共查询到20条相似文献,搜索用时 9 毫秒
1.
Lin C Lin K Luong YP Rao BG Wei YY Brennan DL Fulghum JR Hsiao HM Ma S Maxwell JP Cottrell KM Perni RB Gates CA Kwong AD 《The Journal of biological chemistry》2004,279(17):17508-17514
We have used a structure-based drug design approach to identify small molecule inhibitors of the hepatitis C virus (HCV) NS3.4A protease as potential candidates for new anti-HCV therapies. VX-950 is a potent NS3.4A protease inhibitor that was recently selected as a clinical development candidate for hepatitis C treatment. In this report, we describe in vitro resistance studies using a subgenomic replicon system to compare VX-950 with another HCV NS3.4A protease inhibitor, BILN 2061, for which the Phase I clinical trial results were reported recently. Distinct drug-resistant substitutions of a single amino acid were identified in the HCV NS3 serine protease domain for both inhibitors. The resistance conferred by these mutations was confirmed by characterization of the mutant enzymes and replicon cells that contain the single amino acid substitutions. The major BILN 2061-resistant mutations at Asp(168) are fully susceptible to VX-950, and the dominant resistant mutation against VX-950 at Ala(156) remains sensitive to BILN 2061. Modeling analysis suggests that there are different mechanisms of resistance to VX-950 and BILN 2061. 相似文献
2.
Sensitivity of NS3 serine proteases from hepatitis C virus genotypes 2 and 3 to the inhibitor BILN 2061 下载免费PDF全文
Thibeault D Bousquet C Gingras R Lagacé L Maurice R White PW Lamarre D 《Journal of virology》2004,78(14):7352-7359
Hepatitis C virus (HCV) displays a high degree of genetic variability. Six genotypes and more than 50 subtypes have been identified to date. In this report, kinetic profiles were determined for NS3 proteases of genotypes 1a, 1b, 2ac, 2b, and 3a, revealing no major differences in activity. In vitro sensitivity studies with BILN 2061 showed a decrease in affinity for proteases of genotypes 2 and 3 (K(i), 80 to 90 nM) compared to genotype 1 enzymes (K(i), 1.5 nM). To understand the reduced sensitivity of genotypes 2 and 3 to BILN 2061, active-site residues in the proximity of the inhibitor binding site were replaced in the genotype-1b enzyme with the corresponding genotype-2b or -3a residues. The replacement of five residues at positions 78, 79, 80, 122, and 132 accounted for most of the reduced sensitivity of genotype 2b, while replacement of residue 168 alone could account for the reduced sensitivity of genotype 3a. BILN 2061 remains a potent inhibitor of these non-genotype-1 NS3-NS4A proteins, with K(i) values below 100 nM. This in vitro potency, in conjunction with the good pharmacokinetic data reported for humans, suggests that there is potential for BILN 2061 as an antiviral agent for individuals infected with non-genotype-1 HCV. 相似文献
3.
Aline C. Portela Thalita G. Barros Camilo H. da S. Lima Luiza R.S. Dias Pedro H.R. de A. Azevedo Anna Sophia C.L. Dantas Ronaldo Mohana-Borges Gustavo T. Ventura Sergio Pinheiro Estela M.F. Muri 《Bioorganic & medicinal chemistry letters》2017,27(16):3661-3665
Hepatitis C infection is a cause of chronic liver diseases such as cirrhosis and carcinoma. The current therapy for hepatitis C has limited efficacy and low tolerance. The HCV encodes a serine protease which is critical for viral replication, and few protease inhibitors are currently on the market. In this paper, we describe the synthesis and screening of novel isosorbide-based peptidomimetic inhibitors, in which the compounds 1d, 1e, and 1i showed significant inhibition of the protease activity in vitro at 100 µM. The compound 1e also showed dose-response (IC50 = 36 ± 3 µM) and inhibited the protease mutants D168A and V170A at 100 µM, indicating it as a promising inhibitor of the HCV NS3/4A protease. Our molecular modeling studies suggest that the activity of 1e is associated with a change in the interactions of S2 and S4 subsites, since that the increased flexibility favors a decrease in activity against D168A, whereas the appearance of a hydrophobic cavity in the S4 subsite increase the inhibition against V170A strain. 相似文献
4.
Truncation and substitution SAR studies of azapeptide-based inhibitors of the Hepatitis C virus (HCV) NS3 serine protease have been performed. These azapeptides were designed from the HCV polyprotein's NS5A-NS5B trans cleavage junction and contained an azaamino acid residue at the P1 position. These azapeptides exhibited predominantly non-acylating, competitive inhibition, contrary to classical azapeptides. 相似文献
5.
Tsantrizos YS 《Biopolymers》2004,76(4):309-323
The virally encoded serine protease NS3/NS4A is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. Until very recently, the design of inhibitors for the HCV NS3 protease was limited to large peptidomimetic compounds with poor pharmacokinetic properties, making drug discovery an extremely challenging endeavor. In our quest for the discovery of a small-molecule lead that could block replication of the hepatitis C virus by binding to the HCV NS3 protease, the critical protein-polypeptide interactions between the virally encoded NS3 serine protease and its polyprotein substrate were investigated. Lead optimization of a substrate-based hexapeptide, guided by structural data, led to the understanding of the molecular dynamics and electronic effects that modulate the affinity of peptidomimetic ligands for the active site of this enzyme. Macrocyclic beta-strand scaffolds were designed that allowed the discovery of potent, highly selective, and orally bioavailable compounds. These molecules were the first HCV NS3 protease inhibitors reported that inhibit replication of HCV subgenomic RNA in a cell-based replicon assay at low nanomolar concentrations. Optimization of their biopharmaceutical properties led to the discovery of the clinical candidate BILN 2061. Oral administration of BILN 2061 to patients infected with the hepatitis C genotype 1 virus resulted in an impressive reduction of viral RNA levels, establishing proof-of-concept for HCV NS3 protease inhibitors as therapeutic agents in humans. 相似文献
6.
In vitro selection and characterization of hepatitis C virus serine protease variants resistant to an active-site peptide inhibitor 下载免费PDF全文
Trozzi C Bartholomew L Ceccacci A Biasiol G Pacini L Altamura S Narjes F Muraglia E Paonessa G Koch U De Francesco R Steinkuhler C Migliaccio G 《Journal of virology》2003,77(6):3669-3679
The hepatitis C virus (HCV) serine protease is necessary for viral replication and represents a valid target for developing new therapies for HCV infection. Potent and selective inhibitors of this enzyme have been identified and shown to inhibit HCV replication in tissue culture. The optimization of these inhibitors for clinical development would greatly benefit from in vitro systems for the identification and the study of resistant variants. We report the use HCV subgenomic replicons to isolate and characterize mutants resistant to a protease inhibitor. Taking advantage of the replicons' ability to transduce resistance to neomycin, we selected replicons with decreased sensitivity to the inhibitor by culturing the host cells in the presence of the inhibitor and neomycin. The selected replicons replicated to the same extent as those in parental cells. Sequence analysis followed by transfection of replicons containing isolated mutations revealed that resistance was mediated by amino acid substitutions in the protease. These results were confirmed by in vitro experiments with mutant enzymes and by modeling the inhibitor in the three-dimensional structure of the protease. 相似文献
7.
Llinàs-Brunet M Bailey M Fazal G Ghiro E Gorys V Goulet S Halmos T Maurice R Poirier M Poupart MA Rancourt J Thibeault D Wernic D Lamarre D 《Bioorganic & medicinal chemistry letters》2000,10(20):2267-2270
Structure-activity studies on a hexapeptide N-terminal cleavage product of a dodecamer substrate led to the identification of very potent and highly specific inhibitors of the HCV NS3 protease/NS4A cofactor peptide complex. The largest increase in potency was accomplished by the introduction of a (4R)-naphthalen-1-yl-4-methoxy substituent to the P2 proline. N-Terminal truncation resulted in tetrapeptides containing a C-terminal carboxylic acid, which exhibited low micromolar activity against the HCV serine protease. 相似文献
8.
Malancona S Colarusso S Ontoria JM Marchetti A Poma M Stansfield I Laufer R Di Marco A Taliani M Verdirame M Gonzalez-Paz O Matassa VG Narjes F 《Bioorganic & medicinal chemistry letters》2004,14(17):4575-4579
SAR on the phenethylamide 1 (Ki 1.2 microM) in the P2- and the P'-position led to potent inhibitors, one of which showed good exposure and low clearance when administered intramuscularly to rat. 相似文献
9.
Phenotypic and structural analyses of hepatitis C virus NS3 protease Arg155 variants: sensitivity to telaprevir (VX-950) and interferon alpha 总被引:2,自引:0,他引:2
Zhou Y Müh U Hanzelka BL Bartels DJ Wei Y Rao BG Brennan DL Tigges AM Swenson L Kwong AD Lin C 《The Journal of biological chemistry》2007,282(31):22619-22628
Telaprevir (VX-950) is a highly selective, potent inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease. It has demonstrated strong antiviral activity in patients chronically infected with genotype 1 HCV when dosed alone or in combination with peginterferon alfa-2a. Substitutions of Arg(155) of the HCV NS3 protease domain have been previously detected in HCV isolates from some patients during telaprevir dosing. In this study, Arg(155) was replaced with various residues in genotype 1a protease domain proteins and in genotype 1b HCV subgenomic replicons. Characterization of both the purified enzymes and reconstituted replicon cells demonstrated that substitutions of Arg(155) with these residues conferred low level resistance to telaprevir (<25-fold). An x-ray structure of genotype 1a HCV protease domain with the R155K mutation, in a complex with an NS4A co-factor peptide, was determined at a resolution of 2.5A. The crystal structure of the R155K protease is essentially identical to that of the wild-type apoenzyme (Protein Data Bank code 1A1R) except for the side chain of mutated residue 155. Telaprevir was docked into the x-ray structure of the R155K protease, and modeling analysis suggests that the P2 group of telaprevir loses several hydrophobic contacts with the Lys(155) side chain. It was demonstrated that replicon cells containing substitutions at NS3 protease residue 155 remain fully sensitive to interferon alpha or ribavirin. Finally, these variant replicons were shown to have reduced replication capacity compared with the wild-type HCV replicon in cells. 相似文献
10.
Luciana Bonome Zeminian Juliana Lara Padovani Sílvia Maria Corvino Giovanni Faria Silva Maria Inês de Moura Campos Pardini Rejane Maria Tommasini Grotto 《Memórias do Instituto Oswaldo Cruz》2013,108(1):13-17
The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV) RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3) have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil. 相似文献
11.
Arasappan A Njoroge FG Chen KX Venkatraman S Parekh TN Gu H Pichardo J Butkiewicz N Prongay A Madison V Girijavallabhan V 《Bioorganic & medicinal chemistry letters》2006,16(15):3960-3965
Synthesis and HCV NS3 serine protease inhibitory activity of 4-hydroxyproline derived macrocyclic inhibitors and SAR around this macrocyclic core is described in this communication. X-ray structure of inhibitor 38 bound to the protease is discussed. 相似文献
12.
Raboisson P Lin TI Kock Hd Vendeville S Vreken WV McGowan D Tahri A Hu L Lenz O Delouvroy F Surleraux D Wigerinck P Nilsson M Rosenquist S Samuelsson B Simmen K 《Bioorganic & medicinal chemistry letters》2008,18(18):5095-5100
Starting from the previously reported HCV NS3/4A protease inhibitor BILN 2061, we have used a fast-follower approach to identify a novel series of HCV NS3/4A protease inhibitors in which (i) the P3 amino moiety and its capping group have been truncated, (ii) a sulfonamide is introduced in the P1 cyclopropyl amino acid, (iii) the position 8 of the quinoline is substituted with a methyl or halo group, and (iv) the ring size of the macrocycle has been reduced to 14 atoms. SAR analysis performed with a limited set of compounds led to the identification of N-{17-[8-chloro-2-(4-isopropylthiazol-2-yl)-7-methoxyquinolin-4-yloxy]-2,14-dioxo-3,15-diazatricyclo [13.3.0.0 [Bartenschlager, R.; Lohmann, V. J. Gen. Virol. 2000, 81, 1631; Vincent Soriano, Antonio Madejon, Eugenia Vispo, Pablo Labarga, Javier Garcia-Samaniego, Luz Martin-Carbonero, Julie Sheldon, Marcelle Bottecchia, Paula Tuma, Pablo Barreiro Expert Opin. Emerg. Drugs, 2008, 13, 1-19]]octadec-7-ene-4-carbonyl}(1-methylcyclopropyl)(1-methylcyclopropyl)sulfonamide 19l an extremely potent (K(i)=0.20 nM, EC(50)=3.7 nM), selective, and orally bioavailable dipeptide NS3/4A protease inhibitor, which has features attractive for further preclinical development. 相似文献
13.
Murray D. Bailey Teddy Halmos Christopher T. Lemke 《Bioorganic & medicinal chemistry letters》2013,23(15):4436-4440
Inhibitors of hepatitis C virus NS3 serine protease often incorporate a large P2 moiety to interact with the surface of the enzyme while shielding part of the catalytic triad. This feature is important in many inhibitors in order to have the necessary potency needed for efficacy. In this Letter we explore some new P2 motifs to further exploit this region of the enzyme. In a continuing effort to replace the often found 4-hydroxyproline P2 core found in the majority of inhibitors for this target, various directly attached aryl derivatives were evaluated. Of these, the 2,4-disubstituted thiazole core proved to be the most interesting. SAR around this motif has lead to compounds with Ki’s in the high picomolar range and provided cellular potencies in the single digit nM range. 相似文献
14.
Ingallinella P Fattori D Altamura S Steinkühler C Koch U Cicero D Bazzo R Cortese R Bianchi E Pessi A 《Biochemistry》2002,41(17):5483-5492
Serine proteases are the most studied class of proteolytic enzymes and a primary target for drug discovery. Despite the large number of inhibitors developed so far, very few make contact with the prime site of the enzyme, which constitutes an almost untapped opportunity for drug design. In the course of our studies on the serine protease NS3/4A of hepatitis C virus (HCV), we found that this enzyme is an excellent example of both the opportunities and the challenges of such design. We had previously reported on two classes of peptide inhibitors of the enzyme: (a) product inhibitors, which include the P(6)-P(1) region of the substrate and derive much of their binding energy from binding of their C-terminal carboxylate in the active site, and (b) decapeptide inhibitors, which span the S(6)-S(4)' subsites of the enzyme, whose P(2)'-P(4)' tripeptide fragment crucially contributes to potency. Here we report on further work, which combined the key binding elements of the two series and led to the development of inhibitors binding exclusively to the prime site of NS3/4A. We prepared a small combinatorial library of tripeptides, capped with a variety of constrained and unconstrained diacids. The SAR was derived from multiple analogues of the initial micromolar lead. Binding of the inhibitor(s) to the enzyme was further characterized by circular dichroism, site-directed mutagenesis, a probe displacement assay, and NMR to unequivocally prove that, according to our design, the bound inhibitor(s) occupies (occupy) the S' subsite and the active site of the protease. In addition, on the basis of the information collected, the tripeptide series was evolved toward reduced peptide character, reduced molecular weight, and higher potency. Beyond their interest as HCV antivirals, these compounds represent the first example of prime site inhibitors of a serine protease. We further suggest that the design of an inhibitor with an analogous binding mode may be possible for other serine proteases. 相似文献
15.
《Bioorganic & medicinal chemistry letters》2014,24(3):969-972
A sulfonamide replacement of the P2–P3 amide bond in the context of macrocyclic HCV NS3 protease inhibitors was investigated. These analogs displayed good inhibitory potency in the absence of any P3 capping group. The synthesis and preliminary SAR are described. 相似文献
16.
L Pieroni E Santolini C Fipaldini L Pacini G Migliaccio N La Monica 《Journal of virology》1997,71(9):6373-6380
Processing at the C terminus of the NS2 protein of hepatitis C virus (HCV) is mediated by a virus-encoded protease which spans most of the NS2 protein and part of the NS3 polypeptide. In vitro cotranslational cleavage at the 2-3 junction is stimulated by the presence of microsomal membranes and ultimately results in the membrane insertion of the NS2 polypeptide. To characterize the biochemical properties of this viral protease, we have established an in vitro assay whereby the NS2-3 protease of HCV BK can be activated posttranslationally by the addition of detergents. The cleavage proficiency of several deletion and single point mutants was the same as that observed with microsomal membranes, indicating that the overall sequence requirements for proper cleavage at this site are maintained even under these artificial conditions. The processing efficiency of the NS2-3 protease varied according to the type of detergent used and its concentration. Also, the incubation temperature affected the cleavage at the 2-3 junction. The autoproteolytic activity of the NS2-3 protease could be inhibited by alkylating agents such as iodoacetamide and N-ethylmaleimide. Metal chelators such as EDTA and phenanthroline also inhibited the viral enzyme. The EDTA inhibition of NS2-3 cleavage could be reversed, at least in part, by the addition of ZnCl2 and CdCl2. Among the common protease inhibitors tested, tosyl phenylalanyl chloromethyl ketone and soybean trypsin inhibitor inactivated the NS2-3 protease. By means of gel filtration analysis, it was observed that the redox state of the reaction mixture greatly influenced the processing efficiency at the 2-3 site and that factors present in the rabbit reticulocyte lysate, wheat germ extract, and HeLa cell extract were required for efficient processing at this site. Thus, the in vitro assay should allow further characterization of the biochemical properties of the NS2-3 protease of HCV and the identification of host components that contribute to the efficient processing at the 2-3 junction. 相似文献
17.
Colarusso S Gerlach B Koch U Muraglia E Conte I Stansfield I Matassa VG Narjes F 《Bioorganic & medicinal chemistry letters》2002,12(4):705-708
N-terminal truncation of the hexapeptide ketoacid 1 gave rise to potent tripeptide inhibitors of the hepatitis C virus NS3 protease/NS4A cofactor complex. Optimization of these tripeptides led to ketoacid 30 with an IC50 of 0.38 microM. The SAR of these tripeptides is discussed in the light of the recently published crystal structures of a ternary tripetide/NS3/NS4A complexes. 相似文献
18.
《Bioorganic & medicinal chemistry letters》2019,29(16):2349-2353
Among the many Hepatitis C virus (HCV) genotypes and subtypes, genotypes 1b and 3a are most prevalent in United States and Asia, respectively. A total of 132 commercially available analogs of a previous lead compound were initially investigated against wild-type HCV genotype 1b NS3/4A protease. Ten compounds showed inhibitory activities (IC50 values) below 10 µM with comparable direct binding affinities (KD values) determined by surface plasmon resonance (SPR). To identify pan-genotypic inhibitors, these ten selected compounds were tested against four additional genotypes (1a, 2a, 3a, and 4) and three drug-resistant mutants (A156S, R155K, and V36M). Four new analogs have been identified with better activities against all five tested genotypes than the prior lead compound. Further, the original lead compound did not show activity against genotype 3a NS3/4A, whereas four newly identified compounds exhibited IC50 values below 33 µM against genotype 3a NS3/4A. Encouragingly, the best new compound F1813-0710 possessed promising activity toward genotype 3a, which is a huge improvement over the previous lead compound that had no effect on genotype 3a. This intriguing observation was further analyzed by molecular docking and molecular dynamics (MD) simulations to understand their different binding interactions, which should benefit future pan-genotypic inhibitor design and drug discovery. 相似文献
19.
An NS3 serine protease inhibitor abrogates replication of subgenomic hepatitis C virus RNA 总被引:6,自引:0,他引:6
Pause A Kukolj G Bailey M Brault M Dô F Halmos T Lagacé L Maurice R Marquis M McKercher G Pellerin C Pilote L Thibeault D Lamarre D 《The Journal of biological chemistry》2003,278(22):20374-20380
The hepatitis C virus (HCV) NS3 protease is essential for polyprotein maturation and viral propagation, and it has been proposed as a suitable target for antiviral drug discovery. An N-terminal hexapeptide cleavage product of a dodecapeptide substrate identified as a weak competitive inhibitor of the NS3 protease activity was optimized to a potent and highly specific inhibitor of the enzyme. The effect of this potent NS3 protease inhibitor was evaluated on replication of subgenomic HCV RNA and compared with interferon-alpha (IFN-alpha), which is currently used in the treatment of HCV-infected patients. Treatment of replicon-containing cells with the NS3 protease inhibitor or IFN-alpha showed a dose-dependent decrease in subgenomic HCV RNA that reached undetectable levels following a 14-day treatment. Kinetic studies in the presence of either NS3 protease inhibitor or IFN-alpha also revealed similar profiles in HCV RNA decay with half-lives of 11 and 14 h, respectively. The finding that an antiviral specifically targeting the NS3 protease activity inhibits HCV RNA replication further validates the NS3 enzyme as a prime target for drug discovery and supports the development of NS3 protease inhibitors as a novel therapeutic approach for HCV infection. 相似文献
20.
Thibeault D Maurice R Pilote L Lamarre D Pause A 《The Journal of biological chemistry》2001,276(49):46678-46684
The cleavage of the hepatitis C virus polyprotein between the nonstructural proteins NS2 and NS3 is mediated by the NS2/3 protease, whereas the NS3 protease is responsible for the cleavage of the downstream proteins. Purification and in vitro characterization of the NS2/3 protease has been hampered by its hydrophobic nature. NS2/3 protease activity could only be detected in cells or in in vitro translation assays with the addition of microsomal membranes or detergent. To facilitate purification of this poorly characterized protease, we truncated the N-terminal hydrophobic domain, resulting in an active enzyme with improved biophysical properties. We define a minimal catalytic region of NS2/3 protease retaining autocleavage activity that spans residues 904-1206 and includes the C-terminal half of NS2 and the N-terminal NS3 protease domain. The NS2/3 (904-1206) variant was purified from Escherichia coli inclusion bodies and refolded by gel filtration chromatography. The purified inactive form of NS2/3 (904-1206) was activated by the addition of glycerol and detergent to induce autocleavage at the predicted site between Leu(1026) and Ala(1027). NS2/3 (904-1206) activity was dependent on zinc ions and could be inhibited by NS4A peptides, peptides that span the cleavage site, or an N-terminal peptidic cleavage product. This NS2/3 variant will facilitate the development of an assay suitable for identifying inhibitors of HCV replication. 相似文献