首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Filipin, a widely used fluorescent sterol marker is also a potent antibiotic. In this study we address the reliability of filipin as a monitor of ergosterol in fungal cells. A revised staining protocol was developed to minimize any biological effect of the compound. Germinating conidia of Penicillium discolor stained with filipin, displayed a fluorescent cap at the location of germ tube appearance and formation. During germ tube emergence, the fluorescent intensity of the cap increased. This was confirmed by HPLC as an increase of the net cellular ergosterol content. Filipin staining is absent during early germination, while FM dyes, similar molecules, stain the plasma membrane after 1 h. This indicates that the conidial cell wall is no barrier for filipin. To evaluate if filipin does bind ergosterol in situ, natamycin, more specific to ergosterol, was added before filipin staining. This resulted in a marked decrease in fluorescence indicating high ergosterol levels. This was characterized further in ergDelta-mutant cells of Saccharomyces cerevisiae containing altered sterols. Here ergosterol containing cells showed a high fluorescence decrease. Taken together, these data suggest that filipin monitors an ergosterol-enriched cap in germinating conidia at the site of germ tube formation. Furthermore, the sterol-rich cap decreases and reappears after a period of actin disruption. Myriocin that affects sphingolipid synthesis results in an increase of cellular ergosterol and overall filipin fluorescence, but not at the ergosterol cap, where fluorescence is significantly lowered. In conclusion, in this work we have demonstrated an effective revised method for ergosterol staining with filipin and demonstrated its specificity in both Penicillium and Saccharomyces.  相似文献   

2.
Filipin, a sterol-specific antibiotic, and freeze-fracture electron microscopy were used to study the presence and distribution of sterol in the cytoplasmic membrane of stable staphylococcal L-form cells. Fixed cells were treated with filipin, and then observed by freeze-fracture electron microscopy. Freeze-fractured profiles of the L-form cells treated with filipin demonstrated irregular distribution of protuberances or pits of 25-30 nm, representing filipin-sterol complexes, on the proto-plasmic fracture face (PF) and exoplasmic fracture face (EF) of the cytoplasmic membrane. In contrast, no such structure was detected in the filipin-treated parent cells or protoplasts. The results suggest that some sterol molecules, which are usually not found in staphylococcal or other bacterial cells, emerged on the cytoplasmic membrane after the cells were converted to the stable L-form.  相似文献   

3.
PMA1 expression, plasma membrane H(+)-ATPase enzyme kinetics, and the distribution of the ATPase have been studied in carbon-starved Candida albicans induced with glucose for yeast growth at pH 4.5 and for germ tube formation at pH 6.7. PMA1 expression parallels expression of the constitutive ADE2 gene, increasing up to sixfold during yeast growth and twofold during germ tube formation. Starved cells contain about half the concentration of plasma membrane ATPase of growing cells. The amount of plasma membrane ATPase is normalized prior to either budding or germ tube emergence by the insertion of additional ATPase molecules, while ATPase antigen appears uniformly distributed over the entire plasma membrane surface during both growth phases. Glucose addition rapidly activates the ATPase twofold regardless of the pH of induction. The turnover of substrate molecules per second by the enzyme in membranes from budding cells quickly declines, but the enzyme from germ tube-forming cells maintains its turnover of substrate molecules per second and a higher affinity for Mg-ATP. The plasma membrane ATPase of C. albicans is therefore regulated at several levels; by glucose metabolism/starvation-related factors acting on gene expression, by signals generated through glucose metabolism/starvation which are thought to covalently modify the carboxyl-terminal domain of the enzyme, and possibly by additional signals which may be specific to germ tube formation. The extended period of intracellular alkalinization associated with germ tube formation may result from regulation of proton-pumping ATPase activity coupled with higher ratios of cell surface to effective cytosolic volume.  相似文献   

4.
Abstract Plasma membrane structures of Saccharomyces cerevisiae and Candida albicans during growth were studied by means of freeze-fracturing before and after filipin treatment. Undifferentiated regions of the plasma membrane were severely deformed by filipin, indicating the existence of a high level of ergosterol. The plasma membrane of small buds was mildly deformed by filipin, which suggested the existence of a low level of ergosterol. The bottom part of invaginations and the plasma membrane of the neck between the mother cell and the bud usually lacked filipin-induced deformations. Constraints existed in these regions which might restrict the ability of filipin to deform the membrane.  相似文献   

5.
The presence and distribution of cholesterol in biological membranes can be visualized by complex formation with the polyene antibiotic filipin after or during fixation with glutaraldehyde. In the envelopes of budding and immature retroviruses no filipin-cholesterol complexes are formed, but in the plasma membrane of host cells and in the envelopes of mature viruses filipin-cholesterol complexes are easily detected. However, after treatment of glutaraldehyde-fixed cells with pepsin, the presence of cholesterol in the envelopes of budding and immature viral particles could also be demonstrated. This indicates that in these structures the reaction of cholesterol with filipin is inhibited by proteins associated with the cholesterol-containing membrane. Treatment of fixed cells with trypsin, and of unfixed cells with cytochalasin B (CB) had no effect on detectability of cholesterol in these structures. On no occasion were cholesterol-filipin complexes formed in coated pits. The present findings call for caution when interpretating data on absence of filipincholesterol complexes in those membrane domains that are characterized by the presence of closely associated proteins.  相似文献   

6.
Sterol effects on phospholipid biosynthesis in the yeast strain GL7   总被引:1,自引:0,他引:1  
Cells of the yeast sterol auxotroph GL7 were grown on either ergosterol or cholesterol to mid-logarithmic phase and total membrane fractions prepared. Activities of phospholipid biosynthetic enzymes in the two cell types were determined. The rates of phosphatidyl-ethanolamine-phosphatidyl-choline-N-methyl transferase and acyl-CoA-alpha-glycerol-3-phosphate transcylase were significantly greater in ergosterol-grown than in cholesterol-grown cells. These reactions were also inhibited by the polyene antibiotic filipin. By contrast the activities of long-chain fatty acyl-CoA synthetase, CTP-phosphatidate-cytidyl transferase, phosphatidylserine decarboxylase and of phosphatidylinositol synthetase were identical in the two (ergosterol and cholesterol) cultures and unaffected by filipin. The ergosterol effect on phosphatidyl-ethanolamine N-methyl transferase was greatest in cells harvested in early log phase, intermediate in the mid-log phase cells, and not significant in stationary phase cells.  相似文献   

7.
The polyene antibiotic filipin combines with cholesterol in membranes to form complexes that are readily identifiable in the electron microscope. The distribution of filipin-cholesterol (FC) complexes is most easily studied by freeze-fracture. Larval epidermis of Tenebrio molitor (Insecta, Coleoptera) was maintained in vitro for 48 hr, since the electrophysiological properties of the cells are best characterized under these conditions. The cells were fixed in buffered 3.0% glutaraldehyde at RT for 15 min, transferred to fresh fixative containing 1% DMSO and filipin (final concentration; 0.5 mg/ml) for 3 hr RT. Control cells were treated in fixative containing 1% DMSO only. In freeze fracture replicas, FC complexes appear on the plasma membrane as large circular protrusions measuring 26.5 +/- 6.8 nm (x +/- s.d.) n = 50, in diameter and 17.1 +/- 2.8 nm, n = 50, in height and 11.7 +/- 2.6 nm, n = 25, in depth. Protrusions are about two times more frequent on the E face while pits are several times more frequent on the P face. FC complexes are most abundant (greater than 50/mu m2) on the basal membrane surface of the cells but are excluded from regions of hemidesmosomal plaques that anchor the cells to the basal lamina. FC complexes are also abundant on the apical surfaces of the cells where cuticle secretion occurs. In the lateral regions below the junctional belt, FC complexes are less numerous but often appear to increase in frequency in a graded fashion away from the junctional region. The septate junctions are relatively free of FC complexes except in regions where they open to form islands. These islands often contain gap junctions but the FC complexes rarely invade the particle domains of the gap junctions. Single FC complexes were seen in three out of a total of 97 gap junctions. Exposure of the epidermis to 20-hydroxyecdysone for 24 hr in vitro did not induce the appearance of FC complexes within the cell junctions.  相似文献   

8.
The polarization of sterol- and sphingolipid-enriched domains (lipid rafts) has been linked to morphogenesis and cell movement in diverse cell types. In the yeast Saccharomyces cerevisiae, a dramatic polarization of sterol-rich domains to the shmoo tip was observed in pheromone-induced cells (M. Bagnat and K. Simons, Proc. Natl. Acad. Sci. USA 99:14183-14188, 2002). We therefore examined whether plasma membrane lipid polarization contributes to the ability of the fungal pathogen Candida albicans to grow in a highly polarized manner to form hyphae. Interestingly, staining with filipin revealed that membrane sterols were highly polarized to the leading edge of growth during all stages of hyphal growth. Budding and pseudohyphal cells did not display polarized staining. Filipin staining was also enriched at septation sites in hyphae, where colocalization with septin proteins was observed, suggesting a role for the septins in forming a boundary domain. Actin appeared to play a role in sterol polarization and hyphal morphogenesis in that both were disrupted by low concentrations of latrunculin A that did not prevent budding. Furthermore, blocking either sphingolipid biosynthesis with myriocin or sterol biosynthesis with ketoconazole resulted in a loss of ergosterol polarization and caused abnormal hyphal morphogenesis, suggesting that lipid rafts are involved. Since hyphal growth is required for the full virulence of C. albicans, these results suggest that membrane polarization may contribute to the pathogenesis of this organism.  相似文献   

9.
The density and distribution of intramembranous particles was analyzed in freeze fracture replicas of the plasma membrane of amastigotes, and infective as well as noninfective promastigotes of Leishmania mexicana amazonensis. The density of intramembranous particles on both protoplasmic and extracellular faces was higher in infective than in noninfective promastigotes and it was lower in amastigotes than in promastigotes. Amastigotes purified immediately after tissue homogenization were surrounded by a membrane which corresponded to the membrane which lined the endocytic vacuoles where the parasites were located within the tissue macrophages. Aggregation of the particles was seen in the flagellar membrane at the point of emergence of the flagellum from the flagellar pocket. Differences in the organization of the particles were seen in the membrane which lined the flagellar pocket of amastigotes and promastigotes. The polyene antibiotic, filipin, was used as a probe for the detection of sterols in the plasma membrane of L. m. amazonensis. The effect of filipin in the parasite's structure was analyzed by scanning electron microscopy and by transmission electron microscopy of thin sections and freeze fracture replicas. Filipin sterol complexes were distributed throughout the membrane which lined the cell body, the flagellar pocket, and the flagellum. No filipin sterol complexes were seen in the cell body-flagellar adhesion zone. The density of filipin sterol complexes was lower in the membrane lining the flagellum than in that lining the cell body of promastigotes.  相似文献   

10.
The presence and distribution of cholesterol in mature and immature epididymal spermatozoa was analyzed using filipin as a cytochemical tool in freeze-fracture replicas and thin section preparations. The polyenic-antibiotic filipin formed complexes with 3, beta -OH sterols, producing characteristic protrusions, or pits, that were heterogeneously distributed in the plasma membrane of stallion spermatozoa, revealing a specific organization in a functionally specialized area of the gamete. The acrosomal region of the sperm head presented a significantly higher density of filipin sterol complexes than the postacrosomal region, which was usually free of these complexes. The plasma membrane of the flagellum also showed filipin sterol complexes randomly distributed in freeze-fracture replicas. The strong filipin labeling observed in the membrane of spermatozoa obtained from the caput region of the epididymis decreased significantly during epididymal passage. The significance of these changes is not completely understood, but they might contribute to establishing the molecular organization necessary for sperm transit and storage in the epididymis as well as to development of motile spermatozoa that are able to fertilize the oocyte and induce normal embryonic development.  相似文献   

11.
T Sekiya  K Yano  Y Nozawa 《Sabouraudia》1982,20(4):303-311
Freeze-fracture electron microscopy of the plasma membranes of Candida albicans yeast cells and red blood cells treated with amphotericin methyl ester and amphotericin B showed that amphotericin B (50 micrograms ml-1) caused extreme aggregation of intramembranous particles on the protoplasmic fracture face of the C. albicans membrane, and a marked reduction of the density of intramembranous particles. On the other hand, the rearrangement of intramembranous particles induced by amphotericin methyl ester (50 micrograms ml-1) produced elevations of the particle-free membrane domains toward the outside of the cells, so that the particles were aggregated in linear furrows surrounding these elevations on the protoplasmic fracture face, and the corresponding ridges on the exoplasmic fracture face. The density of intramembranous particles was greatly reduced on the protoplasmic fracture face. Both polyenes produced only small changes in the erythrocyte membranes at the same concentration. These results suggest that amphotericin methyl ester affects the ergosterol-containing membranes more than amphotericin B, and that ergosterol has a higher sensitivity for these two polyene antibiotics than cholesterol.  相似文献   

12.
Sindbis virus-infected baby hamster kidney cells were analyzed by thin section fracture-label. Specific immunolabel with antiviral glycoprotein antibodies or with conventional lectin label (wheat germ agglutinin) were used in conjunction with colloidal gold-conjugated protein A or ovomucoid, respectively. In addition, intact infected cells were analyzed with both labeling procedures. Experiments with Sindbis infected-chick embryo fibroblast cells were carried out as controls. Viral transmembrane glycoproteins appeared present in freeze-fractured inner and outer nuclear membrane, endoplasmic reticulum, Golgi stacks and vesicles, and plasma membranes; a clear preferential partition with the exoplasmic faces of all intracellular membranes was observed. By contrast, at the plasma membrane level, Sindbis glycoproteins were found to partition preferentially with the protoplasmic face. It seems likely that this protoplasmic partition is related to the binding with the nucleocapsid that takes place during the budding of the virus. At the cell surface, viral glycoproteins always appeared clustered and were predominantly associated with budding figures: moreover, large portions of the plasma membrane were devoid of both glycoproteins and budding viruses.  相似文献   

13.
Treatment of transformed Py3T3, SV101-3T3, and L1210 cells, as well as mitotic and Pronase-treated untransformed 3T3 cells, with the polyene antibiotics filipin, nystatin, and amphotericin B inhibited agglutination by wheat germ agglutinin. The effect of polyene antibiotic treatment was lectin and cell specific. Concanavalin A induced agglutination was not inhibited, wheat germ agglutination induced agglutination of untransformed 3T3 interphase cells was not influenced, and other aggregation phenomena, including those of erythrocytes with blood group specific antibodies or divalent cations, were unaffected by polyene treatments. This suggests that the formation of polyene-cholesterol complexes in transformed and erythrocyte cell membranes may specifically affect wheat germ agglutinin receptors and/or secondary events necessary for wheat germ agglutinin induced agglutination. Fluorescence studies of membrane filipin-cholesterol complexes showed that pretreating the cells with wheat germ agglutinin, but not concanavalin A, perturbed the fluorescence properties of filipin. Electron spin resonance studies with spin-labeled fatty acids revealed at best only a slight decrease in fatty acyl chain flexibility following filipin treatment. These studies indicate that there are not only quantitative differences between the agglutinability of transformed and untransformed cells with wheat germ agglutinin but that qualitative differences exist as well.  相似文献   

14.
Natamycin is a polyene antibiotic that is commonly used as an antifungal agent because of its broad spectrum of activity and the lack of development of resistance. Other polyene antibiotics, like nystatin and filipin are known to interact with sterols, with some specificity for ergosterol thereby causing leakage of essential components and cell death. The mode of action of natamycin is unknown and is investigated in this study using different in vitro and in vivo approaches. Isothermal titration calorimetry and direct binding studies revealed that natamycin binds specifically to ergosterol present in model membranes. Yeast sterol biosynthetic mutants revealed the importance of the double bonds in the B-ring of ergosterol for the natamycin-ergosterol interaction and the consecutive block of fungal growth. Surprisingly, in strong contrast to nystatin and filipin, natamycin did not change the permeability of the yeast plasma membrane under conditions that growth was blocked. Also, in ergosterol containing model membranes, natamycin did not cause a change in bilayer permeability. This demonstrates that natamycin acts via a novel mode of action and blocks fungal growth by binding specifically to ergosterol.  相似文献   

15.
Summary The polyene antibiotic filipin was used as a probe for the detection of cholesterol in the cell membranes of eosinophils isolated from the peritoneal exudate of rats. A homogenous distribution of filipin-sterol complexes was observed, both in thin sections and freeze-fracture replicas throughout the whole plasma membrane but not in the membrane of pynocytic vesicles, Golgi complex, endoplasmic reticulum, mitochondria and the nucleus. Few complexes were seen in freeze-fracture replicas showing the membrane of the specific granules. Treatment of living cells with filipin induced aggregation of filipin-sterol complexes at some points of the plasma membrane.  相似文献   

16.
Dieter Volkmann 《Planta》1981,151(2):180-188
The peripheral secretion tissue of the root cap of Lepidium sativum L. was investigated by electronmicroscopy and freeze-fracturing in order to study structural changes of membranes involved in the secretion process of polysaccharide slime. Exocytosis of slime-transporting vesicles occurs chiefly in the distal region of the anticlinal cell walls. The protoplasmic fracture face (PF) of the plasmalemma of this region is characterized by a high number of homogenously distributed intramembranous particles (IMPs) interrupted by areas nearly free of IMPs. Near such areas slime-transporting vesicles are found to be underlying the plasma membrane. It can be concluded that areas poor in particles are prospective sites for membrane fusion. During the formation of slime-transporting vesicles, the number of IMPs undergoes a striking change in the PF of dictyosome membranes and their derivatives. It is high in dictyosome cisternae and remarkably lower in the budding region at the periphery of the cisternae. Slime-transporting vesicles are as poor in IMPs as the areas of the plasmalemma. Microvesicles rich in IMPs are observed in the surroundings of dictyosomes. The results indicate that in the plasmalemma and in membranes of the Golgi apparatus special classes of proteins — recognizable as IMPs — are displaced laterally into adjacent membrane regions. Since the exoplasmic fracture face (EF) of these membranes is principally poor in particles, it can be concluded that membrane fusion occurs in areas characterized by a high quantity of lipid molecules. It is obvious that the Golgi apparatus regulates the molecular composition of the plasma membrane by selection of specific membrane components. The drastic membrane transformation during the formation of slime-transporting vesicles in the Golgi apparatus causes the enrichment of dictyosome membranes by IMPs, whereas the plasma membrane probably is enriched by lipids. The structural differentiations in both the plasma membrane and in Golgi membranes are discussed in relation to membrane transformation, membrane flow, membrane fusion, and recycling of membrane constituents.Abbreviations PF protoplasmic fracture face - EF exoplasmic fracture face - IMP intramembranous particle  相似文献   

17.
The polyene antibiotic filipin was used as a probe for the detection of cholesterol in the cell membranes of eosinophils isolated from the peritoneal exudate of rats. A homogenous distribution of filipin-sterol complexes was observed, both in thin sections and freeze-fracture replicas throughout the whole plasma membrane but not in the membrane of pynocytic vesicles, Golgi complex, endoplasmic reticulum, mitochondria and the nucleus. Few complexes were seen in freeze-fracture replicas showing the membrane of the specific granules. Treatment of living cells with filipin induced aggregation of filipin-sterol complexes at some points of the plasma membrane.  相似文献   

18.
The polyene antibiotic, filipin, was used as a probe for the detection of sterols in the freeze-fractured plasma membrane and the flagellar membranes of the pathogenic protozoa, Tritrichomonas foetus. A homogeneous distribution of filipin-sterol complexes was seen throughout the plasma membrane, and the membrane of the three anterior and the one recurrent flagella. No or very few filipin-sterol complexes were observed in some specialized regions such as the base of the flagella (necklace), the portion of the recurrent flagellum, and that part of the cell body to which the flagellum was attached. The density of filipin-sterol complexes varied from one cell to the other. In some cells, about 205 complexes/μm2 were seen. A larger number of filipin-sterol complexes were observed on both faces of the membrane of cytoplasmic structures, probably corresponding to vacuoles. No complexes were seen in the nuclear membrane and in the membrane of the endoplasmic reticulum. Very few or no complexes were observed in the membrane of the hydrogenosomes. Treatment of living cells with filipin induced aggregation of filipin-sterol complexes at some points of the plasma membrane.  相似文献   

19.
Moeller CH  Mudd JB 《Plant physiology》1982,70(5):1554-1561
Filipin was used as a cytochemical probe for membrane sterols in the root storage tissue of the red beet Beta vulgaris L. and the chloroplasts of Spinacia oleracea L. In unfixed beet tissue, filipin lysed the cells. Freeze-fracture replicas revealed that the filipin-sterol complexes were tightly aggregated in the plasma membrane, while in thin section the complexes corrugated the plasma membrane. If the cells were fixed with glutaraldehyde prior to the filipin treatment, the cell structure was preserved. Filipin-induced lesions were dispersed or clustered loosely in the plasma membrane. A few filipin-sterol complexes were observed in the tonoplast. In spinach chloroplasts, filipin-sterol complexes were limited to the outer membrane of the envelope and were not found in the inner membrane of the envelope or in the lamellar membranes. If the filipin-sterol complexes accurately mapped the distribution of membrane sterols, then sterol was located predominantly in the plasma membrane of the red beet and in the outer membrane of the chloroplast envelope. Furthermore, the sterol may be heterogenously distributed laterally in both these membranes.  相似文献   

20.
Using filipin and freeze-fracture electron microscopy, we examined the distribution of membrane cholesterol during the fusion of myoblasts in vitro. The early stages of fusion were characterized by the depletion of cholesterol from the membrane apposition sites, at which the plasma membranes of two adjacent cells were in close contact. At first, filipin-cholesterol complexes were absent from the plasma membrane of one cell only and were distributed homogeneously on the membrane of the other cell. Eventually, both of the closely apposed membranes became almost completely free the filipin-cholesterol complexes. Membrane fusion took place at several points within the filipin-cholesterol complex-free areas. In later stages, the cytoplasms of the fusing cells became confluent by fenestration of the plasma membranes formed with the filipin-cholesterol complex-free regions. Our observations suggest that membrane cholesterol is reorganized at these fusion sites and that fusion initiated by the juxtaposition of the cholesterol-free areas of each plasma membrane of the adjacent cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号