predicted to function as a tumor suppressor. The mechanism by which LKB1 is regulated in cells is not known. Here, we demonstrate that stimulation of Rat-2 or embryonic stem cells with activators of ERK1/2 or of cAMP-dependent protein kinase induced phosphorylation of endogenously expressed LKB1 at Ser(431). We present pharmacological and genetic evidence that p90(RSK) mediated this phosphorylation in response to agonists that activate ERK1/2 and that cAMP-dependent protein kinase mediated this phosphorylation in response to agonists that activate adenylate cyclase. Ser(431) of LKB1 lies adjacent to a putative prenylation motif, and we demonstrate that full-length LKB1 expressed in 293 cells was prenylated by addition of a farnesyl group to Cys(433). Our data suggest that phosphorylation of LKB1 at Ser(431) does not affect farnesylation and that farnesylation does not affect phosphorylation at Ser(431). Phosphorylation of LKB1 at Ser(431) did not alter the activity of LKB1 to phosphorylate itself or the tumor suppressor protein p53 or alter the amount of LKB1 associated with cell membranes. The reintroduction of wild-type LKB1 into a cancer cell line that lacks LKB1 suppressed growth, but mutants of LKB1 in which Ser(431) was mutated to Ala to prevent phosphorylation of LKB1 were ineffective in inhibiting growth. In contrast, a mutant of LKB1 that cannot be prenylated was still able to suppress the growth of cells.  相似文献   

19.
The PML tumor suppressor controls growth suppression, induction of apoptosis, and cellular senescence. PML loss occurs frequently in hematopoietic and solid tumors. PML loss often correlates with tumor progression. Casein kinase 2 (CK2) is a stress-activated serine/threonine protein kinase that is oncogenic and frequently overexpressed in human tumor of multiple histological origins. In addition, CK2 overexpression due to gene amplification has been reported to be an adverse prognostic factor in non-small cell lung cancer. At the 5th International Conference on Protein Kinase CK2 in Padova, Italy, we reviewed our recent findings that PML undergoes ubiquitin/proteasome-mediated degradation in immortalized and tumor derived cell lines. PML degradation depends on direct CK2 phosphorylation of PML Ser517. PML mutants that are resistant to CK2 phosphorylation display increased tumor suppressive functions in assays measuring apoptosis, replicative senescence, and in xenograft models. More significantly, CK2 pharmacological inhibition enhances PML tumor suppressive property. These data identify a key post-translational mechanism that controls PML protein levels in cancer cells and suggest that CK2 inhibitors may be beneficial anti-cancer drugs.  相似文献   

20.
The Epidermal Growth Factor (EGF) Receptor (EGFR) plays an important role in the growth and progression of breast cancer. Overexpression of EGFR or the high activity of EGFR signal pathway has been related with increases in cell proliferation and a poor prognosis in patients with breast cancer. Several human breast cancer cell lines depend on estrogen for their proliferation. EGF may bypass the requirement of estrogen for the proliferation of breast cancer cells. To evaluate this hypothesis, MCF-7 breast cancer cells were stimulated with EGF and the effects on cell proliferation, signal pathways, and cell cycle progression were determined. The results demonstrate that EGF stimulation in the absence of others growth factors induced a modest effect on cell proliferation and the induction of a cellular arrest in the G1 phase of the cell cycle. Although phosphorylation of AKT and ERK proteins were detected, this phosphorylation was insufficient to support of cell cycle progression. Cellular arrest in G1 phase was accompanied by an increase in p21CIP1 protein, down regulation of the BCL-2 protein, induction of caspase-8, and ARHI/NOEY2 an imprinted tumor suppressor gene. These results indicate that EGFR activation by itself is not sufficient for the proliferation of breast cancer cells and suggest the existence of a mechanism that induces apoptosis upon EGFR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号