共查询到20条相似文献,搜索用时 0 毫秒
1.
Terence G Favero Jason Webb Maria Papiez Erin Fisher Robert J Trippichio Michael Broide Jonathan J Abramson 《Journal of applied physiology》2003,94(4):1387-1394
We have previously demonstrated that H2O2 at millimolar concentrations induces Ca(2+) release from actively loaded sarcoplasmic reticulum (SR) vesicles and induces biphasic [(3)H]ryanodine binding behavior. Considering that hypochlorous acid (HOCl) is a related free radical and has been demonstrated to be a more effective oxidant of proteins, we evaluated the effects of HOCl on sarcoplasmic reticulum Ca(2+)-channel release mechanism. In a concentration-dependent manner, HOCl activates the SR Ca(2+) release channel and induces rapid release of Ca from actively loaded vesicles. HOCl-induced Ca(2+) release is inhibited in the presence of millimolar concentrations of DMSO. High-affinity [(3)H]ryanodine binding is also enhanced at concentrations from 10 to 100 microM. At HOCl concentrations of >100 microM, equilibrium binding is inhibited. HOCl stimulation of binding is inhibited by the addition of dithiothreitol. The direct interaction between HOCl and the Ca(2+) release mechanism was further demonstrated in single-channel reconstitution experiments. HOCl, at 20 microM, activated the Ca(2+) release channel after fusion of a SR vesicle to a bilayer lipid membrane. At 40 microM, Ca(2+)-channel activity was inhibited. Pretreatment of SR vesicles with HOCl inhibited the fluorescence development of a fluorogenic probe specific to thiol groups critical to channel function. These results suggest that HOCl at micromolar concentrations can modify SR Ca(2+) handling. 相似文献
2.
Summary Ca2+-induced Ca2+ release at the terminal cisternae of skeletal sarcoplasmic reticulum was demonstrated using heavy sarcoplasmic reticulum vesicles. Ca2+ release was observed at 10 m Ca2+ in the presence of 1.25mm free Mg2+ and was sensitive to low concentrations of ruthenium red and was partially inhibited by valinomycin. These results suggest that the Ca2+-induced Ca2+ release is electrogenic and that an inside negative membrane potential created by the Ca2+ flux opens a second channel that releases Ca2+. Results in support of this formulation were obtained by applying a Cl– gradient or K+ gradient to sarcoplasmic reticulum vesicles to initiate Ca2+ release. Based on experiments the following hypothesis for the excitation-contraction coupling of skeletal muscle was formulated. On excitation, small amounts of Ca2+ enter from the transverse tubule and interact with a Ca2+ receptor at the terminal cisternae and cause Ca2+ release (Ca2+-induced Ca2+ release). This Ca2+ flux generates an inside negative membrane potential which opens voltage-gated Ca2+ channels (membrane potential-dependent Ca2+ release) in amounts sufficient for contraction. 相似文献
3.
Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from skeletal muscle. 总被引:4,自引:1,他引:4 下载免费PDF全文
The modulation of the calcium release channel (CRC) by protein kinases and phosphatases was studied. For this purpose, we have developed a microsyringe applicator to achieve sequential and multiple treatments with highly purified kinases and phosphatases applied directly at the bilayer surface. Terminal cisternae vesicles of sarcoplasmic reticulum from rabbit fast twitch skeletal muscle were fused to planar lipid bilayers, and single-channel currents were measured at zero holding potential, at 0.15 microM free Ca2+, +/- 0.5 mM ATP and +/- 2.6 mM free Mg2+. Sequential dephosphorylation and rephosphorylation rendered the CRC sensitive and insensitive to block by Mg2+, respectively. Channel recovery from Mg2+ block was obtained by exogenous protein kinase A (PKA) or by Ca2+/calmodulin-dependent protein kinase II (CalPK II). Somewhat different characteristics were observed with the two kinases, suggesting two different states of phosphorylation. Channel block by Mg2+ was restored by dephosphorylation using protein phosphatase 1 (PPT1). Before application of protein kinases or phosphatases, channels were found to be "dephosphorylated" (inactive) in 60% and "phosphorylated" (active) in 40% of 51 single-channel experiments based on the criterion of sensitivity to block by Mg2+. Thus, these two states were interconvertable by treatment with exogenously added protein kinases and phosphatases. Endogenous Ca2+/calmodulin-dependent protein kinase (end CalPK) had an opposite action to exogenous CalPK II. Previously, dephosphorylated channels using PPT (Mg2+ absent) were blocked in the closed state by action of endogenous CalPK. This block was removed to normal activity by the action of either PPT or by exogenous CalPK II. Our findings are consistent with a physiological role for phosphorylation/dephosphorylation in the modulation of the calcium release channel of sarcoplasmic reticulum from skeletal muscle. A corollary of our studies is that only the phosphorylated channel is active under physiological conditions (mM Mg2+). Our studies suggest that phosphorylation can be at more than one site and, depending on the site, can have different functional consequences on the CRC. 相似文献
4.
Fragmented heavy sarcoplasmic reticulum was solubilized by cholate, and proteins were subsequently fractionated by using diethylaminoethyl-cellulose (DEAE-cellulose) column chromatography. A fraction was collected in which proteins with molecular weights between 31,000 and 45,000 u were major components. This fraction, when incorporated into Ca2+ -loaded liposomes, facilitated the Ca2+ efflux. The rate of efflux was regulated by the external Ca2+ concentration, reaching a maximum at 3 microM Ca2+. The Ca2+ efflux was suppressed by Mg2+. 相似文献
5.
Release of Ca2+ from skeletal sarcoplasmic reticulum vesicles was studied by the spectrophotometric stopped-flow technique using tetraphenylboron as a releasing agent. The extent of Ca2+ release shows a sigmoidal response, with respect to the tetraphenylboron concentration, being dependent on Ca2+ preloading and Ca2+-ATPase activity, since these experiments were performed on actively loaded vesicles. The release process has a rapid component with an apparent rate constant of 6-8 s-1, showing a linear relationship between the rapid rate of Ca2+ release and the Ca2+ content of the vesicles. The release is not mediated by the reversal of the Ca2+ pump. Since the amphipathic anion tetraphenylboron was unable to elicit a Ca2+-release response when added to a preparation of sarcoplasmic reticulum phospholipid vesicles, it is suggested that there may be an interaction with some membrane protein(s) at the hydrophobic/hydrophilic interface leading to the opening of some specific Ca2+-release pathway. 相似文献
6.
Calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. General characteristics 总被引:4,自引:0,他引:4
Isolated canine cardiac sarcoplasmic reticulum exhibits Ca2+-induced Ca2+ release from both actively and passively loaded vesicles. The rate and extent of Ca2+ release depend on the extravesicular ionized Ca2+ concentration ( [Ca2+]o) at the onset of release. Maximal release following ATP-dependent, phosphate-facilitated Ca2+ loading (up to 360 nmol of Ca2+/mg of protein/min at 37 degrees C) occurs at 1.5-2 microM [Ca2+]o, with reduced release at both lower and higher Ca2+ concentrations (half-maximal Ca2+ release at approximately 0.8 and 5.5 microM [Ca2+]o). Only a portion of the accumulated Ca2+ is released and the release is followed by reuptake of Ca2+. A similar Ca2+ dependence is obtained in the absence of ATP and Pi by measuring unidirectional Ca2+ efflux from passively loaded vesicles (maximal Ca2+ efflux at 1 microM [Ca2+]o; half-maximal Ca2+-dependent efflux at approximately 0.15 and 13 microM [Ca2+]o). Although the Ca2+ release rates observed in this study are several orders of magnitude lower than the rate of Ca2+ release which occurs in muscle cells in vivo, this Ca2+ release phenomenon may be related to the Ca2+-induced Ca2+ release which has been described for skinned cardiac cells ( Fabiato , A. (1983) Am. J. Physiol. 245, C1-C14). Ca2+ release occurs in the presence of an ATP-regenerating system and is not accompanied by a reduction in ATP hydrolysis. Also, since unidirectional Ca2+ efflux (as high as 860 nmol of Ca2+/mg of protein/min at 37 degrees C) exceeds net Ca2+ release under similar conditions, Ca2+ influx proceeds during the period of net Ca2+ release. Therefore, Ca2+ release does not involve reversal or cessation of inward Ca2+ pumping. Other data indicate that Ca2+ release is not mediated through the Ca2+ pump protein, but occurs through a separate Ca2+-dependent efflux pathway, possibly a channel. 相似文献
7.
Calcium release from isolated heavy sarcoplasmic reticulum of rabbit skeletal muscle by several calmodulin antagonistic drugs was measured spectrophotometrically with arsenazo III and compared with the properties of the caffeine-induced calcium release. Trifluoperazine and W7 (about 500 microM) released all actively accumulated calcium (half-maximum release at 129 microM and 98 microM, respectively) in the presence 0.5 mM MgCl2 and 1 mg/ml sarcoplasmic reticulum protein; calmidazolium (100 microM) and compound 48/80 (70 micrograms/ml) released maximally 30-40% calcium, whilst bepridil (100 microM) and felodipin (50 microM) with calmodulin antagonistic strength similar to trifluoperazine (determined by inhibition of the calcium, calmodulin-dependent protein kinase of cardiac sarcoplasmic reticulum) did not cause a detectable calcium release, indicating that this drug-induced calcium release is not due to the calmodulin antagonistic properties of the tested drugs. Calcium release of trifluoperazine, W7 and compound 48/80 and that of caffeine was inhibited by similar concentrations of magnesium (half-inhibition 1.4-4.2 mM compared with 0.97 mM for caffeine) and ruthenium red (half-inhibition for trifluoperazine, W7 and compound 48/80 was 0.22 microM, 0.08 microM and 0.63 micrograms/ml, respectively, compared with 0.13 microM for caffeine), suggesting that this drug-induced calcium release occurs via the calcium-gated calcium channel of sarcoplasmic reticulum stimulated by caffeine or channels with similar properties. 相似文献
8.
Mechanism of anthraquinone-induced calcium release from skeletal muscle sarcoplasmic reticulum 总被引:3,自引:0,他引:3
J J Abramson E Buck G Salama J E Casida I N Pessah 《The Journal of biological chemistry》1988,263(35):18750-18758
The anthraquinones, doxorubicin, mitoxantrone, daunorubicin and rubidazone are shown to be potent stimulators of Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles and to trigger transient contractions in chemically skinned psoas muscle fibers. These effects of anthraquinones are the direct consequence of their specific interaction with the [3H] ryanodine receptor complex, which constitutes the Ca2+ release channel from the triadic junction. In the presence of adenine nucleotides and physiological Mg2+ concentrations (approximately 1.0 mM), channel activation by doxorubicin and daunorubicin exhibits a sharp dependence on submicromolar Ca2+ which is accompanied by a selective, dose-dependent increase in the apparent affinity of the ryanodine binding sites for Ca2+, in a manner similar to that previously reported with caffeine. Unlike caffeine, however, anthraquinones increase [3H]ryanodine receptor occupancy to the level observed in the presence of adenine nucleotides. A strong interaction between the anthraquinone and the caffeine binding sites on the Ca2+ release channel is also observed when monitoring Ca2+ fluxes across the SR. Millimolar caffeine both inhibits anthraquinone-stimulated Ca2+ release, and reduces anthraquinone-stimulated [3H]ryanodine receptor occupancy, without changing the effective binding constant of the anthraquinone for its binding site. The degree of cooperativity for daunorubicin activation of Ca2+ release from SR also increases in the presence of caffeine. These results demonstrate that the mechanism by which anthraquinones stimulate Ca2+ release is caused by a direct interaction with the [3H]ryanodine receptor complex, and by sensitization of the Ca2+ activator site for Ca2+. 相似文献
9.
This study is concerned with the characterization of the morphology of the calcium release channel of sarcoplasmic reticulum (SR) from fast-twitch skeletal muscle, which is involved in excitation-contraction coupling. We have previously purified the ryanodine receptor and found it to be equivalent to the feet structures, which are involved, in situ, in the junctional association of transverse tubules with terminal cisternae of SR. The receptor is an oligomer of a single high molecular weight polypeptide and when incorporated into phospholipid bilayers, has channel conductance which is characteristic of calcium release in terminal cisternae of SR. The purified channel can be observed by electron microscopy using different methods of sample preparation, with complementary views being observed by negative staining, double staining, thin section and rotary shadowing electron microscopy. Three views can be observed and interpreted: (a) a square face which, in situ, is junctionally associated with the transverse tubule or junctional face membrane; (b) a rectangle equivalent to the side view; and (c) a diamond shape equivalent to the side view, of which the base portion appears to be equivalent to the transmembrane segment. Negative staining reveals detailed substructure of the channel. A computer averaged view of the receptor displays fourfold symmetry and ultrastructural detail. The dense central mass is divided into four domains with a 2-nm hole in the center, and is enclosed within an outer frame which has a pinwheel appearance. Double staining shows substructure of the square face in the form of parallel linear arrays (six/face). The features of the isolated receptor can be correlated with the structure observed in terminal cisternae vesicles. Sections tangential to the junctional face membrane reveal that the feet structures (23-nm squares) overlap so as to enclose smaller square spaces of approximately 14 nm/side. We suggest that this is equivalent to the transverse tubule face and that the terminal cisternae face is smaller (approximately 17 nm/face) and has larger alternating spaces as a consequence of the tapered sides of the foot structures. Image reconstruction analysis appears to be feasible and should provide the three-dimensional structure of the channel. 相似文献
10.
To elucidate the mechnism by which quercetin enhances the rate of tension development in skinned muscle fibers, effects on calcium release from longitudinal tubule-derived SR (LSR) after phosphate-supported calcium uptake were examined. In all studies, 100 μM quercetin (which inhibits initial calcium uptake velocity 85%) was added at or shortly after the time calcium content reached a maximum at various extravesicular Ca2+ concentrations (Cao). At moderate Cao (0.2–1.0 μM). where spontaneous calcium release rate depended on Cao, quercetin caused a marked stimulation of calcium release. This was accompanied by a 60% reduction in calcium influx and a 30-fold increase in calcium efflux. Thus, the previously reported quercetin-induced increase in the rate of tension development by skinned muscle fibers may result, at least in part, from sensitization of Ca2+-triggered calcium release to lower Cao. 相似文献
11.
Csernoch L 《Acta physiologica Hungarica》1999,86(2):77-97
In striated muscle contraction is under the tight control of myoplasmic calcium concentration ([Ca2+]i): the elevation in [Ca2+]i and the consequent binding of calcium to troponin C enables, while the decrease in [Ca2+]i prevents the actin-myosin interaction. Calcium ions at rest are stored in the sarcoplasmic reticulum (SR) from which they are rapidly released upon the depolarisation of the sarcolemmal and transverse (T-) tubular membranes of the muscle cell. The protein responsible for this controlled and fast release of calcium is the calcium release channel found in the membrane of the terminal cisternae of the SR. This review focuses on the physiological and pharmacological modulators of the calcium release channel and tries to draw an up-to-date picture of the events that occur between T-tubular depolarisation and the release of calcium from the SR. 相似文献
12.
J Stuart I N Pessah T G Favero J J Abramson 《Archives of biochemistry and biophysics》1992,292(2):512-521
The photooxidizing xanthene dye rose bengal is shown to induce rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles. In the presence of light, nanomolar concentrations of rose bengal increase the Ca2+ permeability of the SR and stimulate the production of singlet oxygen (1O2). In the absence of light, no 1O2 production is measured. Under these conditions, higher concentrations of rose bengal (micromolar) are required to stimulate Ca2+ release. Furthermore, removal of oxygen from the release medium results in marked inhibition of the light-dependent reaction rate. Rose bengal-induced Ca2+ release is relatively insensitive to Mg2+. At nanomolar concentrations, rose bengal inhibits [3H]ryanodine binding to its receptor. beta,gamma-Methyleneadenosine 5'-triphosphate, a nonhydrolyzable analog of ATP, inhibits rose bengal-induced Ca2+ release and prevents rose bengal inhibition of [3H]ryanodine binding. Ethoxyformic anhydride, a histidine modifying reagent, at millimolar concentrations induces Ca2+ release from SR vesicles in a manner similar to that of rose bengal. The molecular mechanism underlying rose bengal modification of the Ca2+ release system of the SR appears to involve a modification of a histidyl residue associated with the Ca2+ release protein from SR. The light-dependent reaction appears to be mediated by singlet oxygen. 相似文献
13.
S T Ohnishi 《Journal of biochemistry》1979,86(4):1147-1150
A new method is introduced which allows the study of calcium-induced calcium release from fragmented sarcoplasmic reticulum. Results obtained with this method are in agreement with those obtained by previous investigators using skinned muscle fiber. It was also found that anesthetic drugs and alcohol increased the calcium- and caffeine-induced calcium release from the sarcoplasmic reticulum. 相似文献
14.
Ryanodine modulates Ca2+ permeability in isolated terminal cisternae of sarcoplasmic reticulum, suggesting that it is a specific ligand for the calcium release channel. Our laboratory has purified the ryanodine receptor and demonstrated it to be equivalent to the feet structures, which are involved in the junctional association of the transverse tubule with the terminal cisternae. Recently, Smith, Coronado and Meissner have incorporated sarcoplasmic reticulum into bilayers and found a high conductivity channel (approximately .100 pS) which has a number of characteristics expected of the Ca2+ release channels in SR. We now find that the high conductivity channel in the bilayer is sensitive to ryanodine. Low concentrations of ryanodine (sub microM): (1) lock the channels in an open state; (2) prevent the action of ruthenium red (microM) to completely close the channel; and (3) much higher concentrations of ryanodine (300 microM) close the channel. In these three respects ryanodine acts similarly on the channel in the bilayer as in vesicles. Further, the bilayer studies provide new insight into the action of ryanodine on the channel in that: (1) ryanodine locks the channel in the open state, but the conductivity is reduced to about 40%; (2) ryanodine prevents ruthenium red from closing the channel, although there is a further decrease in the open current. These studies provide support that the high conductivity calcium channel in sarcoplasmic reticulum is involved in excitation-contraction coupling. By the same token the pharmacological action of ryanodine is pinpointed to the calcium release channel. 相似文献
15.
M Villaz M Robert L Carrier T Beeler B Rouot M Toutant Y Dupont 《Cellular signalling》1989,1(5):493-506
Skinned fibre experiments were conducted to determine if guanine nucleotide-binding proteins play a role in excitation-contraction coupling of skeletal muscle. By itself, the GTP-gamma S, a non hydrolysable GTP analogue was unable to induce calcium release from the sarcoplasmic reticulum, even at concentrations as high as 500 microM. However, calcium- or caffeine-induced calcium releases were enhanced by GTP-gamma S in micromolar concentrations. This response was blocked by GDP-beta S or Pertussis toxin. 32P-ADP-ribosylation catalysed by Pertussis toxin, radiolabelled G-protein alpha subunits in the range of 40 kDa on membrane subcellular fractions of rat skeletal muscle. Using Western blot analysis with antibodies raised against the bovine transducin, G-proteins were identified in frog and rat skeletal muscle subcellular fractions. In most of the muscle fractions (plasma membrane, T-tubules, triads, sarcoplasmic reticulum), the anti-beta subunit antibodies recognized a 36 kDa protein which comigrated with transducin beta subunit. It appears therefore that some of the G-proteins identified by ADP-ribosylation or immunostaining in several subcellular fractions from skeletal muscle, are implicated in the modulation of calcium release from sarcoplasmic reticulum. These results suggest that a Pertussis toxin sensitive G-protein is present at the loci of E-C coupling, and that it serves to regulate the calcium release. 相似文献
16.
Time course of activation of calcium release from sarcoplasmic reticulum in skeletal muscle. 总被引:5,自引:1,他引:5 下载免费PDF全文
Myoplasmic free calcium transients were measured with antipyrylazo III in voltage clamped segments of frog skeletal muscle fibers and were used to calculate the rate of release (Rrel) of calcium from the sarcoplasmic reticulum. Intramembrane charge movement was measured for the same pulses in the same fibers. During a depolarizing pulse Rrel rose to an early peak and then decayed relatively rapidly but incompletely due to calcium-dependent inactivation (Schneider M.F., and B.J. Simon. 1988. J. Physiol. (Lond.). 405:727-745). Two approaches were used to determine release activation independent of the effects of inactivation: (a) a mathematical correction based on the assumption that inactivation was a process occurring in parallel with and independently of activation; (b) an experimental procedure in which release was maximally inactivated by a large short prepulse and then the remaining noninactivatable component of release was monitored during a subsequent test pulse. Both procedures gave the same time course of activation of release. Release activation paralleled the time course of intramembrane charge movement but was delayed by a few milliseconds. 相似文献
17.
M Kobayashi A Muroyama Y Ohizumi 《Biochemical and biophysical research communications》1989,163(3):1487-1491
In the course of our study on the function of sarcoplasmic reticulum (SR) in skeletal muscle, the stimulatory action of phosphatidylinositol 4,5-bisphosphate (PIP2) on the Ca2+ release from SR was demonstrated by using chemically skinned fibers and fragmented SR vesicles. PIP2 induced a tension spike followed by sustained contraction in skinned fibers. PIP2 enhanced the caffeine-induced Ca2+ release from SR vesicles at low concentrations and triggered Ca2+ release by itself at high concentrations. PIP2 also enhanced 45Ca2+ efflux from SR vesicles. However, inositol 1,4,5-triphosphate never produced these effects. The Ca2+-releasing action of PIP2 was only weakly affected by ruthenium red or procaine. These observations suggest that PIP2 activates an SR Ca2+ release channel whose properties are different from those of the Ca2+-induced Ca2+ release channel. 相似文献
18.
Positive cooperativity of ryanodine binding to the calcium release channel of sarcoplasmic reticulum from heart and skeletal muscle 总被引:8,自引:0,他引:8
Ryanodine is a specific ligand for the calcium release channel which mediates calcium release in excitation-contraction coupling in muscle. In this study, ryanodine binding in sarcoplasmic reticulum from heart muscle and skeletal muscle is further compared and correlated with function. The new findings include the following: (1) Two types of binding, high affinity (KD1 approximately 5-10 nM) and low affinity (KD2 approximately 3 microM), can now be discerned for the skeletal muscle receptor. KD1 is approximately the same as and KD2 of similar magnitude to that previously reported for heart. (2) The dissociation rates for the high-affinity binding have been directly measured for both heart and skeletal muscle (t1/2 approximately 30-40 min). These rates are more rapid than previously reported (t1/2 approximately 14 h). (3) KD1's obtained from the ratio of the dissociation and association rate constants agree with the dissociation constant measured by equilibrium binding Scatchard analysis. (4) Ryanodine binding to the low-affinity site can be correlated with a decrease in the dissociation rate constant (k-1) of the high-affinity site, and thereby in the apparent dissociation constant (KD1). The inhibition constant (KI) for inhibiting the high-affinity off rate obtained from a double-reciprocal plot of the change in off rate vs [ryanodine] is practically the same in heart (0.66 microM) and skeletal muscle (0.64 microM) and in the range of the KD2. The binding of cold ryanodine to the low-affinity site appears to lock the bound [3H]ryanodine onto the high-affinity site rather than to exchange with it. Thus, in this sense, the ryanodine receptor exhibits "positive cooperativity".(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
Philip Palade Christine Dettbarn Donald Brunder Philip Stein Gary Hals 《Journal of bioenergetics and biomembranes》1989,21(2):295-320
Calcium release from sarcoplasmic reticulum (SR) has been elicited in response to additions of many different agents. Activators of Ca2+ release are here tentatively classified as activators of a Ca2+-induced Ca2+ release channel preferentially localized in SR terminal or as likely activators of other Ca2+ efflux pathways. Some of these pathways may be associated with several different mechanisms for SR Ca2+ release that have been postulated previously. Studies of various inhibitors of excitation-contraction coupling and of certain forms of SR Ca2+ release are summarized. The sensitivity of isolated SR to certain agents is unusually affected by experimental conditions. These effects can seriously undermine attempts to anticipate effects of the same pharmacological agentsin situ. Finally, mention is made of a new preparation (sarcoballs) designed to make the pharmacological study of SR Ca2+ release more accessible to electrophysiologists, and some concluding speculations on the future of SR pharmacology are offered. 相似文献
20.
Characteristics of cocaine block of purified cardiac sarcoplasmic reticulum calcium release channels. 下载免费PDF全文
We have examined the effects of cocaine on the SR Ca2+ release channel purified from canine cardiac muscle. Cocaine induced a flicker block of the channel from the cytoplasmic side, which resulted in an apparent reduction in the single-channel current amplitude without a marked reduction in the single-channel open probability. This block was evident only at positive holding potentials. Analysis of the block revealed that cocaine binds to a single site with an effective valence of 0.93 and an apparent dissociation constant at 0 mV (Kd(0)) of 38 mM. The kinetics of cocaine block were analyzed by amplitude distribution analysis and showed that the voltage and concentration dependence lay exclusively in the blocking reaction, whereas the unblocking reaction was independent of both voltage and concentration. Modification of the channel by ryanodine dramatically attenuated the voltage and concentration dependence of the on rates of cocaine block while diminishing the off rates to a lesser extent. In addition, ryanodine modification changed the effective valence of cocaine block to 0.52 and the Kd(0) to 110 mM, suggesting that modification of the channel results in an alteration in the binding site and its affinity for cocaine. These results suggest that cocaine block of the SR Ca2+ release channel is due to the binding at a single site within the channel pore and that modification of the channel by ryanodine leads to profound changes in the kinetics of cocaine block. 相似文献