首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using density gradient centrifugation and [3H]ryanodine as a specific marker, the ryanodine receptor-Ca2+ release channel complex from Chaps-solubilized canine cardiac sarcoplasmic reticulum (SR) has been purified in the form of an approximately 30 S complex, comprised of Mr approximately 400,000 polypeptides. Purification resulted in a specific activity of approximately 450 pmol bound ryanodine/mg of protein, a 60-70% recovery of ryanodine binding activity, and retention of the high affinity ryanodine binding site (KD = 3 nM). Negative stain electron microscopy revealed a 4-fold symmetric, four-leaf clover structure, which could fill a box approximately 30 x 30 nm and was thus morphologically similar to the SR-transverse-tubule, junctionally associated foot structure. The structural, sedimentation, and ryanodine binding data strongly suggest there is one high affinity ryanodine binding site/30 S complex, comprised of four Mr approximately 400,000 subunits. Upon reconstitution into planar lipid bilayers, the purified complex exhibited a Ca2+ conductance (70 pS in 50 mM Ca2+) similar to that of the native cardiac Ca2+ release channel (75 pS). The reconstituted complex was also found to conduct Na+ (550 pS in 500 mM Na+) and often to display complex Na+ subconducting states. The purified channel could be activated by micromolar Ca2+ or millimolar ATP, inhibited by millimolar Mg2+ or micromolar ruthenium red, and modified to a long-lived open subconducting state by ryanodine. The sedimentation, subunit composition, morphological, and ryanodine binding characteristics of the purified cardiac ryanodine receptor-Ca2+ release channel complex were similar to those previously described for the purified ryanodine receptor-Ca2+ release channel complex from fast-twitch skeletal muscle.  相似文献   

2.
The effect of trypsin digestion on the (i) fragmentation pattern, (ii) activity, (iii) [3H]ryanodine binding, and (iv) sedimentation behavior of the skeletal sarcoplasmic reticulum (SR) ryanodine receptor-Ca2+ release channel complex has been examined. Mild tryptic digestion of heavy, junctional-derived SR vesicles resulted in the rapid disappearance of the high molecular weight (Mr approximately 400,000) Ca2+ release channel protein on sodium dodecyl sulfate gels and appearance of bands of lower Mr upon immunoblot analysis, without an appreciable effect on [3H]ryanodine binding or the apparent S value (30 S) of the 3-[3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps)-solubilized channel complex. Further degradation to bands of Mr greater than 70,000 on immunoblots correlated with a reduction of channel size from 30 S to 10-15 S and loss of high affinity [3H]ryanodine binding to the trypsinized receptor, while low affinity [3H]ryanodine binding and [3H]ryanodine bound prior to digestion were retained. Parallel 45Ca2+ efflux measurements also indicated retention of the Ca2+, Mg2+, and ATP regulatory sites, although Ca2+-induced 45Ca2+ release rates were changed. In planar lipid bilayer-single channel measurements, addition of trypsin to the cytoplasmic side of the high conductance (100 pS in 50 mM Ca2+), Ca2+-activated SR Ca2+ channel initially increased the fraction of channel open time and was followed by a complete and irreversible loss of channel activity. Trypsin did not change the unitary conductance, and was without effect on single channel activity when added to the lumenal side of the channel.  相似文献   

3.
The 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps)-solubilized ryanodine receptor (RyR) of lobster skeletal muscle has been isolated by rate density centrifugation as a 30 S protein complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the purified 30 S receptor revealed a single high molecular weight protein band with a mobility intermediate between those of the mammalian skeletal and cardiac M(r) 565,000 RyR polypeptides. Immunoblot analysis showed no or only minimal cross-reactivity with the rabbit skeletal and canine cardiac RyR polypeptides. By immunofluorescence the lobster RyR was localized to the junctions of the A-I bands. Following planar lipid bilayer reconstitution of the purified 30 S lobster RyR, single channel K+ and Ca2+ currents were observed which were modified by ryanodine and optimally activated by millimolar concentrations of cis (cytoplasmic) Ca2+. Vesicle-45Ca2+ flux measurements also indicated an optimal activation of the lobster Ca2+ channel by millimolar Ca2+, whereas 45Ca2+ efflux from mammalian skeletal and cardiac muscle sarcoplasmic reticulum (SR) vesicles is optimally activated by micromolar Ca2+. Further, mammalian muscle SR Ca2+ release activity is modulated by Mg2+ and ATP, whereas neither ligand appreciably affected 45Ca2+ efflux from lobster SR vesicles. These results suggested that lobster and mammalian muscle express immunologically and functionally distinct SR Ca2+ release channel protein complexes.  相似文献   

4.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified by immunoaffinity chromatography as a single approximately 450,000-Da polypeptide and it was shown to mediate single channel activity identical to that of the ryanodine-treated Ca2+ release channel of the sarcoplasmic reticulum. The purified receptor had a [3H]ryanodine binding capacity (Bmax) of 280 pmol/mg and a binding affinity (Kd) of 9.0 nM. [3H]Ryanodine binding to the purified receptor was stimulated by ATP and Ca2+ with a half-maximal stimulation at 1 mM and 8-9 microM, respectively. [3H]Ryanodine binding to the purified receptor was inhibited by ruthenium red and high concentrations of Ca2+ with an IC50 of 2.5 microM and greater than 1 mM, respectively. Reconstitution of the purified receptor in planar lipid bilayers revealed the Ca2+ channel activity of the purified receptor. Like the native sarcoplasmic reticulum Ca2+ channels treated with ryanodine, the purified receptor channels were characterized by (i) the predominance of long open states insensitive to Mg2+ and ruthenium red, (ii) a main slope conductance of approximately 35 pS and a less frequent 22 pS substate in 54 mM trans-Ca2+ or Ba2+, and (iii) a permeability ratio PBa or PCa/PTris = 8.7. The approximately 450,000-Da ryanodine receptor channel thus represents the long-term open "ryanodine-altered" state of the Ca2+ release channel from sarcoplasmic reticulum. We propose that the ryanodine receptor constitutes the physical pore that mediates Ca2+ release from the sarcoplasmic reticulum of skeletal muscle.  相似文献   

5.
The conduction properties of the alkaline earth divalent cations were determined in the purified sheep cardiac sarcoplasmic reticulum ryanodine receptor channel after reconstitution into planar phospholipid bilayers. Under bi-ionic conditions there was little difference in permeability among Ba2+, Ca2+, Sr2+, and Mg2+. However, there was a significant difference between the divalent cations and K+, with the divalent cations between 5.8- and 6.7-fold more permeant. Single-channel conductances were determined under symmetrical ionic conditions with 210 mM Ba2+ and Sr2+ and from the single-channel current-voltage relationship under bi-ionic conditions with 210 mM divalent cations and 210 mM K+. Single-channel conductance ranged from 202 pS for Ba2+ to 89 pS for Mg2+ and fell in the sequence Ba2+ greater than Sr2+ greater than Ca2+ greater than Mg2+. Near-maximal single-channel conductance is observed at concentrations as low as 2 mM Ba2+. Single-channel conductance and current measurements in mixtures of Ba(2+)-Mg2+ and Ba(2+)-Ca2+ reveal no anomalous behavior as the mole fraction of the ions is varied. The Ca(2+)-K+ reversal potential determined under bi-ionic conditions was independent of the absolute value of the ion concentrations. The data are compatible with the ryanodine receptor channel acting as a high conductance channel displaying moderate discrimination between divalent and monovalent cations. The channel behaves as though ion translocation occurs in single file with at most one ion able to occupy the conduction pathway at a time.  相似文献   

6.
We have reported that the large impermeant organic cations tetrabutyl ammonium (TBA+), tetrapentyl ammonium, and the charged local anesthetic QX314 produce unique reduced conductance states in the purified sheep cardiac sarcoplasmic reticulum Ca2+ release channel when present at the cytoplasmic face of the channel. We have interpreted this as a form of partial occlusion by the blocking cation in wide vestibules of the conduction pathway. Following modification with ryanodine, which causes the channel to enter a reduced conductance state with long open dwell time, these cations block the receptor channel to a level that is indistinguishable from the closed state. The voltage dependence of TBA+'s interaction with the Ca2+ release channel is the same before and after ryanodine modification. The concentration dependence is different, in that the ryanodine-modified channel has one-third the affinity for TBA+, which is accounted for predominantly by changes in the TBA+ on rate. The data are compatible with a structural change in the vestibule of the conduction pathway consequent upon ryanodine binding that reduces the capture radius for blocking ion entry.  相似文献   

7.
A region in the skeletal muscle ryanodine receptor between amino acids 4014 and 4765 was expressed as a trpE fusion protein. Overlay studies revealed that this region bound Ca2+ and ruthenium red, an indicator of Ca(2+)-binding sites. Ca2+ binding was mapped to subregion 13b between amino acids 4246 and 4377, encompassing a predicted high affinity Ca(2+)-binding site, and to subregion 13c between amino acids 4364 and 4529, encompassing two predicted high affinity Ca(2+)-binding sites. Ca2+ binding was then mapped to three shorter sequences, 22(13b1), 36(13c1), and 35(13c2), amino acids long, each encompassing one of the three predicted Ca(2+)-binding sites. Site-directed polyclonal antibodies were raised against these three short sequences and purified on antigen affinity columns. The antibody against sequence 13c2, lying between residues 4478 and 4512, specifically recognized both denatured and native forms of the ryanodine receptor, suggesting that at least part of the 35 amino acid sequence containing the Ca(2+)-binding site is surface-exposed. The affinity purified antibody increased the Ca2+ sensitivity of ryanodine receptor channels incorporated into planar lipid bilayers, resulting in increased open probability and opening time without altering channel conductance. The antibody-activated channel was still modulated by Ca2+, Mg2+, ATP, ryanodine, and ruthenium red. These observations suggest that sequence 13c2 may be involved in Ca(2+)-induced Ca2+ release.  相似文献   

8.
(-)-[3H]Desmethoxyverapamil ((-)-DMV) binds saturably to homogenates of the osteoblast-like cell lines UMR 106 and ROS 17/2.8 with KD values of 45 and 61 nM and Bmax values of 6.0 and 5 pmol/mg protein, respectively. Binding is stereoselective with (-)-DMV 8-10 times more potent than (+)-DMV. None of the dihydropyridine or benzothiazepine Ca2+ antagonists examined affect (-)-[3H]DMV binding. Monovalent cations such as Li+, Na+, and K+ inhibit (-)[3H]DMV binding in the 100-400 mM range. Divalent cations such as Ba2+, Sr2+, Ca2+, and Mg2+ are effective binding inhibitors in the 2-5 mM range. ROS 17/2.8 cells express a channel on the apical plasma membrane which conducts Ba2+ and Ca2+. With 110 mM BaCl2 or CaCl2 as charge carriers the single channel conductance is 3-5 picosiemens. In cell-excised patches the channel selects for Ba2+ over Na+ 3.3:1. In the absence of divalent ions the channel conducts Na+ ions with a single channel conductance of 13 picosiemens. This Na+ conductance decreases with physiological levels of Ca2+. The channel appears related to the (-)-[3H]DMV binding site, since its conductance is blocked by verapamil in a dose-dependent manner. Moreover, DMV blocks the channel stereoselectively with relative potencies of the isomers corresponding to their affinities for the binding site. The dihydropyridine drugs BAY K 8644 or (+)-202-791 do not affect channel opening. These binding and biophysical data indicate that osteoblast cells have a phenylalkylamine receptor associated with a Ca2+ channel.  相似文献   

9.
The solubilized [3H]ryanodine receptor from cardiac sarcoplasmic reticulum was centrifuged through linear sucrose gradients. A single peak of radioactivity with apparent sedimentation coefficient of approximately 30S specifically comigrated with a high molecular weight protein of apparent relative molecular mass approximately 400,000. Incorporation of the ryanodine receptor into lipid bilayers induced single Ca2+ channel currents with conductance and kinetic behavior almost identical to that of native cardiac Ca2+ release channels. These results suggest that the cardiac ryanodine receptor comprises the Ca2+ release channel involved in excitation-contraction coupling in cardiac muscle.  相似文献   

10.
A Tripathy  L Xu  G Mann    G Meissner 《Biophysical journal》1995,69(1):106-119
The calmodulin-binding properties of the rabbit skeletal muscle Ca2+ release channel (ryanodine receptor) and the channel's regulation by calmodulin were determined at < or = 0.1 microM and micromolar to millimolar Ca2+ concentrations. [125I]Calmodulin and [3H]ryanodine binding to sarcoplasmic reticulum (SR) vesicles and purified Ca2+ release channel preparations indicated that the large (2200 kDa) Ca2+ release channel complex binds with high affinity (KD = 5-25 nM) 16 calmodulins at < or = 0.1 microM Ca2+ and 4 calmodulins at 100 microM Ca2+. Calmodulin-binding affinity to the channel showed a broad maximum at pH 6.8 and was highest at 0.15 M KCl at both < or = 0.1 MicroM and 100 microM Ca2+. Under condition closely related to those during muscle contraction and relaxation, the half-times of calmodulin dissociation and binding were 50 +/- 20 s and 30 +/- 10 min, respectively. SR vesicle-45Ca2+ flux, single-channel, and [3H]ryanodine bind measurements showed that, at < or = 0.2 microM Ca2+, calmodulin activated the Ca2+ release channel severalfold. Ar micromolar to millimolar Ca2+ concentrations, calmodulin inhibited the Ca(2+)-activated channel severalfold. Hill coefficients of approximately 1.3 suggested no or only weak cooperative activation and inhibition of Ca2+ release channel activity by calmodulin. These results suggest a role for calmodulin in modulating SR Ca2+ release in skeletal muscle at both resting and elevated Ca2+ concentrations.  相似文献   

11.
We report transient expression of a full-length cDNA encoding the Ca2+ release channel of rabbit skeletal muscle sarcoplasmic reticulum (ryanodine receptor) in HEK-293 cells. The single-channel properties of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate-solubilized and sucrose gradient-purified recombinant Ca2+ release channels were investigated by using single-channel recordings in planar lipid bilayers. The recombinant Ca2+ release channel exhibited a K+ conductance of 780 pS when symmetrical 250 mM KCl was used as the conducting ion and a Ca2+ conductance of 116 pS in 50 mM luminal Ca2+. Opening events of the recombinant channels were brief, with an open time constant of approximately 0.22 ms. The recombinant Ca2+ release channel was more permeable to Ca2+ than to K+, with a pCa2+/pK+ ratio of 6.8. The response of the recombinant Ca2+ release channel to various concentrations of Ca2+ was biphasic, with the channel being activated by micromolar Ca2+ and inhibited by millimolar Ca2+. The recombinant channels were activated by ATP and caffeine, inhibited by Mg2+ and ruthenium red, and modified by ryanodine. Most recombinant channels were asymmetrically blocked, conducting current unidirectionally from the luminal to the cytoplasmic side of the channel. These data demonstrate that the properties of recombinant Ca2+ release channel expressed in HEK-293 cells are very similar, if not identical, to those of the native channel.  相似文献   

12.
The subunit structure of the rabbit skeletal muscle ryanodine receptor-Ca2+ release channel complex was examined following solubilization of heavy sarcoplasmic reticulum membranes in two zwitterionic detergents, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (Chaps) and Zwittergent 3-14. High and low affinity [3H]ryanodine binding was retained upon solubilization of the complex in Chaps but was lost in Zwittergent 3-14. The purified complex migrated as a single peak with an apparent sedimentation coefficient of approximately 30 and approximately 9 S upon density gradient centrifugation and with isoelectric points of 3.7 and 3.9 upon two-dimensional gel electrophoresis in Chaps and Zwittergent 3-14, respectively. Electron microscopy of negatively stained samples indicated that the distinct four-leaf clover structure of the ryanodine receptor observed in Chaps disappeared following Zwittergent treatment of the 30 S complex and instead showed smaller, round particles. Ferguson plot analysis following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of partial and fully cross-linked and incompletely denatured complexes suggested a stoichiometry of four Mr approximately 400,000 peptides/30 S ryanodine receptor oligomer. [3H]Ryanodine binding to the membrane-bound receptor in 50 microM--1 mM free Ca2+ revealed the presence of both high affinity (KD = 8 nM, Hill coefficient (nH) = 0.9) and low affinity (nH approximately 0.45) sites with a ratio of 1:3. Reduction in free Ca2+ to less than or equal to 0.1 microM or trypsin digestion of the membranes resulted in loss of high affinity but not low affinity ryanodine binding (Hill KD = 5,000 nM, nH = 0.9). Addition of 20 mM caffeine to the nanomolar Ca2+ medium decreased the Hill KD to 1,000 nM without changing the Hill coefficient. Occupation of the low affinity sites altered the rate of [3H]ryanodine dissociation from the high affinity sites. Single channel recordings of the purified ryanodine receptor channel incorporated into planar lipid bilayers also indicated the existence of high and low affinity sites for ryanodine, occupation of which resulted in formation of a subconducting and completely closed state of the channel, respectively. These results are compatible with a subunit structural model of the 30 S ryanodine receptor-Ca2+ release channel complex which comprises a homotetramer of negatively charged and allosterically coupled polypeptides of Mr approximately 400,000.  相似文献   

13.
The purified ryanodine receptor of heart sarcoplasmic reticulum (SR) has been reconstituted into planar phospholipid bilayers and found to form Ca2+-specific channels. The channels are strongly activated by Ca2+ (10 nM) in the presence of ATP (1 mM) and ryanodine, and inactivated by Mg2+ (3 mM) or ruthenium red (30 microM). These characteristics are diagnostic of calcium release from heart SR. The cardiac ryanodine receptor, which has previously been identified as the foot structure, is now identified as the calcium release channel. A similar identity of the calcium release channel has recently been reported for skeletal muscle. The characteristics of the calcium release channel from skeletal muscle and heart are similar in that they: 1) consist of an oligomer of a single high molecular weight polypeptide (Mr 360,000 for skeletal muscle and 340,000 for heart); 2) exist morphologically as the foot structure; 3) are activated (ATP, Ca2+, ryanodine) and inhibited (ruthenium red and Mg2+) by a number of the same ligands. Important differences include: 1) Ca2+ activation at lower concentration of Ca2+ for the heart; 2) more dramatic stabilization by ryanodine of the open state for the skeletal muscle channel; and 3) different relative permeabilities (PCa/PK).  相似文献   

14.
The contraction of hepatic endothelial cell fenestrae after exposure to serotonin is associated with an increase in intracellular Ca2+ which is derived from extracellular Ca2+, is inhibited by pertussis toxin and is not associated with activation of phosphoinositol turnover or cAMP. Using cell-attached and excised patches in primary cultures of rat hepatic endothelial cells, we identified a serotonin-activated channel with conductance of 26.4+/-2.3 pS. The channel was also permeant to Na+, K+ and Ca++ but not to anions. In cell-attached patch recordings, addition of serotonin to the bath significantly increased channel activity with Ca2+ or Na+ as the charge-carrying ions. This channel provides a mechanism whereby serotonin can raise the cytosolic Ca2+ concentration in hepatic endothelial cells.  相似文献   

15.
1. Reabsorption of NaCl in the thick ascending limb of Henle's loop involves the integrated function of the Na+,K+,Cl- -cotransport system and a Ca2+-activated K+ channel in the luminal membrane with the Na+,K+-pump and a net Cl- conductance in the basolateral membrane. 2. Assay of K+ channel activity after reconstitution into phospholipid vesicles shows that the K+ channel is stimulated by Ca2+ in physiological concentrations and that its activity is regulated by calmodulin and phosphorylation from cAMP dependent protein kinase. 3. For purification luminal plasma membrane vesicles are isolated and solubilized in CHAPS. K+ channel protein is isolated by affinity chromatography on calmodulin columns. The purified protein has high Ca2+-activated K+ channel activity after reconstitution into vesicles. 4. The purified K+ channel consists of two proteins of 51 and 36 kDa. Phosphorylation from cAMP dependent protein kinase stimulates K+ channel activity and labels the 51 kDa band. The 36 kDa band is rapidly cleaved by trypsin and may be involved in Ca2+ stimulation. 5. Opening of the K+ channel by Ca2+ in physiological concentrations and regulation by calmodulin and phosphorylation by protein kinase may mediate kinetic and hormonal regulation of NaCl transport across the tubule cells in TAL.  相似文献   

16.
The effects of the two local anesthetics tetracaine and procaine and a quaternary amine derivative of lidocaine, QX314, on sarcoplasmic reticulum (SR) Ca2+ release have been examined by incorporating the purified rabbit skeletal muscle Ca2+ release channel complex into planar lipid bilayers. Recordings of potassium ion currents through single channels showed that Ca(2+)- and ATP-gated channel activity was reduced by the addition of the tertiary amines tetracaine and procaine to the cis (cytoplasmic side of SR membrane) or trans (SR lumenal) side of the bilayer. Channel open probability was lowered twofold at tetracaine and procaine concentrations of approximately 150 microM and 4 mM, respectively. Hill coefficients of 2.0 and greater indicated that the two drugs inhibited channel activity by binding to two or more cooperatively interacting sites. Unitary conductance of the K(+)- conducting channel was not changed by 1 mM tetracaine in the cis and trans chambers. In contrast, cis millimolar concentrations of the quaternary amine QX314 induced a fast blocking effect at positive holding potentials without an apparent change in channel open probability. A voltage-dependent block was observed at high concentrations (millimolar) of tetracaine, procaine, and QX314 in the presence of 2 microM ryanodine which induced the formation of a long open subconductance. Vesicle-45Ca2+ ion flux measurements also indicated an inhibition of the SR Ca2+ release channel by tetracaine and procaine. These results indicate that local anesthetics bind to two or more cooperatively interacting high-affinity regulatory sites of the Ca2+ release channel in or close to the SR membrane. Voltage-dependent blockade of the channel by QX314 in the absence of ryanodine, and by QX314, procaine and tetracaine in the presence of ryanodine, indicated one low-affinity site within the conduction pathway of the channel. Our results further suggest that tetracaine and procaine may primarily inhibit excitation-contraction coupling in skeletal muscle by binding to the high-affinity, regulatory sites of the SR Ca2+ release channel.  相似文献   

17.
The mechanism by which chloride increases sarcoplasmic reticulum (SR) Ca2+ permeability was investigated. In the presence of 3 microM Ca2+, Ca2+ release from 45Ca(2+)-loaded SR vesicles prepared from procine skeletal muscle was increased approximately 4-fold when the media contained 150 mM chloride versus 150 mM propionate, whereas in the presence of 30 nM Ca2+, Ca2+ release was similar in the chloride- and the propionate-containing media. Ca(2+)-activated [3H]ryanodine binding to skeletal muscle SR was also increased (2- to 10-fold) in media in which propionate or other organic anions were replaced with chloride; however, chloride had little or no effect on cardiac muscle SR 45Ca2+ release or [3H]ryanodine binding. Ca(2+)-activated [3H]ryanodine binding was increased approximately 4.5-fold after reconstitution of skeletal muscle RYR protein into liposomes, and [3H]ryanodine binding to reconstituted RYR protein was similar in chloride- and propionate-containing media, suggesting that the sensitivity of the RYR protein to changes in the anionic composition of the media may be diminished upon reconstitution. Together, our results demonstrate a close correlation between chloride-dependent increases in SR Ca2+ permeability and increased Ca2+ activation of skeletal muscle RYR channels. We postulate that media containing supraphysiological concentrations of chloride or other inorganic anions may enhance skeletal muscle RYR activity by favoring a conformational state of the channel that exhibits increased activation by Ca2+ in comparison to the Ca2+ activation exhibited by this channel in native membranes in the presence of physiological chloride (< or = 10 mM). Transitions to this putative Ca(2+)-activatable state may thus provide a mechanism for controlling the activation of RYR channels in skeletal muscle.  相似文献   

18.
Exocrine glands extrude both proteins and salt. Fluid secretion is related to a modification of the membrane permeability of secreting cells. This permeability change may be measured as an increase of labelled ion fluxes or as a rise of membrane conductance. It involves Na+, K+, Cl- and Ca2+ ions. Intracellular Ca2+ acts as "second messenger" in the development of the electrical response. Recent recordings using the "patch-clamp" technique have revealed three types of ion channel activated by secretory agents. These channels are sensitive to internal Ca2+ ions. They are respectively selective to K+, Cl- and positively charged monovalent ions. Two models suggesting possible roles for these channels in the secretion process are presented. However, evaluation of such models is presently restricted by numerous uncertainties on the function of secreting cells in vivo. Information is notably lacking concerning the exact composition of the secreted fluid, and the exchanges between exocrine glands and blood circulation.  相似文献   

19.
We have examined the effects of a number of derivatives of ryanodine on K+ conduction in the Ca2+ release channel purified from sheep cardiac sarcoplasmic reticulum (SR). In a fashion comparable to that of ryanodine, the addition of nanomolar to micromolar quantities to the cytoplasmic face (the exact amount depending on the derivative) causes the channel to enter a state of reduced conductance that has a high open probability. However, the amplitude of that reduced conductance state varies between the different derivatives. In symmetrical 210 mM K+, ryanodine leads to a conductance state with an amplitude of 56.8 +/- 0.5% of control, ryanodol leads to a level of 69.4 +/- 0.6%, ester A ryanodine modifies to one of 61.5 +/- 1.4%, 9,21-dehydroryanodine to one of 58.3 +/- 0.3%, 9 beta,21beta-epoxyryanodine to one of 56.8 +/- 0.8%, 9-hydroxy-21-azidoryanodine to one of 56.3 +/- 0.4%, 10-pyrroleryanodol to one of 52.2 +/- 1.0%, 3-epiryanodine to one of 42.9 +/- 0.7%, CBZ glycyl ryanodine to one of 29.4 +/- 1.0%, 21-p-nitrobenzoyl-amino-9-hydroxyryanodine to one of 26.1 +/- 0.5%, beta-alanyl ryanodine to one of 14.3 +/- 0.5%, and guanidino-propionyl ryanodine to one of 5.8 +/- 0.1% (chord conductance at +60 mV, +/- SEM). For the majority of the derivatives the effect is irreversible within the lifetime of a single-channel experiment (up to 1 h). However, for four of the derivatives, typified by ryanodol, the effect is reversible, with dwell times in the substate lasting tens of seconds to minutes. The effect caused by ryanodol is dependent on transmembrane voltage, with modification more likely to occur and lasting longer at +60 than at -60 mV holding potential. The addition of concentrations of ryanodol insufficient to cause modification does not lead to an increase in single-channel open probability, such as has been reported for ryanodine. At concentrations of > or = 500 mu M, ryanodine after initial rapid modification of the channel leads to irreversible closure, generally within a minute. In contrast, comparable concentrations of beta-alanyl ryanodine do not cause such a phenomenon after modification, even after prolonged periods of recording (>5 min). The implications of these results for the site(s) of interaction with the channel protein and mechanism of the action of ryanodine are discussed. Changes in the structure of ryanodine can lead to specific changes in the electrophysiological consequences of the interaction of the alkaloid with the sheep cardiac SR Ca2+ release channel.  相似文献   

20.
We characterized type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm by immunoaffinity chromatography using a specific antibody. The purified receptor was free from 12-kDa FK506-binding protein, although it retained the ability to bind 12-kDa FK506-binding protein. Negatively stained images of RyR3 show a characteristic rectangular structure that was indistinguishable from RyR1. The location of the D2 segment, which exists uniquely in the RyR1 isoform, was determined as the region around domain 9 close to the corner of the square-shaped assembly, with use of D2-directed antibody as a probe. The RyR3 homotetramer had a single class of high affinity [3H]ryanodine-binding sites with a stoichiometry of 1 mol/mol. In planar lipid bilayers, RyR3 displayed cation channel activity that was modulated by several ligands including Ca2+, Mg2+, caffeine, and ATP, which is consistent with [3H]ryanodine binding activity. RyR3 showed a slightly larger unit conductance and a longer mean open time than RyR1. Whereas RyR1 showed two classes of channel activity with distinct open probabilities (Po), RyR3 displayed a homogeneous and steeply Ca2+-dependent activity with Po approximately 1. RyR3 was more steeply affected in the channel activity by sulfhydryl-oxidizing and -reducing reagents than RyR1, suggesting that the channel activity of RyR3 may be transformed more precipitously by the redox state. This is also a likely explanation for the difference in the Ca2+ dependence of RyR3 between [3H]ryanodine binding and channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号