首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The structural gene for the Bacillus stearothermophilus glycogen branching enzyme (glgB) was cloned in Escherichia coli. Nucleotide sequence analysis revealed a 1917 nucleotide open reading frame (ORF) encoding a protein with an Mr of 74787 showing extensive similarity to other bacterial branching enzymes, but with a shorter N-terminal region. A second ORF of 951 nucleotides encoding a 36971 Da protein started upstream of the glgB gene. The N-terminus of the ORF2 gene product had similarity to the Alcaligenes eutrophus czcD gene, which is involved in cobalt-zinc-cadmium resistance. The B. stearothermophilus glgB gene was preceded by a sequence with extensive similarity to promoters recognized by Bacillus subtilis RNA polymerase containing sigma factor H (E - H). The glgB promoter was utilized in B. subtilis exclusively in the stationary phase, and only transcribed at low levels in B. subtilis spoOH, indicating that sigma factor H was essential for the expression of the glgB gene in B. subtilis. In an expression vector, the B. stearothermophilus glgB gene directed the synthesis of a thermostable branching enzyme in E. coli as well as in B. subtilis, with optimal branching activity at 53° C.  相似文献   

2.
3.
4.
Granule-bound starch synthase I (GBSS I) is responsible for the synthesis of amylose in starch granules. A heterologous cassava GBSS I gene was tested for its ability to restore amylose synthesis in amylose-free (amf) potato mutants. For this purpose, the cassava GBSS I was equipped with different transit peptides. In addition, a hybrid containing the potato transit peptide, the N-terminal 89 amino acids of the mature potato GBSS I, and the C-terminal part of cassava GBSS I was prepared. The transgenic starches were first analysed by iodine staining. Only with the hybrid could full phenotypic complementation of the amf mutation be achieved in 13% of the plants. Most transformants showed partial complementation, but interestingly the size of the blue core was similar in all granules derived from one tuber of a given plant. The amylose content was only partially restored, up to 60% of wild-type values or potato GBSS I-complemented plants; however, the GBSS activity in these granules was similar to that found in wild-type ones. From this, and the observation that the hybrid protein (a partial potato GBSS I look-alike) performs best, it was concluded that potato and cassava GBSS I have different intrinsic properties and that the cassava enzyme is not fully adapted to the potato situation.  相似文献   

5.
6.
Summary Granule-bound starch synthase [GBSS; EC 24.1.21] determines the presence of amylose in reserve starches. Potato plants were transformed to produce antisense RNA from a gene construct containing a full-length granule-bound starch synthase cDNA in reverse orientation, fused between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator. The construct was integrated into the potato genome by Agrobacterium rhizogenes-mediated transformation. Inhibition of GBSS activity in potato tuber starch was found to vary from 70% to 100%. In those cases where total suppression of GBSS activity was found both GBSS protein and amylose were absent, giving rise to tubers containing amylose-free starch. The variable response of the transformed plants indicates that position effects on the integrated sequences might be important. The results clearly demonstrate that in tubers of potato plants which constitutively synthesize antisense RNA the starch composition is altered.  相似文献   

7.
Granule-bound starch synthase (GBSS) catalyses the synthesis of amylose in starch granules. Transformation of a diploid amylose-free (amf) potato mutant with the gene encoding GBSS leads to the restoration of amylose synthesis. Transformants were obtained which had wild-type levels of both GBSS activity and amylose content. It proved to be difficult to increase the amylose content above that of the wild-type potato by the introduction of additional copies of the wild-type GBSS gene. Staining of starch with iodine was suitable for investigating the degree of expression of the inserted GBSS gene in transgenic amf plants. Of the 19 investigated transformants, four had only red-staining starch in tubers indicating that no complementation of the amf mutation had occured. Fifteen complemented transformants had only blue-staining starch in tubers or tubers of different staining categories (blue, mixed and red), caused either by full or partial expression of the inserted gene. Complementation was also found in the microspores. The segregation of blue- and red-staining microspores was used to analyse the inheritance of the introduced GBSS genes. A comparison of the results from microspore staining and Southern hybridisation indicated that, in three tetraploid transgenics, the gene was probably inserted before (duplex), and in all others after, chromosome doubling (simplex). The partial complementation was not due to methylation of the HPAII/MSPI site in the promoter region. Partially complemented plants had low levels of mRNA as was found when the GBSS expression levels were inhibited by anti-sense technology.  相似文献   

8.
Transgenic plants of a tetraploid potato cultivar were obtained in which the amylose content of tuber starch was reduced via antisense RNA-mediated inhibition of the expression of the gene encoding granule-bound starch synthase (GBSS). GBSS is one of the key enzymes in the biosynthesis of starch and catalyses the formation of amylose. The antisense GBSS genes, based on the full-length GBSS cDNA driven by the 35S CaMV promoter or the potato GBSS promoter, were introduced into the potato genome by Agrobacterium tumefaciens-mediated transformation. Expression of each of these genes resulted in the complete inhibition of GBSS gene expression, and thus in the production of amylose-free tuber starch, in mature field-grown plants originating from rooted in vitro plantlets of 4 out of 66 transgenic clones. Clones in which the GBSS gene expression was incompletely inhibited showed an increase of the extent of inhibition during tuber growth. This is likely to be due to the increase of starch granule size during tuber growth and the specific distribution pattern of starch components in granules of clones with reduced GBSS activity. Expression of the antisense GBSS gene from the GBSS promoter resulted in a higher stability of inhibition in tubers of field-grown plants as compared to expression from the 35S CaMV promoter. Field analysis of the transgenic clones indicated that inhibition of GBSS gene expression could be achieved without significantly affecting the starch and sugar content of transgenic tubers, the expression level of other genes involved in starch and tuber metabolism and agronomic characteristics such as yield and dry matter content.  相似文献   

9.
The nucleotide sequences of the Escherichia coli genome between the glycogen biosynthetic genes glgB and glgC, and 1170 bp of DNA which follows glgA have been determined. The region between glgB and glgC contains an open reading frame (ORF) of 1521 bp which we call glgX. This ORF is capable of coding for an Mr 56 684 protein. The deduced amino acid (aa) sequence for the putative product shows significant similarity to the E. coli glycogen branching enzyme, and to several different glucan hydrolases and transferases. The regions of sequence similarity include residues which have been reported to be involved in substrate binding and catalysis by taka-amylase. This suggests that the proposed product may catalyze hydrolysis or glycosyltransferase reactions. The cloned region which follows glgA contains an incomplete ORF (1149 bp), glgY, which appears to encode 383 aa of the N terminus of glycogen phosphorylase, based upon sequence similarity with the enzyme from rabbit muscle (47% identical aa residues) and with maltodextrin phosphorylase from E. coli (37% identical aa residues). Results suggest that neither ORF is required for glycogen biosynthesis. The localization of glycogen biosynthetic and degradative genes together in a cluster may facilitate the regulation of these systems in vivo.  相似文献   

10.
The wild-type gene encoding granule-bound starch synthase (GBSS) is capable of both complementing the amylosefree (amf) potato mutant and inhibiting the endogenous GBSS gene expression in wild-type potato. Co-suppression of the endogenous GBSS gene, easily visualised by staining the starch with iodine, occurred when the full-size GBSS sequence (genomic), GBSS cDNA or even the mutant amf allele were introduced into the wild-type potato. Conversely, introduction of the GBSS promoter sequence alone, did not result in co-suppression in the 80 analysed transformants. Neither the orientation of the GBSS gene with respect to kanamycin resistance nor the presence of an enhancer influenced the frequency of plants showing a co-suppression phenotype. After crossing a partially complemented amf mutant with a homozygous wild-type plant, the F1 offspring segregated into plant phenotypes with normal and decreased expression of the GBSS gene. This decreased expression correlated with the presence of a linked block of five T-DNA inserts which was previously shown to be correlated with partial complementation of the amf mutant. This crossing experiment indicates that co-suppression can cause inhibition of gene expression of both inserted and endogenous wild-type GBSS genes. The frequency of partially complemented amf plants was equal to the frequency of co-suppressed wild types when a construct, with an enhancer in front of the GBSS promoter, was used (pWAM 101E). This might suggest that partial complementation of the amf genotype caused by unstable expression of the transgene can be overcome by inserting an enhancer in front of the GBSS promoter.  相似文献   

11.
Starch branching enzyme was purified from potato (Solanum tuberosum L.) tubers as a single species of 79 kilodaltons and specific antibodies were prepared against both the native enzyme and against the gel-purified, denatured enzyme. The activity of potato branching enzyme could only be neutralized by antinative potato branching enzyme, whereas both types of antibodies reacted with denatured potato branching enzyme. Starch branching enzymes were also isolated from maize (Zea mays L.) kernels. All of the denatured forms of the maize enzyme reacted with antidenatured potato branching enzyme, whereas recognition by antinative potato branching enzyme was limited to maize branching enzymes I and IIb. Antibodies directed against the denatured potato enzyme were unable to neutralize the activity of any of the maize branching enzymes. Antinative potato branching enzyme fully inhibited the activity of maize branching enzyme I; the neutralized maize enzyme was identified as a 82 kilodalton protein. It is concluded that potato branching enzyme (Mr = 79,000) shares a high degree of similarity with maize branching enzyme I (Mr = 82,000), in the native as well as the denatured form. Cross-reactivity between potato branching enzyme and the other forms of maize branching enzyme was observed only after denaturation, which suggests mutual sequence similarities between these species.  相似文献   

12.
13.
One isoform of the branching enzyme (BE; EC 2.4.1.18) of potato (Solarium tuberosum L.) is known and catalyses the formation of α-1,6 bonds in a glucan chain, resulting in the branched starch component amylopectin. Constructs containing the antisense or sense-orientated distal 1.5-kb part of a cDNA for potato BE were used to transform the amylose-free (amf) mutant of potato, the starch of which stains red with iodine. The expression of the endogenous BE gene was inhibited either largely or fully as judged by the decrease or absence of the BE mRNA and protein. This resulted in a low percentage of starch granules with a small blue core and large red outer layer. There was no effect on the amylose content, degree of branching or λmax of the iodine-stained starch. However, when the physico-chemical properties of the different starch suspensions were assessed, differences were observed, which although small indicated that starch in the transformants was different from that of theamf mutant.  相似文献   

14.
The rate-limiting step in the pathway for lysine synthesis in plants is catalyzed by the enzyme dihydrodipicolinate synthase (DS). We have cloned the portion of the soybean (Glycine max cv. Century) DapA cDNA that encodes the mature DS protein. Expression of the cloned soybean cDNA as a lacZ fusion protein was selected in a dapA - Escherichia coli auxotroph. The DS activity of the fusion protein was characterized in E. coli extracts. The DS activity of the fusion protein was inhibited by lysine concentrations that also inhibited native soybean DS, while E. coli DS activity was much less sensitive to inhibition by lysine.  相似文献   

15.
Summary Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granulebound starch synthase (GBSS) into the amylose-free starch mutantamf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates thatAmf is the structural gene for GBSS. Amylose was found in columella cells of root tips, in stomatal guard cells, tubers, and pollen, while in the control experiments using only vector DNA, these tissues remained amylose free. This confirms the fact that, in potato, GBSS is the only enzyme responsible for the presence of amylose, accumulating in all starch-containing tissues. Amylose-containing transformants showed no positive correlation between GBSS activity and amylose content, which confirms that the former is not the sole regulating factor in amylose metabolism.  相似文献   

16.
He MX  Feng H  Zhang YZ 《Biotechnology letters》2008,30(12):2111-2117
A novel bacterial cell-surface display system was developed in Escherichia coli using omp1, a hypothetical outer membrane protein of Zymomonas mobilis. By using this system, we successfully expressed β-amylase gene of sweet potato in E. coli. The display of enzyme on the membrane surface was also confirmed. The recombinant β-amylase showed to significantly increase hydrolytic activity toward soluble starch. Our results provide a basis for constructing an engineered Z. mobilis strain directly fermenting raw starch to produce ethanol.  相似文献   

17.
Summary A technique is presented by which mutations can be introduced into the Escherichia coli chromosome by gene replacement between the chromosome and a plasmid carrying the mutant gene. The segregational instability of plasmids in E. coli is used with high efficiency to isolate E. coli mutants. The method should be applicable to construction of mutants for any E. coli chromosomal gene provided it is dispensable, and for any E. coli strain provided it is capable of homologous recombination. The use of the method was demonstrated by constructing E. coli mutants for the glycogen branching enzyme gene (glgB) and the -galactosidase gene (lacZ). The results show that recombination occurs via a reciprocal mechanism indicating that the method should, in a slightly modified form, also be useful in transferring chromosomal mutations onto multicopy plasmids in vivo.  相似文献   

18.
19.
Activities of the ß-glucuronidase (GUS) reporter enzyme were evaluated in transgenic plants, protoplasts, and intertypic heterokaryons of Solanum tuberosum and Nicotiana tabacum. With GUS under control of the promoter of the cauliflower-mosaicvirus 35S RNA gene (CaMV), activities of the enzyme were nearly evenly distributed over the tissues of plants grown in vitro. Activities in microtubers of potato plants with the reporterenzyme under control of the promoter of granule-bound starch synthase (GBSS) from S. tuberosum were higher than in leaves. The CaMV-GUS construct present in leaf protoplasts showed an increased expression in biochemical and cytochemical assays after fusion with wildtype-tuber protoplasts. Such an increase was not observed in the case of the GBSS-GUS constructs. It was concluded that nuclei in plant heterokaryons are being influenced by the fusion partner, but that repressive, trans-acting regulation factors in leaf protoplasts possibly prevent an increase of the expression of the chimeric GBSS-gene in heterokaryons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号