共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionic channels of the inner segment of tiger salamander cone photoreceptors 总被引:12,自引:5,他引:12
下载免费PDF全文

Cone photoreceptors were isolated enzymatically and their ionic currents studied by the whole-cell, gigaseal voltage-clamp technique. Five nonsynaptic currents were identified. A prominent, poorly selective cation current, Ih, activated after a delay during hyperpolarizations and then deactivated with a delay on return to potentials greater than -50 mV. An empirical model for Ih gating kinetics is developed with three open and two closed states. Depolarization elicits a small, voltage-gated calcium current (ICa). Block by nitrendipine, nickel, cadmium, and cobalt, increase of current with barium, lack of rapid inactivation, and relatively high threshold suggest an L-type Ca channel. No evidence was found for low-threshold Ca channels. An anion current ICl(Ca) was present after pulses that led to a significant inward ICa (but not IBa) and was not elicited when cobalt was present. Tails of ICl(Ca) were short (100 ms) after short depolarizations and were longer after longer depolarizations. Two TEA-sensitive K currents were also elicited by depolarizations. One, IK(Ca), was calcium sensitive. We looked for modulation of Ih, ICa, and ICl(Ca) by a number of neurotransmitters. No changes of Ih were seen, but ICa and ICl(Ca) were depressed in a few cones when GABA or adenosine were applied. We discuss how this modulation might contribute to the feedback effects of horizontal cells on cones when surrounding cones are illuminated. 相似文献
2.
Phillippa B Cottrill Wayne L Davies Ma'ayan Semo James K Bowmaker David M Hunt Glen Jeffery 《BMC developmental biology》2009,9(1):71
Background
Many fish alter their expressed visual pigments during development. The number of retinal opsins expressed and their type is normally related to the environment in which they live. Eels are known to change the expression of their rod opsins as they mature, but might they also change the expression of their cone opsins? 相似文献3.
Visual pigments, oil droplets and photoreceptor types in the retinas of four species of true chameleons have been examined
by microspectrophotometry. The species occupy different photic environments: two species of Chamaeleo are from Madagascar and two species of Furcifer are from Africa and the Arabian Peninsula. In addition to double cones, four spectrally distinct classes of single cone were
identified. No rod photoreceptors were observed. The visual pigments appear to be mixtures of rhodopsins and porphyropsins.
Double cones contained a pale oil droplet in the principle member and both outer segments contained a long-wave-sensitive
visual pigment with a spectral maximum between about 555 nm and 610 nm, depending on the rhodopsin/porphyropsin mixture. Long-wave-sensitive
single cones contained a visual pigment spectrally identical to the double cones, but combined with a yellow oil droplet.
The other three classes of single cone contained visual pigments with maxima at about 480–505, 440–450 and 375–385 nm, combined
with yellow, clear and transparent oil droplets respectively. The latter two classes were sparsely distributed. The transmission
of the lens and cornea of C. dilepis was measured and found to be transparent throughout the visible and near ultraviolet, with a cut off at about 350 nm. 相似文献
4.
Glycinergic synapses in photoreceptors are made by centrifugal feedback neurons in the network, but the function of the synapses
is largely unknown. Here we report that glycinergic input enhances photoreceptor synapses in amphibian retinas. Using specific
antibodies against a glycine transporter (GlyT2) and glycine receptor β subunit, we identified the morphology of glycinergic
input in photoreceptor terminals. Electrophysiological recordings indicated that 10 μM glycine depolarized rods and activated
voltage-gated Ca2+ channels in the neurons. The effects facilitated glutamate vesicle release in photoreceptors, meanwhile increased the spontaneous
excitatory postsynaptic currents in Off-bipolar cells. Endogenous glycine feedback also enhanced glutamate transmission in
photoreceptors. Additionally, inhibition of a Cl− uptake transporter NKCC1 with bumetanid effectively eliminated glycine-evoked a weak depolarization in rods, suggesting that
NKCC1 maintains a high Cl− level in rods, which causes to depolarize in responding to glycine input. This study reveals a new function of glycine in
retinal synaptic transmission. 相似文献
5.
Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in vertebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing structure-function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and morphological data are used to support the analyses and to test predictions. Three functions are considered for correlations between taper and functionality. The first function proposes that outer segment taper serves to compensate for self-screening of the visual pigment contained within. The second function links outer segment taper to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are supported by the data: real cones taper more than required for these compensatory roles. The third function relates outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the inner segment's ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addition, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, correlates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one component of a miniaturization process that reduces metabolic costs while improving signal detection. Compromise solutions in the various retinas and retinal regions occur between ellipsoid size and acuity, on the one hand, and faster response time and reduced light sensitivity, on the other. 相似文献
6.
7.
Background
The rate-limiting step that determines the dominant time constant (τD) of mammalian rod photoresponse recovery is the deactivation of the active phosphodiesterase (PDE6). Physiologically relevant Ca2+-dependent mechanisms that would affect the PDE inactivation have not been identified. However, recently it has been shown that τD is modulated by background light in mouse rods.Methodology/Principal Findings
We used ex vivo ERG technique to record pharmacologically isolated photoreceptor responses (fast PIII component). We show a novel static effect of calcium on mouse rod phototransduction: Ca2+ shortens the dominant time constant (τD) of saturated photoresponse recovery, i.e., when extracellular free Ca2+ is decreased from 1 mM to ∼25 nM, the τD is reversibly increased ∼1.5–2-fold.Conclusions
We conclude that the increase in τD during low Ca2+ treatment is not due to increased [cGMP], increased [Na+] or decreased [ATP] in rod outer segment (ROS). Also it cannot be due to protein translocation mechanisms. We suggest that a Ca2+-dependent mechanism controls the life time of active PDE. 相似文献8.
A procedure for isolating the carotenoid-containing oil droplets of cone retinal photoreceptors of Gallus domesticus is described. The oil droplets, composed almost entirely of neutral lipids and carotenoids, have been separated into ten chromatographic components. Similar separations have been carried out on the total retinal neutral lipids for comparison. The neutral lipids represented 26.1% of the total retinal lipid. Cholesterol, cholesterol ester, mono-, di- and triacylglycerols represented 92.6% of the total neutral lipid. Each of these and other minor neutral lipid components were also present in the lipids extracted from the isolated oil droplets in correspondingly similar concentrations. However, the concentrations of carotenoids were greatly enriched in the neutral lipids of the oil droplets. Each of the major fatty acyl-containing neutral lipids from the chromatography of oil droplet lipids is greatly enriched in polyunsaturated fatty acids when compared with the corresponding component from the total neutral lipid chromatography. In the acylglycerols and free fatty acid fraction from the oil droplets, linoleic and arachidonic acid together represented 52-83% of the total polyunsaturated fatty acids present. The remainder was generally distributed about equally among six other acids. Except for the diacylglycerol fraction, linoleic acid was usually the most enriched acid in a specific oil droplet fraction when compared with any other polyunsaturated fatty acids. A similar pattern of polyunsaturated fatty acid enrichment observed in the fatty acids of the outer segment phospholipids relative to the corresponding total phospholipid fractions of this cone rich retina (Johnston, D. and Hudson, R.A. (1974) Biochim. Biophys. Acta 369, 269) suggest possible metabolic relationships between the oil droplet neutral lipids and the outer segment membrane phospholipids of the cone photoreceptors. A mechanism for the accumulation of the carotenoids in the oil droplets is also discussed. 相似文献
9.
10.
In this study, we addressed the temporal sequence of photoreceptor fate determination in Xenopus laevis by examining a number of key events during early cone and rod development. We compared the relative timing and spatial pattern of cone and rod specification using a number of cell type-specific markers, including probes to a long wavelength-sensitive opsin which is expressed by the major cone subtype. Our results show that cones are initially more numerous, and can arise in less mature regions of the retina than rods, although both types of photoreceptors begin to express their respective opsins at about the same time. We applied these markers to an assay of cellular determination to identify the stages of embryonic development at which the earliest photoreceptor fates are induced in vivo. The relative birth order of the major cone and rod subtypes was revealed by simultaneous labeling with markers of cell proliferation and terminal differentiation. Although there is much temporal overlap between the periods of cone and rod genesis and determination in Xenopus, we could discern that the earliest cones are both born and determined before the first rods. Thus, even in the rapidly developing retina of Xenopus, photoreceptors achieve their identities in a sequential fashion, suggesting that the inductive cues which determine specific photoreceptor fates may also arise sequentially during development. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 227–244, 1998 相似文献
11.
Equivalence of background and bleaching desensitization in isolated rod photoreceptors of the larval tiger salamander 总被引:1,自引:1,他引:1
下载免费PDF全文

《The Journal of general physiology》1996,108(4):333-340
Psychophysical experiments have shown an equivalence between sensitivity reduction by background light and by bleaches for the human scotopic system. We have compared the effects of backgrounds and bleaches on the light-sensitive membrane-current responses of isolated rod photoreceptors from the salamander Ambystoma tigrinum. The quantum catch loss was factored out from the desensitization due to bleaching to give the fraction of "extra" desensitization due to adaptation. For backgrounds, desensitization is well described by the Weber/Fechner equation. The extra desensitization after bleaches can also be described by the Weber/Fechner equation, if an "equivalent" background produced by bleaching is made linearly proportional to the fraction of pigment bleached. A background which produces an extra desensitization of a factor of two is equivalent to a fractional bleach of approximately 6%. Equivalent background and bleaching desensitizations were associated with similar reductions in circulating current. There is a linear relation between log flash sensitivity and decrease in circulating current. Equivalent background and bleaching desensitizations were associated with similar increases in cGMP phosphodiesterase and guanylate cyclase activity. These were inferred from membrane current changes after steps into lithium or IBMX solutions. There were also similar reductions in the integration times of dim flash responses for equivalent desensitizations produced by backgrounds and bleaches. These results suggest that the equivalence between background and bleaching found psychophysically may arise at the very earliest stages of visual processing and that these two processes of desensitization have similar underlying mechanisms. 相似文献
12.
We measured the ion selectivity of cGMP-dependent currents in detached membrane patches from the outer segment of cone photoreceptors isolated from the retina of striped bass. In inside-out patches excised from either single or twin cones the amplitude of these currents, under symmetric ionic solutions, changed with the concentration of cGMP with a dependence described by a Hill equation with average values, at +80 mV, of Km = 42.6 microM and n = 2.49. In the absence of divalent cations, and under symmetric ionic solutions, the I-V curves of the currents were linear over the range of -80 to +80 mV. The addition of Ca altered the form of the I-V curve to a new function well described by an empirical equation that also describes the I-V curve of the photocurrent measured in intact photoreceptors. The monovalent cation permeability sequence of the cGMP-gated channels in the absence of divalent ions was PK > PNa = PLi = PRb > PCs (1.11 > 1.0 = 0.99 = 0.96 > 0.82). The conductance selectivity sequence at +80 mV was GNa = GK > GRb > GCs > GLi (1.0 = 0.99 > 0.88 > 0.74 > 0.60). The organic cations tetramethylammonium (TMA) and arginine partially blocked the current, but the larger ion, arginine, was permeant, whereas the smaller ion, TMA, was not. The amplitude of the outward current through the channels increased with the concentration of monovalent cations on the cytoplasmic membrane surface, up to a saturating value. The increase was well described by the adsorption isotherm of a single ion binding site within the channel with average binding constants, at +80 mV, of 104 mM for Na and 37.6 mM for Li. By assuming that the ion channel contains a single ion binding site in an energy trough separated from each membrane surface by an energy barrier, and using Eyring rate theory, we simulated I-V curves that fit the experimental data measured under ionic concentration gradients. From this fit we conclude that the binding site interacts with one ion at a time and that the energy barriers are asymmetrically located within the membrane thickness. Comparison of the quantitative features of ion permeation and interaction between the cGMP-gated channels of rod and cone photoreceptors reveals that the ion binding sites are profoundly different in the two types of channels. This molecular difference may be particularly important in explaining the differences in the transduction signal of each receptor type. 相似文献
13.
Qinlong Hao Mingjie Zheng Kechao Weng Yumei Hao Yao Zhou Yuchen Lin Feng Gao Ziqi Kou Shoji Kawamura Ke Yao Pinglong Xu Jinghai Chen Jian Zou 《遗传学报》2021,48(1):52-62
Although the unique organization of vertebrate cone mosaics was first described long ago,both their underlying molecular basis and physiological significance are largely unknown.Here,we demonstrate that Crumbs proteins,the key regulators of epithelial apical polarity,establish the planar cellular polarity of photoreceptors in zebrafish.Via heterophilic Crb2a-Crb2b interactions,the apicobasal polarity protein Crb2b restricts the asymmetric planar distribution of Crb2a in photoreceptors.The planar polarized Crumbs proteins thus balance intercellular adhesions and tension between photoreceptors,thereby stabilizing the geometric organization of cone mosaics.Notably,loss of Crb2b in zebrafish induces a nearsightedness-like phenotype in zebrafish accompanied by an elongated eye axis and impairs zebrafish visual perception for predation.These data reveal a detailed mechanism for cone mosaic homeostasis via previously undiscovered apical-planar polarity coordination and propose a pathogenic mechanism for nearsightedness. 相似文献
14.
Kawamura S Tachibanaki S 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2008,150(4):369-377
Vertebrate retinal photoreceptors consist of two types of cells, the rods and cones. Rods are highly light-sensitive but their flash response time course is slow, so that they can detect a single photon in the dark but are not good at detecting an object moving quickly. Cones are less light-sensitive and their flash response time course is fast, so that cones mediate daylight vision and are more suitable to detect a moving object than rods. The phototransduction mechanism was virtually known by the mid 80s, and detailed mechanisms of the generation of a light response are now understood in a highly quantitative manner at the molecular level. However, most of these studies were performed in rods, but not in cones. Therefore, the mechanisms of low light-sensitivity or fast flash response time course in cones have not been known. The major reason for this slow progress in the study of cone phototransduction was due to the inability of getting a large quantity of purified cones to study them biochemically. We succeeded in its purification using carp retina, and have shown that each step responsible for generation of a light response is less effective in cones and that the reactions responsible for termination of a light response are faster in cones. Based on these findings, we speculated a possible mechanism of evolution of rods that diverged from cones. 相似文献
15.
Makoto Ishikawa Hiroshi Watanabe Yoshio Koike Osamu Hisatomi Fumio Tokunaga Akira Tonosaki MD 《Cell and tissue research》1989,256(2):227-232
Summary Lectin cytochemical analysis was undertaken to examine the distribution of glycoconjugates associated with the short and long photoreceptor cells in the lamprey retina. Concanavalin A bound preferentially to the outer segment region of the short cells. Wheat germ agglutinin bound weakly to both long and short cells. The outer segment regions of the long cells were stained intensely with peanut agglutinin. Pretreatment with neuraminidase to remove sialic acid resulted in decreased binding of wheat germ agglutinin throughout the retina and increased binding of peanut agglutinin to the outer segment region of the short cells and the region of myoid process of the long cells. These results suggest that there is a difference in the distribution of glycoconjugate residues between the long and short cells. A rod-like character of the short cell and a cone-like character of the long are tentatively discussed. Lectin-binding patterns in other retinal regions is also examined. 相似文献
16.
J Ma S Znoiko K L Othersen J C Ryan J Das T Isayama M Kono D D Oprian D W Corson M C Cornwall D A Cameron F I Harosi C L Makino R K Crouch 《Neuron》2001,32(3):451-461
Rods and cones contain closely related but distinct G protein-coupled receptors, opsins, which have diverged to meet the differing requirements of night and day vision. Here, we provide evidence for an exception to that rule. Results from immunohistochemistry, spectrophotometry, and single-cell RT-PCR demonstrate that, in the tiger salamander, the green rods and blue-sensitive cones contain the same opsin. In contrast, the two cells express distinct G protein transducin alpha subunits: rod alpha transducin in green rods and cone alpha transducin in blue-sensitive cones. The different transducins do not appear to markedly affect photon sensitivity or response kinetics in the green rod and blue-sensitive cone. This suggests that neither the cell topology or the transducin is sufficient to differentiate the rod and the cone response. 相似文献
17.
Makoto Ishikawa Masashi Takao Hiroshi Washioka Fumio Tokunaga Hiroshi Watanabe Akira Tonosaki MD 《Cell and tissue research》1987,249(2):241-246
Summary In common with other cyclostomata, the Japanese river lamprey (Lampetra japonica) has a retina consisting of distinct types of photoreceptor cells called long and short photoreceptor cells. After freeze-fracture, disc membranes of these photoreceptor cells were characterized in common by a homogeneous distribution of intramembrane particles on the protoplasmic fracture faces, in contrast to those of the myeloid bodies bearing scattering particles.Immunofluorescent examination was applied to the retina with monoclonal antibodies raised against bovine and chicken rhodopsins. Positive immunoreactivity was found to be limited to outer segments of the short cell, leaving the entire body of the long cell and all other components of the retina negative. The results suggest that the short cell is more closely related to a rod-type photoreceptor cell characterized by rhodopsin as its visual pigment. 相似文献
18.
Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors 总被引:4,自引:0,他引:4
Nathan S. Hart Misha Vorobyev 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2005,191(4):381-392
Birds have four spectrally distinct types of single cones that they use for colour vision. It is often desirable to be able to model the spectral sensitivities of the different cone types, which vary considerably between species. However, although there are several mathematical models available for describing the spectral absorption of visual pigments, there is no model describing the spectral absorption of the coloured oil droplets found in three of the four single cone types. In this paper, we describe such a model and illustrate its use in estimating the spectral sensitivities of single cones. Furthermore, we show that the spectral locations of the wavelengths of maximum absorbance (max) of the short- (SWS), medium- (MWS) and long- (LWS) wavelength-sensitive visual pigments and the cut-off wavelengths (cut) of their respective C-, Y- and R-type oil droplets can be predicted from the max of the ultraviolet- (UVS)/violet- (VS) sensitive visual pigment. 相似文献
19.
20.
Retinal photoreceptors die during retinal synaptogenesis in a portion of retinal degeneration. Whether cone bipolar cells establish regular retinal mosaics and mature morphologies, and resist degeneration are not completely understood. To explore these issues, we backcrossed a transgenic mouse expressing enhanced green fluorescent protein (EGFP) in one subset of cone bipolar cells (type 7) into rd1 mice, a classic mouse model of retinal degeneration, to examine the development and survival of cone bipolar cells in a background of retinal degeneration. Our data revealed that both the development and degeneration of cone bipolar cells are independent of the normal activity of cone photoreceptors. We found that type 7 cone bipolar cells achieved a uniform tiling of the retinal surface and developed normal dendritic and axonal arbors without the influence of cone photoreceptor innervation. On the other hand, degeneration of type 7 cone bipolar cells, contrary to our belief of central-to-peripheral progression, was spatially uniform across the retina independent of the spatiotemporal pattern of cone degeneration. The results have important implications for the design of more effective therapies to restore vision in retinal degeneration. 相似文献