首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been found that extirpation of the orbital zones of the cerebral cortex in dogs in which the structures of the limbic and striate levels of nervous integration were previously ablated, produced more profound disturbances of the higher nervous activity than the previous operations. Not only conditioned positive and inhibitory reactions were affected, but unconditioned alimentary reflexes as well, while food motivation sharply decreased. Further experiments on the operated animals and could go on, only when alimentary excitability was enhanced. A conclusion has been drawn that the orbital zones of the cerebral cortex are directly related to the achievement of an integrated alimentary behavioral reaction.  相似文献   

2.
The cerebral cortex of the echidna is notable for its extensive folding and the positioning of major functional areas towards its caudal extremity. The gyrification of the echidna cortex is comparable in magnitude to prosimians and cortical thickness and neuronal density are similar to that seen in rodents and carnivores. On the other hand, many pyramidal neurons in the cerebral cortex of the echidna are atypical with inverted somata and short or branching apical dendrites. All other broad classes of neurons noted in therian cortex are also present in the echidna, suggesting that the major classes of cortical neurons evolved prior to the divergence of proto- and eutherian lineages. Dendritic spine density on dendrites of echidna pyramidal neurons in somatosensory cortex and apical dendrites of motor cortex pyramidal neurons is lower than that found in eutheria. On the other hand, synaptic morphology, density and distribution in somatosensory cortex are similar to that in eutheria. In summary, although the echidna cerebral cortex displays some structural features, which may limit its functional capacities (e.g. lower spine density on pyramidal neurons), in most structural parameters (e.g. gyrification, cortical area and thickness, neuronal density and types, synaptic morphology and density), it is comparable to eutheria.  相似文献   

3.
Xu X  Zhang Z 《Life sciences》2006,79(16):1553-1560
There is increasing evidence that estrogen is involved in CNS activity, particularly memory. Several studies have suggested that estrogen improves memory by altering neuronal plasticity, including increased hippocampus CA1 dendritic spine density and enhanced long-term potentiation (LTP). In the present study, we investigated the effects of estrogen on the ultrastructural modifications in cerebral frontal cortex and hippocampus of female ovariectomized mice. One week after ovariectomy (Ovx), ICR female mice received daily injection of estradiol benzoate (EB, 20, 100, 200 microg/kg, s.c.) for 4-5 weeks. Spatial memory was then tested in the water maze, and the overall locomotor activity was monitored in open field. Synaptic morphologic parameters were examined using a graph analyzer. The results from open field did not show any alterations in locomotor activity following Ovx and EB replacement. Both the latency to find the platform and the distance to reach the platform were significantly reduced in Ovx mice by EB at 20 or 100 microg/kg when compared to vehicle treated Ovx mice. The results from synaptic ultrastructural measurement and analysis did not show any differences in hemispheric or hippocampal volumes, the numeric synaptic density, the length of active zones, or the curvature of synaptic interface among Sham, Ovx, and Ovx plus EB replacement mice. However, EB replacement effectively normalized the changes induced by Ovx, reducing the width of the synaptic cleft, enlarging the thickness of postsynaptic density (PSD), and increasing the number of synaptic vesicles in the presynapse in both cerebral cortex Fr1 and hippocampus CA1 areas. These results suggest that the beneficial effects of EB on improving memory behavior of Ovx female mice are associated with the changes of some subtle structural parameters of synapses, including the width of PSD and synaptic cleft rather than some basic and permanent structure in frontal cortex and hippocampus regions.  相似文献   

4.
J J Chun  C J Shatz 《Neuron》1988,1(4):297-310
To examine the distribution of synaptic vesicle antigens during development of the cerebral cortex, antibodies against synapsin I and p65 were used on sections of cat cerebral cortex between E40 and adulthood. In the adult, the layers of the cerebral cortex are immunoreactive for each of these antigens, while the white matter is free of staining. In contrast, the fetal and neonatal pattern of immunostaining is reversed: the cortical plate (future cortical layers) is devoid of immunoreactivity, while the marginal (future layer 1) and the intermediate zones (future white matter) are stained. Electron microscopic immunohistochemistry shows that immunolabeling is associated with presynaptic nerve terminals in the adult and during development. These observations suggest that during development the white matter is a transient synaptic neuropil and that a global redistribution of synapses takes place as the mature pattern of connections within the cerebral cortex emerges.  相似文献   

5.
It has been found that the activity of LDG, PDG, IDG, SDG, NADN-DG, NADFN-DG, CO, G-6-FDG and 6-FGDG in the cerebral cortex, liver and kidneys of rabbits with a strong type of nervous activity, as a rule, is higher than in the animals with a weak type of the nervous system. Between the animals with different types of the nervous system distinctions are also revealed in the character of regulation of a number of metabolic cycles. It is suggested that typological features of the nervous system are determined by the character of metabolic processes.  相似文献   

6.
Histological and hypoxic changes in different tissue elements (neurones and glia), testifying to active disturbances of metabolic processes, are observed in the sensorimotor cerebral cortex of rabbits with experimental neurosis. These changes indicate a complex structural-metabolic rearrangement, occuring with this form of CNS pathology. The results of the study may be used for investigation of mechanisms compensating disturbances in the higher nervous activity and for pathogenetically grounded therapy.  相似文献   

7.
Higher olfactory processes: perceptual learning and memory.   总被引:2,自引:0,他引:2  
The past year has seen several important findings emerge from studies of higher olfactory processes. The identification of synaptic long-term potentiation in the olfactory cortex, induced via repetitive burst stimulation at the theta rhythm, and physiological activity patterns associated with learning, some of which mimic long-term potentiation induction patterns, have suggested relationships between rhythmic activity, behavioral learning and synaptic plasticity. In addition, the construction of computational models of the olfactory bulb and cortex have generated testable behavioral and physiological predictions which have been supported by experimental evidence.  相似文献   

8.
Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines - the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.  相似文献   

9.
A study was made of the effect of the central nervous system stimulant ethymizol on RNA-polymerase activity of cell nuclei of the rat cerebral cortex and hippocampus during learning with different reinforcements. Ethymizol stimulated the incorporation of 3H-UTP in the TCA-insoluble fraction of hippocampal nuclei during training of the animals in the avoidance response to the light in a Y-shaped mize and training in the reaction of spontaneous alternation of food reinforcements in a complex mize, and decreased the ratio brain cortex/hippocampus RNA-polymerase activity. The data obtained are discussed from the standpoint that the action of ethymizol is consequent on the activation of the genome of nervous cells.  相似文献   

10.
Microglia have been attracting much attention because of their fundamental importance in both the mature brain and the developing brain. Though important roles of microglia in the developing cerebral cortex of mice have been uncovered, their distribution and roles in the developing cerebral cortex in gyrencephalic higher mammals have remained elusive. Here we examined the distribution and morphology of microglia in the developing cerebral cortex of gyrencephalic carnivore ferrets. We found that a number of microglia were accumulated in the germinal zones (GZs), especially in the outer subventricular zone (OSVZ), which is a GZ found in higher mammals. Furthermore, we uncovered that microglia extended their processes tangentially along inner fiber layer (IFL)-like fibers in the developing ferret cortex. The OSVZ and the IFL are the prominent features of the cerebral cortex of higher mammals. Our findings indicate that microglia may play important roles in the OSVZ and the IFL in the developing cerebral cortex of higher mammals.  相似文献   

11.
Bisphenol-A (BPA), a well known endocrine disruptor, impairs learning and memory in rodents. However, the underlying molecular mechanism of BPA induced impairment in learning and memory is not well known. As synaptic plasticity is the cellular basis of memory, the present study investigated the effect of perinatal exposure to BPA on the expression of synaptic proteins neurexin1 (Nrxn1) and neuroligin3 (Nlgn3), dendritic spine density and spatial memory in postnatal male mice. The pregnant mice were orally administered BPA (50 µg/kgbw/d) from gestation day (GD) 7 to postnatal day (PND) 21 and sesame oil was used as a vehicle control. In Morris water maze (MWM) test, BPA extended the escape latency time to locate the hidden platform in 8 weeks male mice. RT-PCR and Immunoblotting results showed significant upregulation of Nrxn1 and Nlgn3 expression in both cerebral cortex and hippocampus of 3 and 8 weeks male mice. This was further substantiated by in-situ hybridization and immunofluorescence techniques. BPA also significantly increased the density of dendritic spines in both regions, as analyzed by rapid Golgi staining. Thus our data suggest that perinatal exposure to BPA impairs spatial memory through upregulation of expression of synaptic proteins Nrxn1 and Nlgn3 and increased dendritic spine density in cerebral cortex and hippocampus of postnatal male mice.  相似文献   

12.
Studies utilizing general learning and memory tasks have suggested the importance of neocortical structural plasticity for memory consolidation. However, these learning tasks typically result in learning of multiple different tasks over several days of training, making it difficult to determine the synaptic time course mediating each learning event. The current study used trace-eyeblink conditioning to determine the time course for neocortical spine modification during learning. With eyeblink conditioning, subjects are presented with a neutral, conditioned stimulus (CS) paired with a salient, unconditioned stimulus (US) to elicit an unconditioned response (UR). With multiple CS-US pairings, subjects learn to associate the CS with the US and exhibit a conditioned response (CR) when presented with the CS. Trace conditioning is when there is a stimulus free interval between the CS and the US. Utilizing trace-eyeblink conditioning with whisker stimulation as the CS (whisker-trace-eyeblink: WTEB), previous findings have shown that primary somatosensory (barrel) cortex is required for both acquisition and retention of the trace-association. Additionally, prior findings demonstrated that WTEB acquisition results in an expansion of the cytochrome oxidase whisker representation and synaptic modification in layer IV of barrel cortex. To further explore these findings and determine the time course for neocortical learning-induced spine modification, the present study utilized WTEB conditioning to examine Golgi-Cox stained neurons in layer IV of barrel cortex. Findings from this study demonstrated a training-dependent spine proliferation in layer IV of barrel cortex during trace associative learning. Furthermore, findings from this study showing that filopodia-like spines exhibited a similar pattern to the overall spine density further suggests that reorganization of synaptic contacts set the foundation for learning-induced neocortical modifications through the different neocortical layers.  相似文献   

13.
Immunocytochemical localization of actin in rat cerebral cortex embedded in the resin LR White was performed using 5 nm colloidal gold as a probe. Antigenicity is maintained throughout the embedding procedure and the low electron opacity of LR White permits fine filamentous structures to be visualized. Control experiments included incubating the sections with normal goat serum or mouse IgG instead of the primary antibody, preadsorbing the antibody with actin from bovine muscle or liver acetone powder, and heat treating the primary antibody. Immunoreactive actin was identified primarily in dendritic spines, particularly in the postsynaptic density (PSD), the subsynaptic web, and the spine apparatus and endothelial and smooth muscle cells of blood vessels. Within dendritic spines, actin which is labeled in the PSD is in continuity with the filaments of the subsynaptic web. These filaments, in turn, are in continuity with the spine apparatus and/or the spine membranes adjacent to the PSD. The PSD may therefore function like other submembranous filamentous arrays which communicate events occurring at the membrane, in this case, the postsynaptic membrane, to the underlying cytoskeletal network, i.e., the subsynaptic web of the spine. It is also suggested that the actin present in the spine may play a role in changes in spine shape and synaptic curvature. Some actin was also seen in the presynaptic process in association with synaptic vesicles, the filamentous network that is contiguous with the synaptic vesicle membrane, and the presynaptic dense projections. Actin may be involved in dynamic processes in the presynaptic ending which include vesicle translocation.  相似文献   

14.
Dosenko  V. E.  Prudnikov  I. M.  Tsyvkin  V. N.  Moibenko  A. A.  Miller  E. D. 《Neurophysiology》2004,36(2):111-115
We studied the proteasomal activity in synaptosomes obtained from tissues of the cerebral cortex, cerebellum, and hippocampus, as well as in the cytoplasm of cells of these brain structures, of rats subjected to long-lasting immobilization stress. It was demonstrated that the chymotrypsin-like activity of proteasomes in synaptosomes of the cerebral cortex and hippocampus of stressed animals was significantly higher (380 and 560%, respectively) as compared with that observed in control rats. The chymotrypsin-like and peptidylglutamyl peptide hydrolase activities of proteasomes in the cytoplasm of cortical cells under stress conditions also increased (210 and 180%, respectively). These data show that the activity of a multicatalytic proteolytic complex is sharply increased in synaptic terminals of cells of the cerebral cortex and hippocampus of stressed animals. The above complex plays a crucial role in the utilization of short-lived proteins whose molecules form receptors and ion channels; the amount of such proteins is especially great in synaptic terminals.  相似文献   

15.
Analysis of the literature on the development of cortical inhibition suggests that synaptic inhibition of cerebral cortical neurons arises almost simultaneously with the onset of their background activity. All types of cortical inhibition operate simultaneously since the emergence of inhibitory processes. Thus, the basic mechanisms of cortical inhibition in mature cerebral cortex begin to function since cortex activation at the earliest stages of ontogenesis.  相似文献   

16.
The axon of the pyramidal neuron in the cerebral cortex arises either directly from the perikaryon or as a branch from a basal dendrite. When it arises from the perikaryon, an axon hillock is present. The hillock is a region in which there is a transition between the cytological features of the perikaryon and those of the initial segment of the axon. Thus, in the hillock there is a diminution in the number of ribosomes and a beginning of the fasciculation of microtubules that characterize the initial segment. Not all of the microtubules entering the hillock from the perikaryon continue into the initial segment. Distally, the axon hillock ends where the dense undercoating of the plasma membrane of the initial segment commences. Dense material also appears in the extracellular space surrounding the initial segment. The initial segment of the pyramidal cell axon contains a cisternal organelle consisting of stacks of flattened cisternae alternating with plates of dense granular material. These cisternal organelles resemble the spine apparatuses that occur in the dendritic spines of this same neuron. Axo-axonal synapses are formed between the initial segment and surrounding axon terminals. The axon terminals contain clear synaptic vesicles and, at the synaptic junctions, both synaptic complexes and puncta adhaerentia are present.  相似文献   

17.
Dendritic spines are a characteristic feature of a number of neurons in the vertebrate nervous system and have been implicated in processes that include learning and memory. In spite of this, there has been no comprehensive analysis of the presence of spines in a classical genetic system, such as Drosophila, so far. Here, we demonstrate that a subset of processes along the dendrites of visual system interneurons in the adult fly central nervous system, called LPTCs, closely resemble vertebrate spines, based on a number of criteria. First, the morphology, size, and density of these processes are very similar to those of vertebrate spines. Second, they are enriched in actin and devoid of tubulin. Third, they are sites of synaptic connections based on confocal and electron microscopy. Importantly, they represent a preferential site of localization of an acetylcholine receptor subunit, suggesting that they are sites of excitatory synaptic input. Finally, their number is modulated by the level of the small GTPase dRac1. Our results provide a basis to dissect the genetics of dendritic spine formation and maintenance and the functional role of spines. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

18.
Dendritic spines are small, mushroom-like protrusions from the arbor of a neuron in the central nervous system. Interdependent changes in the morphology, biochemistry, and activity of spines have been associated with learning and memory. Moreover, post-mortem cortices from patients with Alzheimer’s or Parkinson’s disease exhibit biochemical and physical alterations within their dendritic arbors and a reduction in the number of dendritic spines. For over a decade, experimentalists have observed perforations in postsynaptic densities on dendritic spines after induction of long-term potentiation, a sustained enhancement of response to a brief electrical or chemical stimulus, associated with learning and memory. In more recent work, some suggest that activity-dependent intraspine calcium may regulate the surface area of the spine head, and reorganization of postsynaptic densities on the surface. In this paper, we develop a model of a dendritic spine with the ability to partition its transmission and receptor zones, as well as the entire spine head. Simulations are initially performed with fixed parameters for morphology to study electrical properties and identify parameters that increase efficacy of the synaptic connection. Equations are then introduced to incorporate calcium as a second messenger in regulating continuous changes in morphology. In the model, activity affects compartmental calcium, which regulates spine head morphology. Conversely, spine head morphology affects the level of local activity, whether the spines are modeled with passive membrane properties, or excitable membrane using Hodgkin–Huxley kinetics. Results indicate that merely separating the postsynaptic receptors on the surface of the spine may add to the diversity of circuitry, but does not change the efficacy of the synapse. However, when the surface area of the spine is a dynamic variable, efficacy of the synapse may vary continuously over time.  相似文献   

19.
Synaptic membrane and postsynaptic density (PSD) fractions isolated from canine cerebral cortex and cerebellum were assayed for the following proteins: adenylate cyclase and phosphodiesterase (PDE) activities against cyclic AMP and cyclic GMP, the regulatory subunit of the cyclic AMP-dependent protein kinase, and the substrate proteins for this kinase. The results were expressed on the basis of both the protein content of the fractions and the number of synapses in the synaptic membrane fractions. The number of synapses on a constant protein content basis was about three times higher in the cerebral cortex synaptic membrane fraction than in the comparable cerebellar fraction. Adenylate cyclase activity was from 3.4 to 5.6 times higher in the cerebral cortex membrane fraction than in the cerebellar membrane fraction based on protein content but only slightly higher based on synapse counts. PSD fractions had no adenylate cyclase activity. The cyclic AMP-PDE activity was from 17 to 27 times higher in the cerebral cortex membrane fraction than in the cerebellar membrane fraction based on protein content, and about five times higher based on synapse counts. By doing PDE histochemistry at the electron microscopy level it was found that all the cerebral cortex PSDs in the isolated fraction contained PDE activity, none being found associated with the broken-up material in the fraction. The amount of the regulatory subunit of the cyclic AMP-dependent protein kinase was about equal in the two fractions based on protein, but about one-third lower in cerebral cortex fraction than in cerebellar fractions. In the cerebral cortex membrane fraction the primary substrate for the cyclic AMP-dependent protein kinase is synapsin I, with much lower amounts in the cerebellar membrane fraction. The PSD fraction from the two sources also showed these differences in synapsin I content. In the cerebellar membrane fraction, the primary substrate for the enzyme is a approximately 245,000 Mr protein not found in the cerebral cortex membrane fraction. The findings that the turnover of cyclic AMP is much higher in cerebral cortex synapses than in cerebellar synapses, and that differences are found between the cerebral cortex and cerebellum with regard to the substrate proteins for the cyclic AMP-dependent protein kinase indicate a divergence in the effect of cyclic AMP between cerebral cortex and cerebellar synapses.  相似文献   

20.
A model of cortical functions is developed with the object of simulating the observed behavior of individual neurons organized in unit circuits and functional systems of the cerebellum, the cerebrum and the hippocampal formation. The neuronal model is capable of representing refractory and potentiated states, as well as the firing and lowest resting states. The unit circuits of each system consist of all common types of cells with known synaptic connections. In the cerebral system these unit circuits are interconnected to form columns as well as zones. A new discrete neural network equation, which takes account of interactions with the extracellular field, is proposed to simulate electrical activity in these circuits. A coherent theory of cortical activity and functions is derived that accounts for many of the observed phenomena, including those associated with the development of long-term potentiation and sequential memory. Three appendices are devoted to the theory of extracellular interactions, the derivation of non-linear network equations, and a computer program to simulate learning in the cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号