首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine(DA), the most widely distributed in the nervous system and functionally important chemical signal, is synthesized in DA-ergic neurons from L-tyrosine by means of two enzymes, tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). Apart from the enzymes, specific DA transporter is an attribute of DA-ergic neurons. In the mid eighties of the last century, in addition to DA-ergic neurons, those expressing only one enzyme, TH or AADC, have been discovered. These "monoenzymatic" neurons occurred to be more numerous and more widely distributed in the brain compared to DA-ergic neurons that manifests their wide involvement to the brain functioning. It has been demonstrated that the monoenzymatic neurons expressing complementary enzymes of DA synthesis produce this neurotransmitter in cooperation. In this case, L-tyrosine is transformed to L-DOPA in TH containing neurons that is followed by L-DOPA release and uptake from the intercellular space to AADC containing neurons for DA synthesis. Moreover, the L-DOPA uptake to DA-ergic or serotoninergic neurons results either in the increase or the onset of DA synthesis in addition to serotonin, respectively. The expression of the enzymes of DA synthesis in non-dopaminergic neurons is one of the adaptive reactions serving to compensate the functional insufficiency of DA-ergic neurons. For instance, hyperprolactinemia and the deficiency of DA, prolactin-inhibiting hormone, which is developed under degeneration of DA-ergic neurons of the arcuate nucleus, are compensated with time due to the increase of the number of monoenzymatic neurons and cooperative synthesis of DA in the nucleus. It is supposed that the same compensatory cooperative synthesis of DA is turned on under the degeneration of DA-ergic neurons of the nigrostriatal system that is manifested by the appearance of non-dopaminergic neurons expressing enzymes of DA synthesis in the deafferentated striatum. The expression of the enzymes of DA synthesis in non-dopaminergic neurons is under the control by intercellular signals, catecholamines, neurotrophic (growth) factors and, perhaps, hormones. Thus, non-dopaminergic monoenzymatic neurons expressing enzymes of DA synthesis produce this neurotransmitter in cooperation that is a compensatory reaction under functional insufficiency of DA-ergic neurons, in neurodegenerative diseases, hyperprolactinemia and Parkinson's disease, in particular.  相似文献   

2.
Our hypothesis was tested in respect to dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the DA synthetic pathway. According to the hypothesis, L-dihydroxyphenylalanine (L-DOPA) synthesised in tyrosine hydroxylase(TH)-expressing neurons for conversion to dopamine. The mediobasal hypothalamus of rats on the 21st embryonic day was used as an experimental model. The fetal substantia nigra containing dopaminergic neurons served as control. Dopamine and L-DOPA were measured by high performance liquid chromatography in cell extracts and incubation medium in presence or absence of L-tyrosine. L-tyrosine administration increased L-DOPA synthesis in the mediobasal hypothalamus and substantia nigra. Moreover, L-tyrosine provoked an increase of dopamine synthesis in substantia nigra and a decrease in the mediobasal hypothalamus. This is, probably, due to an L-tyrosine-induced competitive inhibition of the L-DOPA transport to monoenzymatic AADC neurons after its release from the monoenzymatic TH neurons. This study provides a convincing evidence of dopamine synthesis by non-dopaminergic neurons expressing TH or AADC, in cooperation.  相似文献   

3.
The hypothalamic A11 region has been identified in several species including rats, mice, cats, monkeys, zebrafish, and humans as the primary source of descending dopamine (DA) to the spinal cord. It has been implicated in the control of pain, modulation of the spinal locomotor network, restless leg syndrome, and cataplexy, yet the A11 cell group remains an understudied dopaminergic (DAergic) nucleus within the brain. It is unclear whether A11 neurons in the mouse contain the full complement of enzymes consistent with traditional DA neuronal phenotypes. Given the abundance of mouse genetic models and tools available to interrogate specific neural circuits and behavior, it is critical first to fully understand the phenotype of A11 cells. We provide evidence that, in addition to tyrosine hydroxylase (TH) that synthesizes L-DOPA, neurons within the A11 region of the mouse contain aromatic L-amino acid decarboxylase (AADC), the enzyme that converts L-DOPA to dopamine. Furthermore, we show that the A11 neurons contain vesicular monoamine transporter 2 (VMAT2), which is necessary for packaging DA into vesicles. On the contrary, A11 neurons in the mouse lack the dopamine transporter (DAT). In conclusion, our data suggest that A11 neurons are DAergic. The lack of DAT, and therefore the lack of a DA reuptake mechanism, points to a longer time of action compared to typical DA neurons.  相似文献   

4.
Dopamine (DA), synthesized in the mediobasal hypothalamus by dopaminergic neurons containing two enzymes of DA synthesis–tyrosine hydroxylase and decarboxylase of aromatic L-amino acids, or by monoenzymatic non-dopaminergic neurons containing one DA synthesis enzyme in cooperation, is known to have an inhibitory effect on prolactin secretion. Deterioration of this inhibitory control leads to an increase in prolactin concentration in the blood and to the development of hyperprolactinemia syndrome. In a rat model of hyperprolactinemia induced by administration of a neurotoxin causing degeneration of dopaminergic and noradrenergic neurons, the level of DA first decreases, leading to an increase in prolactin level (decompensation stage), while later both levels are restored to normal (compensation stage). However, the mechanism of such compensation is still not clear. The aim of the present study was to analyze whether the increase in cooperative synthesis of DA by monoenzymatic neurons during hyperprolactinemia is a manifestation of a compensatory mechanism representing a particular case of neuroplasticity. The level of cooperative synthesis in the hyperprolactinemia model and in the control was estimated as the level of synthesis of DA and L-dihydroxyphenylalanine (L-DOPA)–an intermediate product of DA synthesis, when L-DOPA transfer from neurons containing tyrosine hydroxylase into neurons containing aromatic L-amino acid decarboxylase is inhibited. The level of DA synthesis during the decompensation stage was not changed, while during the compensation stage it was lower than the control. Along with a reduction in DA level, during the compensation stage an increase in the extracellular L-DOPA level in the medium was detected. Thus, the compensation of DA deficiency after degeneration of dopaminergic neurons in the mediobasal hypothalamus is due to the increase in cooperative synthesis of DA by monoenzymatic neurons containing one of the complementary enzymes of the DA synthesis pathway.  相似文献   

5.
Synaptic transmission depends on neurotransmitter pools stored within vesicles that undergo regulated exocytosis. In the brain, the vesicular monoamine transporter-2 (VMAT2) is responsible for the loading of dopamine (DA) and other monoamines into synaptic vesicles. Prior to storage within vesicles, DA synthesis occurs at the synaptic terminal in a two-step enzymatic process. First, the rate-limiting enzyme tyrosine hydroxylase (TH) converts tyrosine to di-OH-phenylalanine. Aromatic amino acid decarboxylase (AADC) then converts di-OH-phenylalanine into DA. Here, we provide evidence that VMAT2 physically and functionally interacts with the enzymes responsible for DA synthesis. In rat striata, TH and AADC co-immunoprecipitate with VMAT2, whereas in PC 12 cells, TH co-immunoprecipitates with the closely related VMAT1 and with overexpressed VMAT2. GST pull-down assays further identified three cytosolic domains of VMAT2 involved in the interaction with TH and AADC. Furthermore, in vitro binding assays demonstrated that TH directly interacts with VMAT2. Additionally, using fractionation and immunoisolation approaches, we demonstrate that TH and AADC associate with VMAT2-containing synaptic vesicles from rat brain. These vesicles exhibited specific TH activity. Finally, the coupling between synthesis and transport of DA into vesicles was impaired in the presence of fragments involved in the VMAT2/TH/AADC interaction. Taken together, our results indicate that DA synthesis can occur at the synaptic vesicle membrane, where it is physically and functionally coupled to VMAT2-mediated transport into vesicles.  相似文献   

6.
Sumary 1. We investigate here for the first time in primate brain the combinatorial expression of the three major functionally relevant proteins for catecholaminergic neurotransmission tyrosine hydroxylase (TH), aromatic acid acid decarboxylase (AADC), and the brain-specific isoform of the vesicular monoamine transporter, VMAT2, using highly specific antibodies and immunofluorescence with confocal microscopy to visualize combinatorial expression of these proteins.2. In addition to classical TH, AADC, and VMAT2-copositive catecholaminergic neurons, two unique kinds of TH-positive neurons were identified based on co-expression of AADC and VMAT2.3. TH and AADC co-positive, but VMAT2-negative neurons, are termed “nonexocytotic catecholaminergic TH neurons.” These were found in striatum, olfactory bulb, cerebral cortex, area postrema, nucleus tractus solitarius, and in the dorsal motor nucleus of the vagus.4. TH-positive neurons expressing neither AADC nor VMAT2 are termed “dopaergic TH neurons.” We identified these neurons in supraoptic, paraventricular and periventricular hypothalamic nuclei, thalamic paraventicular nucleus, habenula, parabrachial nucleus, cerebral cortex and spinal cord. We were unable to identify any dopaergic (TH-positive, AADC-negative) neurons that expressed VMAT2, suggesting that regulatory mechanisms exist for shutting off VMAT2 expression in neurons that fail to biosynthesize its substrates.5. In several cases, the corresponding TH phenotypes were identified in the adult rat, suggesting that this rodent is an appropriate experimental model for further investigation of these TH-positive neuronal cell groups in the adult central nervous system. Thus, no examples of TH and VMAT2 co-positive neurons lacking AADC expression were found in rodent adult nervous system.6. In conclusion, the adult mammalian nervous system contains in addition to classical catecholaminergic neurons, cells that can synthesize dopamine, but cannot transport and store it in synaptic vesicles, and neurons that can synthesize only L-dopa and lack VMAT2 expression. The presence of these additional populations of TH-positive neurons in the adult primate CNS has implications for functional catecholamine neurotransmission, its derangement in disease and drug abuse, and its rescue by gene therapeutic maneuvers in neurodegenerative diseases such as Parkinson's disease.  相似文献   

7.
Because age-related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of several presynpatic DAergic markers [DA, homovanillic acid, tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT)] in post-mortem human striatum (caudate and putamen) from 56 neurologically normal subjects aged 1 day to 103 years. Striatal DA levels exhibited pronounced (2- to 3-fold) post-natal increases through adolescence and then decreases during aging. Similarly, TH and AADC increased almost 100% during the first 2 post-natal years; however, the levels of TH and, to a lesser extent, AADC then declined to adult levels by approximately 30 years of age. Although VMAT2 and DAT levels closely paralleled those of TH, resulting in relatively constant TH to transporter ratios during development and aging, a modest but significant decline (13%) in DAT levels was observed in only caudate during aging. This biphasic post-natal pattern of the presynaptic markers suggests that striatal DAergic innervation/neuropil appears to continue to develop well past birth but appears to become overelaborated and undergo regressive remodeling during adolescence. However, during adulthood, a striking discrepancy was observed between the loss of DA and the relative preservation of proteins involved in its biosynthesis and compartmentation. This suggests that declines in DA-related function during adulthood and senescence may be explained by losses in DA per se as opposed to DAergic neuropil.  相似文献   

8.
The study has evaluated in vivo, ex vivo and in vitro ontogenesis and functional significance of the arcuate nucleus neurons expressing either individual enzymes of dopamine synthesis, tyrosine hydroxylase or aromatic L-amino acid decarboxylase as well as both of them (dopaminergic neurons) in rats from the 17th embryonic day to adulthood. Monoenzymatic tyrosine hydroxylase-containing neurons were initially observed on the 18th embryonic day. On the 20-21 day, the monoenzymatic tyrosine hydroxylase- or aromatic L-amino acid decarboxylase-expressing neurons comprised more than 99% of the whole neuron population expressing the dopamine-synthesizing enzymes. The dopamine production in the fetus arcuate nucleus was sufficient to provide an inhibitory control of prolactin secretion like in adults. The data suggest a possibility of the dopamine synthesis in the fetus arcuate nucleus by the monoenzymatic neurons containing either tyrosine hydroxylase or aromatic L-amino acid decarboxylase-expressing neurons in co-operation.  相似文献   

9.
U J Kang  W Y Lee  J W Chang 《Human cell》2001,14(1):39-48
This article reviews the mechanism of dopamine delivery in the CNS in order to determine the optimal set of genes for effective gene therapy in Parkinson's disease (PD). Systematic neurobiological investigation of the biochemical steps has revealed that tyrosine hydroxylase (TH), which has been used in earlier studies, functions only when the essential cofactor, tetrahydrobiopterin (BH1) is present. Transduction of the gene for GTP cyclohydrolase I, the first and rate-limiting step in BH1 synthesis, along with the TH gene, generated cells that are capable of producing L-DOPA spontaneously both in vitro and in vivo. When the aromatic L-amino acid decarboxylase (AADC) gene was added as a third gene, in an attempt to increase the conversion of L-DOPA to dopamine, feedback inhibition by the end product, dopamine, on TH activity resulted. To circumvent this problem, we employed a complementary strategy. Gene transfer of the vesicular monoamine transporter was combined with AADC and produced genetically modified cells that can convert L-DOPA to dopamine and store it for gradual release. This approach provided a means to regulate final dopamine delivery by controlling precursor doses and to achieve more sustained delivery of dopamine. Our investigation into determining the genes necessary for optimal dopamine delivery has been facilitated by in vivo biochemical assays using microdialysis. This technique has provided us with a clear and quantitative tool to compare the effects of various genes involved in dopamine synthesis and processing.  相似文献   

10.
Although L-DOPA is the drug of choice for Parkinson's disease, prolonged L-DOPA therapy results in decreased drug effectiveness and the appearance of motor complications. This may be due in part to the progressive loss of the enzyme, aromatic L-amino acid decarboxylase (AADC). We have developed an adeno-associated virus vector (AAV-hAADC) that contains human AADC cDNA under the control of the cytomegalovirus promoter. Infusion of this vector into the striatum of parkinsonian rats and monkeys improves L-DOPA responsiveness by improving AADC-mediated conversion of L-DOPA to dopamine. This is now the basis of a proposed therapy for advanced Parkinson's disease. A key concern has been that over-production of dopamine in striatal neurons could cause dopamine toxicity. To investigate this possibility in a controlled system, mixed striatal primary rat neuronal cultures were prepared. Exposure of cultures to high concentrations of L-DOPA induced the following changes: cell death in nigral and striatal neurons, aggregation of neurofilaments and focal axonal swellings, abnormal expression of DARPP-32, and activation of astroglia and microglial cells. Transduction of cultures with AAV-hAADC resulted in efficient and sustained neuronal expression of the AADC protein and prevented all the L-DOPA-induced toxicities. The protective effects were due primarily to AADC-dependent conversion of L-DOPA to dopamine and an increase in induction of vesicular monoamine transporter resulting in dopamine storage in cultured cells. These results suggest a neuroprotective role for AADC gene transfer against L-DOPA toxicity.  相似文献   

11.
Aromatic L-amino acid decarboxylase (AADC) is necessary for conversion of L-DOPA to dopamine. Therefore, AADC gene therapy has been proposed to enhance pharmacological or gene therapies delivering L-DOPA. However, addition of AADC to the grafts of genetically modified cells expressing tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1), which produce L-DOPA in parkinsonian rats, resulted in decreased production of L-DOPA and dopamine owing to feedback inhibition of TH by dopamine. End-product feedback inhibition has been shown to be mediated by the regulatory domain of TH, and site-specific mutation of serine 40 makes TH less susceptible to dopamine inhibition. Therefore, we investigated the efficacy of using TH with serine 40 mutated to leucine (mTH) in an ex vivo gene-therapy paradigm. Primary fibroblasts (PF) from Fischer 344 rats were transduced with retrovirus to express mTH or wild-type rat TH cDNA (wtTH). Both cell types were also transduced with GCH1 to provide the obligate TH cofactor, tetrahydrobiopterin. PF transfected with AADC were used as coculture and cografting partners. TH activities and L-DOPA production in culture were comparable between PFwtTHGC and PFmTHGC cells. In cocultures with PFAADC cells, PFmTHGC cells showed significant reduction in the inhibitory effect of dopamine compared with PFwtTHGC cells. In vivo microdialysis measurement showed that cografting PFAADC cells with PFmTHGC cells resulted in smaller decreases in L-DOPA and no reduction in dopamine levels compared with cografts of PFAADC cells with PFwtTHGC cells, which decreased both L-DOPA and dopamine levels. Maintenance of dopamine levels with lower levels of L-DOPA would result in more focused local delivery of dopamine and less potential side-effects arising from L-DOPA diffusion into other structures. These data support the hypothesis that mutation of serine 40 attenuates TH end-product inhibition in vivo and illustrates the importance of careful consideration of biochemical pathways and interactions between multiple genes in gene therapy.  相似文献   

12.
Alpha-synuclein is a presynaptic protein strongly implicated in Parkinson's disease (PD). Because dopamine neurons are invariably compromised during pathogenesis in PD, we have been exploring the functions of alpha-synuclein with particular relevance to dopaminergic neuronal cells. We previously discovered reduced tyrosine hydroxylase (TH) activity and minimal dopamine synthesis in stably-transfected MN9D cells overexpressing either wild-type or A53T mutant (alanine to threonine at amino acid 53) alpha-synuclein. TH, the rate-limiting enzyme in dopamine synthesis, converts tyrosine to l-dihydroxyphenylalanine (L-DOPA), which is then converted to dopamine by the enzyme, aromatic amino acid decarboxylase (AADC). We confirmed an interaction between alpha-synuclein and AADC in striatum. We then sought to determine whether wild-type or A53T mutant alpha-synuclein might have affected AADC activity in dopaminergic cells. Using HPLC with electrochemical detection, we measured dopamine and related catechols after L-DOPA treatments to bypass the TH step. We discovered that while alpha-synuclein did not reduce AADC protein levels, it significantly reduced AADC activity and phosphorylation in our cells. These novel findings further support a role for alpha-synuclein in dopamine homeostasis and may explain, at least in part, the selective vulnerability of dopamine neurons that occurs in PD.  相似文献   

13.
14.
Dopamine has been hypothesized as a contributing factor for the selective degeneration of dopaminergic neurons in Parkinson's disease. However, the cytotoxic mechanisms of dopamine and its metabolites remain poorly understood. Using a stable aromatic amino acid decarboxylase (AADC) expressing a fibroblast cell line, we previously demonstrated a novel, non-oxidative cytotoxicity of intracellular dopamine. In this study, we further investigate the roles of dopamine metabolism and disposition proteins against intracellular dopamine cytotoxicity by co-expressing these factors in AADC-expressing cells. Our results indicate that overexpression of the vesicular monoamine transporter and monoamine oxidase A-induced protection against intracellular dopamine toxicity, and conversely that pharmacological inhibition of these pathways potentiated L-DOPA toxicity in catecholaminergic PC12 cells. Macrophage migration inhibitory factor and glutathione S-transferase (GST), factors that have recently been shown to be involved in dopamine metabolism, also exhibited a strong protective role against intracellular dopamine cytotoxicity. Our results support a potential role for non-oxidative cytoplasmic dopamine toxicity, and imply that disruption in dopamine disposition and/or metabolism could underlie the progressive degeneration of dopaminergic neurons in Parkinson's disease.  相似文献   

15.
The dopamine transporter (DAT) regulates synaptic dopamine (DA) in striatum and modulation of DAT can affect locomotor activity. Thus, in Parkinson’s disease (PD), DAT loss could affect DA clearance and locomotor activity. The locomotor benefits of L-DOPA may be mediated by transport through monoamine transporters and conversion to DA. However, its impact upon DA reuptake is unknown and may modulate synaptic DA. Using the unilateral 6-OHDA rat PD model, we examined [3H]DA uptake dynamics in relation to striatal DAT and tyrosine hydroxylase (TH) protein loss compared with contralateral intact striatum. Despite >70% striatal DAT loss, DA uptake decreased only ∼25% and increased as DAT loss approached 99%. As other monoamine transporters can transport DA, we determined if norepinephrine (NE) and serotonin (5-HT) differentially modulated DA uptake in lesioned striatum. Unlabeled DA, NE, and 5-HT were used, at a concentration that differentially inhibited DA uptake in intact striatum, to compete against [3H]DA uptake. In 6-OHDA lesioned striatum, DA was less effective, whereas NE was more effective, at inhibiting [3H]DA uptake. Furthermore, norepinephrine transporter (NET) protein levels increased and desipramine was ∼two-fold more effective at inhibiting NE uptake. Serotonin inhibited [3H]DA uptake, but without significant difference between lesioned and contralateral striatum. L-DOPA inhibited [3H]DA uptake two-fold more in lesioned striatum and inhibited NE uptake ∼five-fold more than DA uptake in naïve striatum. Consequently, DA uptake may be mediated by NET when DAT loss is at PD levels. Increased inhibition of DA uptake by L-DOPA and its preferential inhibition of NE over DA uptake, indicates that NET-mediated DA uptake may be modulated by L-DOPA when DAT loss exceeds 70%. These results indicate a novel mechanism for DA uptake during PD progression and provide new insight into how L-DOPA affects DA uptake, revealing possible mechanisms of its therapeutic and side effect potential.  相似文献   

16.
The present study investigated the effects of levodopa, a precursor of dopamine (DA) therapeutically used for the treatment of Parkinson's disease, on DA transport in the two different systems, COS-7 cells heterologously expressing rat monoamine transporter cDNA and in monoaminergic cell lines PC12 and SK-N-SH. Levodopa enhanced uptake of [3H]DA and [3H]norepinephrine (NE) but not [3H]serotonin in the transfected COS-7 cells in a concentration-dependent manner. On the other hand, in PC12 and SK-N-SH cells where NET is functionally expressed, levodopa enhanced [3H]DA and [3H]NE uptake at low concentrations and inhibited the uptake at higher concentrations. The effects of levodopa on catecholamine transporters in the opposite direction suggest a different mechanism at the intra- and extracellular sites in a levodopa transport-dependent and independent manner.  相似文献   

17.
The monoamine transporter of dopamine (DA), noradrenaline, and 5-hydroxytryptamine synaptic vesicles was assayed in rat and human brain homogenates by in vitro binding of [3H]dihydrotetrabenazine. [3H]Reserpine, a second ligand of the vesicular monoamine transporter, could not be used. [3H]Dihydrotetrabenazine binding in rat brain was stable after 72 h at 22 degrees C postmortem. In major human brain regions, [3H]dihydrotetrabenazine binding was specific and saturable (KD, 2.7 nM). Displacement constants by substrates or inhibitors of vesicular monoamine uptake, and regional distribution in human brain were similar to those found in rodents. The highest densities of binding sites were observed in caudate nucleus, putamen, and accumbens nucleus. In caudate nucleus and in putamen from normal human subjects, [3H]dihydrotetrabenazine binding and homovanillic acid concentration were significantly or nearly significantly correlated. A weaker correlation was found between [3H]dihydrotetrabenazine binding and DA, in association with a higher variability of DA. [3H]Dihydrotetrabenazine binding in caudate nucleus and in putamen decreased significantly with age, unlike DA and homovanillic acid concentrations. The results establish [3H]dihydrotetrabenazine as a presynaptic monoaminergic ligand of interest for studies on postmortem human brain.  相似文献   

18.
Toxic and Protective Effects of l-DOPA on Mesencephalic Cell Cultures   总被引:9,自引:1,他引:8  
Abstract: The autoxidation of L-DOPA or dopamine (DA) and the metabolism of DA by monoamine oxidase generate a spectrum of toxic species, namely, hydrogen peroxide, oxy radicals, semiquinones, and quinones. When primary dissociated cultures of rat mesencephalon were incubated with L-DOPA (200 μ M ) for 48 h, the number of tyrosine hydroxylase-positive neurons (DA neurons) was reduced to 69.7% of control values, accompanied by a decrease in [3H]DA uptake to 42.3% of control values; the remaining DA neurons exhibited reduced neurite length and overall deterioration. Lack of simultaneous change in the number of neurons stained with neuron-specific enolase indicated that toxicity was relatively specific for DA neurons. At the same time, the level of GSH, a major cellular antioxidant, rose to 125.2% of control values. Thus, exposure of mesencephalic cultures to L-DOPA results in both damaging and antioxidant actions. Ascorbate (200 μ M ), an antioxidant, prevented the rise in GSH. The effect of ascorbate on GSH points to an oxidative signal to initiate the rise in GSH content. On the other hand, neither inhibition of monoamine oxidase with pargyline nor addition of superoxide dismutase or catalase to the culture medium prevented the rise in GSH level or the loss in [3H]DA uptake. The latter results tend to exclude the products of monoamine oxidase activity or the presence of hydrogen peroxide or superoxide in the medium as responsible agents for the rise in GSH or neuronal toxicity. In cultures treated with L-buthionine sulfoximine (L-BSO), an inhibitor of GSH synthesis, l-DOPA prevented cell death by L-BSO.  相似文献   

19.
The relationship between phenolsulfotransferase (PST) and catechol-O-methyltransferase (COMT) in the metabolism of free 3,4-dihydroxyphenylethylamine (DA, dopamine) in the rat brain was studied. In rats not pretreated with a monoamine oxidase (MAO) inhibitor a huge increase of free DA in the brain, following an intraperitoneal injection of L-3,4-dihydroxyphenylalanine (L-DOPA) or an intraventricular injection of free DA, did not lead to any noticeable change in DA sulfate or 3-methoxytyramine (3-MT), which remained undetectable by the present HPLC method. However, in rats previously treated with the MAO inhibitors pargyline or tranylcypromine, the same L-DOPA or free DA treatment resulted in significant increases in both 3-MT and DA sulfate in the hypothalamus, brainstem, and striatum. This response of COMT and PST was not affected by prior treatment of the rats with 6-hydroxydopamine, which suggests that O-methylation and sulfoconjugation occur outside adrenergic neurons not destroyed by the neurotoxin. Inhibition of COMT activity did not lead to any increase in DA sulfate, which showed that despite their common mode of action (both enzymes react preferentially at the same hydroxyl group in the DA molecule), the two enzymes are not competitive. After MAO inhibition there were strong correlations between an increase in DA sulfate and 3-MT on the one hand, and between free DA and 3-MT on the other. Because 3-MT is a marker of central DA release, these data suggest that inhibition of MAO activity not only affects DA metabolism by this enzyme but also influences DA release in the rat brain.  相似文献   

20.
Dopamine-deficient mice (DA-/- ), lacking tyrosine hydroxylase (TH) in dopaminergic neurons, become hypoactive and aphagic and die by 4 weeks of age. They are rescued by daily treatment with L-3,4-dihydroxyphenylalanine (L-DOPA); each dose restores dopamine (DA) and feeding for less than 24 hr. Recombinant adeno-associated viruses expressing human TH or GTP cyclohydrolase 1 (GTPCH1) were injected into the striatum of DA-/- mice. Bilateral coinjection of both viruses restored feeding behavior for several months. However, locomotor activity and coordination were partially improved. A virus expressing only TH was less effective, and one expressing GTPCH1 alone was ineffective. TH immunoreactivity and DA were detected in the ventral striatum and adjacent posterior regions of rescued mice, suggesting that these regions mediate a critical DA-dependent aspect of feeding behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号