首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proliferating cell nuclear antigen (PCNA) is thought to play a role in DNA mismatch repair at the DNA synthesis step as well as in an earlier step. Studies showing that PCNA interacts with mispair-binding protein complexes, MSH2.MSH3 and MSH2.MSH6, and that PCNA enhances MSH2.MSH6 mispair binding specificity suggest PCNA may be involved in mispair recognition. Here we show that PCNA and MSH2.MSH6 form a stable ternary complex with a homoduplex (G/C) DNA, but MSH2.MSH6 binding to a heteroduplex (G/T) DNA disrupts MSH2.MSH6 binding to PCNA. We also found that the addition of ATP or adenosine 5'-O-(thiotriphosphate) restores MSH2.MSH6 binding to PCNA, presumably by disrupting MSH2.MSH6 binding to the heteroduplex (G/T) DNA. These results support a model in which MSH2.MSH6 binds to PCNA loaded on newly replicated DNA and is transferred from PCNA to mispaired bases in DNA.  相似文献   

2.
In yeast, MSH2 interacts with MSH6 to repair base pair mismatches and single nucleotide insertion/deletion mismatches and with MSH3 to recognize small loop insertion/deletion mismatches. We identified a msh6 mutation (msh6-F337A) that when overexpressed in wild type strains conferred a defect in both MSH2-MSH6- and MSH2-MSH3-dependent mismatch repair pathways. Genetic analysis suggested that this phenotype was due to msh6-F337A sequestering MSH2 and preventing it from interacting with MSH3 and MSH6. In UV cross-linking, filter binding, and gel retardation assays, the MSH2-msh6-F337A complex displayed a mismatch recognition defect. These observations, in conjunction with ATPase and dissociation rate analysis, suggested that MSH2-msh6-F337A formed an unproductive complex that was unable to stably bind to mismatch DNA.  相似文献   

3.
The endometrial tumor cell line HHUA carries mutations in two mismatch repair (MMR) genes MSH3 and MSH6. We have established an MSH3-deficient HHUA/chr.2 cell line by introducing human chromosome 2, which carries wild-type MSH6 and MSH2 genes, to HHUA cells. Introduction of chromosome 2 to HHUA cells partially restored G:G MMR activity to the cell extract and reduced the frequency of mutation at the hypoxanthine-guanine phosphoribosyltransferase (hprt*) locus to about 3% that of the parental HHUA cells, which is five-fold the frequency in MMR-proficient cells, indicating that the residual mutator activity in HHUA/chr.2 is due to an MSH3-deficiency in these cells. The spectrum of mutations occurring at the HPRT locus of HHUA/chr.2 was determined with 71 spontaneous 6TG(r) clones. Base substitutions and +/-1 bp frameshifts were the major mutational events constituting, respectively, 54% and 42% of the total mutations, and more than 70% of them occurred at A:T sites. A possible explanation for the apparent bias of mutations to A:T sites in HHUA/chr.2 is haploinsufficiency of the MSH6 gene on the transferred chromosome 2. Comparison of the mutation spectra of HHUA/chr.2 with that of the MSH6-deficient HCT-15 cell line [S. Ohzeki, A. Tachibana, K. Tatsumi, T. Kato, Carcinogenesis 18 (1997) 1127-1133.] suggests that in vivo the MutSalpha (MSH2:MSH6) efficiently repairs both mismatch and unpaired extrahelical bases, whereas MutSbeta (MSH2:MSH3) efficiently repairs extrahelical bases and repairs mismatch bases to a limited extent.  相似文献   

4.
We recently showed that mouse semaphorin H (MSH), a secreted semaphorin molecule, acts as a chemorepulsive factor on sensory neurites. In this study, we found for the first time that MSH induces neurite outgrowth in PC12 cells in a dose-dependent manner. Comparison of Ras-mitogen-activated protein kinase (MAPK) signaling pathways between MSH and nerve growth factor (NGF) revealed that these pathways are crucial for MSH action as well as NGF. K-252a, an inhibitor of tyrosine autophosphorylation of tyrosine kinase receptors (Trks), did not inhibit the action of MSH, suggesting that MSH action occurs via a different receptor than NGF. L- and N-types of voltage-dependent Ca(2+) channel blockers, diltiazem and omega-conotoxin, inhibited MSH-induced neurite outgrowth and MAPK phosphorylation in a Ca(2+)-dependent manner. A transient elevation in intracellular Ca(2+) level was observed upon MSH stimulation. These findings suggest that extracellular Ca(2+) influx, followed by activation of the Ras-MAPK signaling pathway, is required for MSH induced PC12 cell neurite outgrowth.  相似文献   

5.
Normal human pituitaries were extracted in boiling water and acetic acid, and the alpha-amidated peptide products of pro-opiomelanocortin (POMC), alpha-melanocyte-stimulating hormone (alpha MSH), gamma-melanocyte-stimulating hormone (gamma 1MSH), and amidated hinge peptide (HP-N), as well as their glycine-extended precursors, were characterized by sequence-specific radioimmunoassays, gel-chromatography, h.p.l.c. and amino acid sequencing. alpha MSH and gamma 1MSH constituted 0.27-1.32% and 0.10-5.10%, respectively, of the POMC-derived products [calculated as the sum of adrenocorticotropic hormone (ACTH)-(1-39), ACTH-(1-14) and alpha MSH immunoreactivity]. alpha MSH and ACTH-(1-14) were only present in non- or mono-acetylated forms. Only large forms of gamma 1MSH and gamma 2MSH were present in partly glycosylated states. The hinge peptides were amidated to an extent two to three orders of magnitude greater than alpha MSH and gamma 1MSH. Most (99%) of the HP-N was of low molecular mass and consisted mainly of HP-N-30. The remaining part was high-molecular-mass HP-N, probably HP-N-108, although the presence of HP-N-44 could not be completely excluded. These results show that all the possible amidated POMC-related peptides are present in normal human pituitary. It also shows that cleavage in vivo at all dibasic amino acids but one, takes place at the N-terminal POMC region; the exception is at the POMC-(49-50) N-terminal of the gamma MSH sequence. The pattern of peptides produced suggests that the generation of amidated peptides is mainly regulated at the endopeptidase level.  相似文献   

6.
Oxidation of G in DNA yields 8-oxo-G (GO), a mutagenic lesion that leads to misincorporation of A opposite GO. In E. coli, GO in GO:C base pairs is removed by MutM, and A in GO:A mispairs is removed by MutY. In S. cerevisiae, mutations in MSH2 or MSH6 caused a synergistic increase in mutation rate in combination with mutations in OGG1, which encodes a MutM homolog, resulting in a 140- to 218-fold increase in the G:C-to-T:A transversion rate. Consistent with this, MSH2-MSH6 complex bound to GO:A mispairs and GO:C base pairs with high affinity and specificity. These data indicate that in S. cerevisiae, MSH2-MSH6-dependent mismatch repair is the major mechanism by which misincorporation of A opposite GO is corrected.  相似文献   

7.
The complete oxidation of methylmercaptan (MSH) and dimethyl sulfide (DMS) with sulfate or nitrate as electron acceptors was observed in enrichment cultures and dilution series using thermophilic fermentor sludge as the inoculum. Three new strains of thermophilic sulfate reducers were isolated in pure culture (strains MTS5, TDS2, and SDN4). Strain MTS5 grew on MSH and strain TDS2 grew on DMS whereas strain SDN4 grew on either MSH or DMS. The cellular growth yields were 2.57 g (dry weight)/mol of MSH for strain MTS5 and 6.02 g (dry weight)/mol of DMS for strain TDS2. All strains used sulfate, sulfite, or thiosulfate as electron acceptors, but only strain SDN4 used nitrate. DMS and MSH were oxidized to CO2 and sulfide with either sulfate or nitrate as the electron acceptor. Sulfate was stoichiometrically reduced to sulfide while nitrate was reduced to ammonium. All strains were motile rods, required biotin for growth, lacked desulfoviridin, had DNA with G+C contents of 48 to 57 mol% and probably belonged to the genus Desulfotomaculum. This is the first report of the oxidation of MSH and DMS by pure cultures of sulfate-reducing bacteria.  相似文献   

8.
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.  相似文献   

9.
10.
MutS homolog 2 (MSH2) is an essential DNA mismatch repair (MMR) protein. It interacts with MSH6 or MSH3 to form the MutSα or MutSβ complex, respectively, which recognize base-base mispairs and insertions/deletions and initiate the repair process. Mutation or dysregulation of MSH2 causes genomic instability that can lead to cancer. MSH2 is acetylated at its C terminus, and histone deacetylase (HDAC6) deacetylates MSH2. However, whether other regions of MSH2 can be acetylated and whether other histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in MSH2 deacetylation/acetylation is unknown. Here, we report that MSH2 can be acetylated at Lys-73 near the N terminus. Lys-73 is highly conserved across many species. Although several Class I and II HDACs interact with MSH2, HDAC10 is the major enzyme that deacetylates MSH2 at Lys-73. Histone acetyltransferase HBO1 might acetylate this residue. HDAC10 overexpression in HeLa cells stimulates cellular DNA MMR activity, whereas HDAC10 knockdown decreases DNA MMR activity. Thus, our study identifies an HDAC10-mediated regulatory mechanism controlling the DNA mismatch repair function of MSH2.  相似文献   

11.
Functional analysis of the Arabidopsis thaliana mismatch repair gene MSH2.   总被引:2,自引:0,他引:2  
J Adé  Y Haffani  F J Beizile 《Génome》2001,44(4):651-657
The Arabidopsis thaliana MSH2 (AtMSH2) gene encodes a protein that belongs to a family of highly conserved proteins (MutS homologues (MSH)) involved in DNA mismatch repair. Sequence analysis strongly suggests that this single copy gene is indeed a homologue of MSH2, a gene known to play a central role in eukaryotic mismatch repair. In this report, we show that the AtMSH2 protein has functional attributes characteristic of previously described mismatch repair proteins. First, over-expression of this protein in Escherichia coli leads to a mutator phenotype similar to that reported previously for known functional homologues. Second, gel retardation assays revealed that the AtMSH2 protein has a 10-fold greater affinity for DNA containing a single pair of mismatched nucleotides versus perfectly matched DNA. These results provide experimental evidence that AtMSH2 is indeed a functional homologue of MutS.  相似文献   

12.
13.
Eukaryotic DNA mismatch repair requires the concerted action of several proteins, including proliferating cell nuclear antigen (PCNA) and heterodimers of MSH2 complexed with either MSH3 or MSH6. Here we report that MSH3 and MSH6, but not MSH2, contain N-terminal sequence motifs characteristic of proteins that bind to PCNA. MSH3 and MSH6 peptides containing these motifs bound PCNA, as did the intact Msh2-Msh6 complex. This binding was strongly reduced when alanine was substituted for conserved residues in the motif. Yeast strains containing alanine substitutions in the PCNA binding motif of Msh6 or Msh3 had elevated mutation rates, indicating that these interactions are important for genome stability. When human MSH3 or MSH6 peptides containing the PCNA binding motif were added to a human cell extract, mismatch repair activity was inhibited at a step preceding DNA resynthesis. Thus, MSH3 and MSH6 interactions with PCNA may facilitate early steps in DNA mismatch repair and may also be important for other roles of these eukaryotic MutS homologs.  相似文献   

14.
DNA mismatch repair enzymes (for example, MSH2) maintain genomic integrity, and their deficiency predisposes to several human cancers and to drug resistance. We found that leukemia cells from a substantial proportion of children (~11%) with newly diagnosed acute lymphoblastic leukemia have low or undetectable MSH2 protein levels, despite abundant wild-type MSH2 mRNA. Leukemia cells with low levels of MSH2 contained partial or complete somatic deletions of one to four genes that regulate MSH2 degradation (FRAP1 (also known as MTOR), HERC1, PRKCZ and PIK3C2B); we also found these deletions in individuals with adult acute lymphoblastic leukemia (16%) and sporadic colorectal cancer (13.5%). Knockdown of these genes in human leukemia cells recapitulated the MSH2 protein deficiency by enhancing MSH2 degradation, leading to substantial reduction in DNA mismatch repair and increased resistance to thiopurines. These findings reveal a previously unrecognized mechanism whereby somatic deletions of genes regulating MSH2 degradation result in undetectable levels of MSH2 protein in leukemia cells, DNA mismatch repair deficiency and drug resistance.  相似文献   

15.
MSH can up-regulate MSH binding capacity of cultured Cloudman melanoma cells in a dose- and time-dependent fashion. Binding is mediated through proteins exhibiting an apparent molecular weight of 50-53kDa, consistent with previous studies implicating them as the principal MSH receptors on Cloudman cells. Pre-incubation of cells with MSH stimulates expression of the receptor proteins both on the plasma membrane surface as well as in internal sites associated with coated vesicles. The effects of MSH are additive with those of UV light, suggesting that UV and MSH might stimulate receptor expression through separate mechanisms.  相似文献   

16.
Mycothiol (MSH) is the major low molecular weight thiol in mycobacteria. Two chemical mutants with low MSH and one with no MSH (strain 49) were produced in Mycobacterium smegmatis mc2155 to assess the role of MSH in mycobacteria. Strain 49 was shown to not produce 1-d-myo-inosityl-2-amino-2-deoxy-alpha-d-glucopyranoside (GlcN-Ins), an intermediate in MSH biosynthesis. Relative to the parent strain, mutant 49 formed colonies more slowly on solid media and was more sensitive to H2O2 and rifampin, but less sensitive to isoniazid. Complementation of mutant 49 with DNA from M. tuberculosis H37Rv partially restored production of GlcN-Ins and MSH, and resistance to H2O2, but largely restored colony growth rate and sensitivity to rifampin and isoniazid. The results indicate that MSH and GlcN-Ins are not essential for in vitro survival of mycobacteria but may play significant roles in determining the sensitivity of mycobacteria to environmental toxins.  相似文献   

17.
Mycothiol [2-(N-acetylcysteinyl)amido-2-deoxy-alpha-D-glucopyranosyl- (1-->1)-myo-inositol] (MSH) has recently been identified as a major thiol in a number of actinomycetes (S. Sakuda, Z.-Y. Zhou, and Y. Yamada, Biosci. Biotech. Biochem. 58:1347-1348, 1994; H. S. C. Spies and D. J. Steenkamp, Eur. J. Biochem. 224:203-213, 1994; and G. L. Newton, C. A. Bewley, T. J. Dwyer, R. Horn, Y. Aharonowitz, G. Cohen, J. Davies, D. J. Faulkner, and R. C. Fahey, Eur. J. Biochem. 230:821-825, 1995). Since this novel thiol is more resistant than glutathione to heavy-metal ion-catalyzed oxidation, it seems likely to be the antioxidant thiol used by aerobic gram-positive bacteria that do not produce glutathione (GSH). In the present study we sought to define the spectrum of organisms that produce MSH. GSH was absent in all actinomycetes and some of the other gram-positive bacteria studied. Surprisingly, the streptococci and enterococci contained GSH, and some strains appeared to synthesize it rather than import it from the growth medium. MSH was found at significant levels in most actinomycetes examined. Among the actinobacteria four Micrococcus species produced MSH, but MSH was not found in representatives of the Arthrobacter, Agromyces, or Actinomyces genera. Of the nocardioforms examined, Nocardia, Rhodococcus, and Mycobacteria spp. all produced MSH. In addition to the established production of MSH by streptomycetes, we found that Micromonospora, Actinomadura, and Nocardiopsis spp. also synthesized MSH. Mycothiol production was not detected in Propionibacterium acnes or in representative species of the Listeria, Staphylococcus, Streptococcus, Enterococcus, Bacillus, and Clostridium genera. Examination of representatives of the cyanobacteria, purple bacteria, and spirochetes also gave negative results, as did tests of rat liver, bonito, Candida albicans, Neurospora crassa, and spinach leaves. The results, which indicate that MSH production is restricted to the actinomycetes, could have significant implications for the detection and treatment of infections with actinomycetes, especially those caused by mycobacteria.  相似文献   

18.
DNA mismatch repair is an essential system for maintaining genetic stability in bacteria and higher eukaryotes. Based on the conserved regions of the bacterial MutS gene and its homologues in yeast and human, a wheat cDNA homologue of MSH6, designated TaMSH7, was isolated by RT-PCR. The deduced amino acid sequence of TaMSH7 shows conserved domains characteristic of other MSH6 genes, with highest similarity to maize MSH7 and Arabidopsis MSH7. TaMSH7 is expressed in meristem tissue associated with a high level of mitotic and meiotic activity, with maximum expression in the reproductive organs of young flower spikes. TaMSH7 is located on the short arms of chromosomes 3A, 3B, and 3D and has been mapped within barley chromosome 3HS. The copy on 3DS is located within the region deleted in the wheat mutant ph2a, which shows altered recombination frequency in the interspecific hybrids. The relationship between the ph2a mutant and TaMSH7 gene function is discussed.  相似文献   

19.
The yeast MSH2-MSH6 complex is required to repair both base-pair and single base insertion/deletion mismatches. MSH2-MSH6 binds to mismatch substrates and displays an ATPase activity that is modulated by mispairs that are repaired in vivo. To understand early steps in mismatch repair, we analyzed mismatch repair (MMR) defective MSH2-msh6-F337A and MSH2-msh6-340 complexes that contained amino acid substitutions in the MSH6 mismatch recognition domain. While both heterodimers were defective in forming stable complexes with mismatch substrates, only MSH2-msh6-340 bound to homoduplex DNA with an affinity that was similar to that observed for MSH2-MSH6. Additional analyses suggested that stable binding to a mispair is not sufficient to initiate recruitment of downstream repair factors. Previously, we observed that MSH2-MSH6 forms a stable complex with a palindromic insertion mismatch that escapes correction by MMR in vivo. Here we show that this binding is not accompanied by either a modulation in MSH2-MSH6 ATPase activity or an ATP-dependent recruitment of the MLH1-PMS1 complex. Together, these observations suggest that early stages in MMR can be divided into distinct recognition, stable binding, and downstream factor recruitment steps.  相似文献   

20.
Pressor and cardioaccelerator effects of gamma MSH and related peptides   总被引:1,自引:0,他引:1  
We have recently demonstrated that the hypertensinogenic and natriuretic actions of ACTHI-39 can be found in a non-steroidogenic fragment of ACTH, ACTH4-10. These effects of ACTH or ACTH4-10 may be due to their ability to act as weak agonists of gamma MSH. gamma MSH is found in the 16K N-terminus of pro-opiocortin, and contains a sequence analogous to ACTH4-10, gamma MSH3-9. We investigated the cardiovascular effects of gamma 2MSH, gamma MSH3-9, and sterically restricted analogs of ACTH4-10. The results indicate that gamma MSH3-9, had essentially the same activities as ACTH4-10. The addition of five other amino acid residues to gamma MSH3-9 (gamma 2MSH) resulted in significant enhancement of pressor and cardioaccelerator activity. Steric restriction of the ACTH4-10 sequence by the substitution of a D-Phe in place of an L-Phe residue in position #7, or cyclization of the peptide by a half-Cys4, half Cys10 intramolecular disulfide-bridge derivatization, resulted in increased cardiovascular activities. Based on these data, the cardiovascular actions of ACTH4-10, gamma MSH3-9, and gamma 2MSH are predicted to be due to the assumption of a reverse-turn three-dimensional structure. The additional residues in gamma 2MSH appear to specifically enhance the cardiovascular activities of gamma MSH3-9. The results suggest the existence of a new class of hypophyseal peptides with cardiovascular activities, which require the assumption of a defined three-dimensional structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号