首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
When negatively buoyant, such as by increased pressure or loss of swimbladder gas, kokanee and sockeye salmon ( Oncorhynchus nerka ) attempt to swim upward by increased use of the pectoral fins. This response is termed compensatory swimming. Prior to initial filling of the swimbladder, sockeye fry showed no behavioural response to pressures above atmospheric. Following air-gulping at the surface and bladder inflation, kokanee and sockeye fry responded to increased pressure by assuming a more vertical position and by beating the pectoral fins more rapidly. In young sockeye this response occurred over the pressure range of atmospheric to 20 lb/in2, and the effect of this behaviour would be to distribute these fish in the upper 14 m of the lacustrine environment. Fingerling kokanee showed a more gradual increase in compensatory swimming over the range of pressure equivalent to depths of 0–50 m. The behaviour of yearling kokanee would tend to concentrate these fish in the upper 30 m. Sockeye older than 1 year responded to negative buoyancy with increased horizontal swimming whilst planing upward on the pectoral fins. Depth distribution postulated on the basis of pressure-induced compensatory swimming is consistent with the known vertical distribution of kokanee and sockeye salmon.  相似文献   

3.
Rheoreaction of early juveniles of sockeye salmon Oncorhynchus nerka is experimentally investigated, including different spatial groups (denatant migrants, contranatant migrants, specimens living in bays and at closed river banks, juveniles from the coastal zone of the lake). Investigation is made in water of the river flowing from the lake and in water of the stream flowing into the lake. It is shown that the rheoreaction (the type of rheoreaction) is one of behavioral mechanisms performing feeding migration of early juveniles of sockeye salmon. Contranatant migrants that reached the feeding lake retain the positive type of rheoreaction, which favors the exit of juveniles from the zone of discharge exclusion and prevents the drift of juveniles to the river at night at poorer conditions for orientation. Juveniles placed into the water of the inflowing stream manifest a sharply negative rheoreaction type contributing to their rapid lakeward migration for feeding. In water of two steams (taking its beginning in the lake and flowing into it) such type of rheoreaction is observed which ensures migration of sockeye juveniles to their principal feeding water body-Lake Kurilskoe.  相似文献   

4.
Mean summer water temperatures in the Fraser River (British Columbia, Canada) have increased by ~1.5 °C since the 1950s. In recent years, record high river temperatures during spawning migrations of Fraser River sockeye salmon (Oncorhynchus nerka) have been associated with high mortality events, raising concerns about long‐term viability of the numerous natal stocks faced with climate warming. In this study, the effect of freshwater thermal experience on spawning migration survival was estimated by fitting capture–recapture models to telemetry data collected for 1474 adults (captured in either the ocean or river between 2002 and 2007) from four Fraser River sockeye salmon stock‐aggregates (Chilko, Quesnel, Stellako‐Late Stuart and Adams). Survival of Adams sockeye salmon was the most impacted by warm temperatures encountered in the lower river, followed by that of Stellako‐Late Stuart and Quesnel. In contrast, survival of Chilko fish was insensitive to the encountered river temperature. In all stocks, in‐river survival of ocean‐captured sockeye salmon was higher than that of river‐captured fish and, generally, the difference was more pronounced under warm temperatures. The survival–temperature relationships for ocean‐captured fish were used to predict historic (1961–1990) and future (2010–2099) survival under simulated lower river thermal experiences for the Quesnel, Stellako‐Late Stuart and Adams stocks. A decrease of 9–16% in survival of all these stocks was predicted by the end of the century if the Fraser River continues to warm as expected. However, the decrease in future survival of Adams sockeye salmon would occur only if fish continue to enter the river abnormally early, towards warmer periods of the summer, as they have done since 1995. The survival estimates and predictions presented here are likely optimistic and emphasize the need to consider stock‐specific responses to temperature and climate warming into fisheries management and conservation strategies.  相似文献   

5.
Some observations on the mycology and pathology of saprolegniasis of maturing sockeye salmon are reported. Saprolegnia spp. were isolated from all lesions examined. Some isolates did not produce oogonia and could not be identified further. The other isolates have affinities to the S. diclina-S. parasitica complex. Observations on the gross and histo-pathology of the lesions show the fungi can be active pathogens. It is hypothesized that increased levels of plasma corticosteroids and depletion of ascorbic acid reserves in the fish increase the probability that Saprolegnia spp. will initiate infections, either alone or concurrently with other opportunistic parasites.  相似文献   

6.
7.
8.
The pituitaries of vitellogenic sockeye salmon (Oncorhynchus nerka) were extracted with a mixture of acetone, water, and hydrochloric acid. The precipitate which formed upon the addition of a copious volume of acetone to the extract, designated acid acetone powder, was subjected to salt fractionation and desalting, followed by ion-exchange chromatography on CM-cellulose. An unadsorbed fraction (S-1) and four adsorbed fractions (S-2, S-3, S-4 and S-5) were obtained. Adrenocorticotropic activity was detected in the fractions by their ability to stimulate isolated rat adrenal decapsular cells to produce corticosterone and by their immunoreactivities in an adrenocorticotropin-specific radioimmunoassay. The steroidogenic activities of all fractions, except S-4, were blocked by corticotropin inhibiting peptide. Opiate activity was detected in the fractions by their ability to inhibit the binding of either [3H]naloxone or (D-ala2, D-leu5)-[3H]enkephalin to rat brain membranes. There was a discrepancy in the potencies of the five fractions in the two opiate radioreceptor assays, indicating the presence of opiate peptides with different affinities of binding to the micron- and delta-opiate receptors of the rat brain. There was a separation between adrenocorticotropic and opiate receptor binding activities, suggesting that the activities were due to separate molecular entities.  相似文献   

9.
10.
11.
In streams tributary to the North Pacific, anadromous sockeye salmon and non-anadromous kokanee, Oncorhynchus nerka (Walbaum), occasionally spawn sympatrically and male kokanee may act as 'sneaks’to spawn with the larger female sockeye. Despite this interbreeding, sockeye and kokanee exhibit persistent biochemical genetic differences at several enzyme loci. Genetic differences between forms may be maintained by selection against‘hybrids’due to the different life histories of sockeye and kokanee; sockeye make extensive smolt, oceanic, and spawning migrations while kokanee reside permanently in fresh water. We tested the sustained swimming abilities of juvenile sockeye, kokanee, and sockeye (female) × kokanee (male) hybrids to see if hybrids were inferior to sockeye in a trait that is probably under stronger selection in an anadromous life history. Sockeye had significantly greater mean critical swimming velocities (Ucrit) than kokanee of the same size raised under identical conditions (8.3 v. 7.3 body lengths s?1 respectively). When tested 1 month later the mean Ucrit of sockeye was only marginally greater than that for sockeye × kokanee hybrids (both c. 6.6 body lengths s?1). Sockeye swimming performance was also less variable than that of either kokanee or hybrids. Sockeye tended to have slimmer bodies and longer caudal regions than kokanee or sockeye × kokanee hybrids of the same size. Sockeye also had significantly more vertebrae than kokanee and hybrids, while hybrids had more vertebrae than kokanee. These morphological differences may have contributed to the differences in swimming performance. We concluded: (i) that juvenile sockeye and kokanee have diverged with respect to sustained swimming performance and that reduced performance by kokanee may be due to relaxed selection for sustained swimming performance associated with their non-anadromous life history, (ii) that sockeye × kokanee hybrids appear to have modestly lower swimming capabilities than pure sockeye, and (iii) if the variability in swimming performance is associated with differences in survival in nature, then such differences may promote divergence between sympatric sockeye and kokanee.  相似文献   

12.
The myxosporean parasite Parvicapsula minibicornis is described from adult sockeye and coho salmon during spawning migrations in tributaries of the Columbia River in Canada and the United States. These observations extend the known distribution of this parasite from the Fraser River drainage basin. The parasite was identified in Columbia River salmonids using polymerase chain reaction (PCR) and by in situ hybridization, but unlike in Fraser River salmon, it was not observed in conventional histological preparations of the kidney. Prevalence of the parasite determined by PCR was higher in spawning sockeye from the Fraser River than in those from the Okanagan River. Our ability to explain the relatively low prevalence and absence of clinical P. minibicornis infections in Columbia River salmon is hampered by our poor understanding of the life cycle of this parasite.  相似文献   

13.
Haemoglobin concentrations, haematocrit values, red blood cell counts, red blood cell diameter, erythrocyte sedimentation rate and plasma haemoglobin concentration were measured on the air-breathing mud eel Amphipnous cuchia .  相似文献   

14.
To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12 degrees C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8 degrees C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12 degrees C. During the last half of the study the complement activity of the fish reared at 8 degrees C was greater than that of the 12 degrees C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12 degrees C compared to the fish reared at 8 degrees C. Fish reared at 12 degrees C also produced a greater antibody response than those reared at 8 degrees C. Results suggested that the immune apparatus of sockeye salmon reared at 8 degrees C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12 degrees C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic decreases in complement activity and lymphocyte numbers. This study was unique in its scope because it was the first quantitative assessment of salmon immune functions for an entire life-cycle.  相似文献   

15.
Little is known about the behaviour patterns and swimming speed strategies of anadromous upriver migrating fish. We used electromyogram telemetry to estimate instantaneous swimming speeds for individual sockeye (Oncorhynchus nerka) and pink salmon (O. gorbuscha) during their spawning migrations through reaches which spanned a gradient in river hydraulic features in the Fraser River, British Columbia. Our main objectives were to describe patterns of individual-specific swim speeds and behaviours, identify swimming speed strategies and contrast these between sexes, species and reaches. Although mean swimming speeds did not differ between pink salmon (2.21 BL s–1) and sockeye salmon (1.60 BL s–1), sockeye salmon were over twice as variable (mean CV; 54.78) in swimming speeds as pink salmon (mean CV; 22.54). Using laboratory-derived criteria, we classified swimming speeds as sustained (<2.5 BL s–1), prolonged (2.5–3.2 BL s–1), or burst (>3.2 BL s–1). We found no differences between sexes or species in the proportion of total time swimming in these categories – sustained (0.76), prolonged (0.18), burst (0.06); numbers are based on species and sexes combined. Reaches with relatively complex hydraulics and fast surface currents had migrants with relatively high levels of swimming speed variation (e.g., high swimming speed CV, reduced proportions of sustained speeds, elevated proportions of burst speeds, and high rates of bursts) and high frequency of river crossings. We speculate that complex current patterns generated by river constrictions created confusing migration cues, which impeded a salmon's ability to locate appropriate pathways.  相似文献   

16.
Variation of mitochondrial DNA (mtDNA) was examined in nine populations from three lake-river systems of Chukotka and Kamchatka. Significant differences were found between most of the sockeye salmon samples studied. The genetic differences among populations were not high and often did not correlate with the geographical distances between them. The low population divergence is explained by a short time of existence of most of them, having been formed after the recession of the upper Pleistocene glacier. When the populations were grouped according to their spawning biotopes (river or lake), they in general appeared more genetically similar than upon their grouping by geographical location (the lake-river systems). The differences between the river and lake populations in the lake--river systems increased from north to south.  相似文献   

17.
Short episodic high temperature events can be lethal for migrating adult Pacific salmon (Oncorhynchus spp.). We downscaled temperatures for the Fraser River, British Columbia to evaluate the impact of climate warming on the frequency of exceeding thermal thresholds associated with salmon migratory success. Alarmingly, a modest 1.0 °C increase in average summer water temperature over 100 years (1981–2000 to 2081–2100) tripled the number of days per year exceeding critical salmonid thermal thresholds (i.e. 19.0 °C). Refined thresholds for two populations (Gates Creek and Weaver Creek) of sockeye salmon (Oncorhynchus nerka) were defined using physiological constraint models based on aerobic scope. While extreme temperatures leading to complete aerobic collapse remained unlikely under our warming scenario, both populations were increasingly forced to migrate upriver at reduced levels of aerobic performance (e.g. in 80% of future simulations, ≥90% of salmon encountered temperatures exceeding population‐specific thermal optima for maximum aerobic scope; Topt=16.3 °C for Gates Creek and Topt=14.5 °C for Weaver Creek). Assuming recent changes to river entry timing persist, we also predicted dramatic increases in the probability of freshwater mortality for Weaver Creek salmon due to reductions in aerobic, and general physiological, performance (e.g. in 42% of future simulations≥50% of Weaver Creek fish exceeded temperature thresholds associated with 0–60% of maximum aerobic scope). Potential for adaptation via directional selection on run‐timing was more evident for the Weaver Creek population. Early entry Weaver Creek fish experienced 25% (range: 15–31%) more suboptimal temperatures than late entrants, compared with an 8% difference (range: 0–17%) between early and late Gates Creek fish. Our results emphasize the need to consider daily temperature variability in association with population‐specific differences in behaviour and physiological constraints when forecasting impacts of climate change on migratory survival of aquatic species.  相似文献   

18.
Upon reaching sexual maturity, several species of male salmonids possess a relative ventricular mass (rMV) that may be up to 90% larger than females. This can increase maximum cardiac stroke volume and power output, which may be beneficial to increasing the oxygen transport capacity of male salmonids during the spawning period. It may be further hypothesized, therefore, that other variables within the circulatory oxygen transport cascade, such as blood oxygen-carrying capacity and heart rate, are similarly enhanced in reproductively mature male salmonids. To test this idea, the present study measured a range of circulatory oxygen transport variables in wild male and female sockeye salmon (Oncorhynchus nerka) during their spawning period, following a 150 km migration from the ocean. The rMV of male fish was 13% greater than females. Conversely, the haemoglobin concentration ([Hb]) of female fish was 19% higher than males, indicative of a greater blood oxygen-carrying capacity (138 vs. 116 ml O2 l−1, respectively). Surgically implanted physiological data loggers revealed a similar range in heart rate for both sexes on the spawning ground (20–80 beats min−1 at 10°C), with a tendency for male fish to spend a greater percentage of time (64%) than females (49%) at heart rates above 50 beats min−1. Male fish on average consumed significantly more oxygen than females during a 13-h respirometry period. However, routine oxygen consumption rates ranged between 1.5 and 8.5 mg min−1 kg−1 for both sexes, which implies that males did not inherently possess markedly higher routine aerobic energy demands, and suggests that the higher [Hb] of female fish may compensate for the smaller rMV. These findings reject the hypothesis that all aspects of the circulatory oxygen transport cascade are inherently superior in male sockeye salmon. Instead, it is suggested that any differences in between sexually mature male and female sockeye salmon can likely be attributed to activity levels.  相似文献   

19.
20.
Reproductive success of female animals is often affected by a combination of fecundity and parental care. In female salmonid fishes, acquisition of nest (redd) sites and prevention of their use by other females are critical to reproductive success. These factors are particularly important for stocks that spawn at high densities. Body size is positively correlated with fecundity and egg size, and has been hypothesized to control the outcome of intrasexual competition and longevity. We tested this hypothesis by evaluating the influences of body size, intrasexual aggression and arrival date on duration and success of redd guarding by female sockeye salmon, Oncorhynchus nerka, in a small Alaskan creek. Contrary to the hypothesis, larger females guarded their redds no longer than smaller females, and did not live as long in the stream. Aggression was not related to body size or overall longevity but was positively correlated with residence period on the redd. Females that entered the creek earlier lived longer, spent longer on their redds, and spent more time guarding their redds after spawning than females that entered the creek later. However, despite their longevity, early-arriving fish were more likely to have their redds reused by another female because they died before all the females had selected redd sites. The small average body size in this stock is consistent with weak selection for large size, and with our evidence that size provided little if any advantage in nest guarding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号