首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interdependent relationships among nitric oxide synthase (NOS), its coenzyme, cofactors and nitric oxide (NO(free radical) were studied using electron paramagnetic resonance spectroscopy. It was found that superoxide-dependent hydroxyl free radical (OH(free radical), derived from NOS coenzyme and cofactors, inhibits NOS activity, and that endogenous NO(free radical) generated by NOS scavenges OH(free radical) and protects NOS function. These results reveal a new role for NO(free radical) that may be important in NOS function and cellular free radical homeostasis.  相似文献   

2.
We evaluated the effects of sustained perinatal inhibition of NO synthase (NOS) on hyperoxia induced lung injury in newborn rats. N(G)-nitro-Larginine-methyl-ester (L-NAME) or untreated water was administered to pregnant rats for the final 7 days of gestation and during lactation; followed by postnatal exposure to hyperoxia (>95% O(2)) or room air. The survival rate of L-NAME treated pups when placed in > 95% O(2) at birth was significantly lower than controls from day 4 (L-NAME, 87%; control pups, 100%, p < 0.05) to 14 (L-NAME, 0%; control pups, 53%, p < 0.05). Foetal pulmonary artery vasoconstriction was induced by L-NAME with a decrease in internal diameter from 0.88 +/- 0.03 mm to 0.64 +/- 0.01 mm in control vs. L-NAME groups (p < 0.05), respectively. We conclude that perinatal NOS inhibition results in pulmonary artery vasoconstriction and a decreased tolerance to hyperoxia induced lung injury in newborn rats.  相似文献   

3.
The effect of lesions induced by bilateral intracerebroventricular (i.c.v.) injection of quinolinate (250 nmol of QUIN/ventricle), a selective N-methyl-D-aspartate (NMDA) receptor agonist, on [3H]glutamate ([3H]Glu) binding to the main types of both ionotropic and metabotropic glutamate receptors (iGluR and mGluR) was investigated in synaptic membrane preparations from the hippocampi of 50-day-old rats. The membranes from QUIN injured brains revealed significantly lowered binding in iGluR (by 31%) as well as in mGluR (by 22%) as compared to the controls. Using selected glutamate receptor agonists as displacers of [3H]Glu binding we found that both the NMDA-subtype of iGluR and group I of mGluR are involved in this decrease of binding. Suppression of nitric oxide (NO) production by N(G)-nitro-L-arginine (50 nmol of NARG/ventricle) or the increase of NO generation by 3-morpholinylsydnoneimine (5 nmol of SIN-1/ventricle) failed to alter [3H]Glu or [3H]CPP (3-((D)-2-carboxypiperazin-4-yl)-[1,2-(3)H]-propyl-1-phosphonic acid; NMDA-antagonist) binding declines caused by QUIN-lesions. Thus, our findings indicate that both the NMDA-subtype of iGluR and group I of mGluR are susceptible to the QUIN-induced neurodegeneration in the rat hippocampus. However, the inhibition of NO synthesis did not reveal any protective action in the QUIN-evoked, NMDA-receptor mediated decrease of [3H]Glu binding. Therefore, the additional mechanisms of QUIN action, different from direct NMDA receptor activation/NO production (e.g. lipid peroxidation induced by QUIN-Fe-complexes) cannot be excluded.  相似文献   

4.
Summary The gas nitric oxide is now recognized as an important signalling molecule that is synthesized froml-arginine by the enzyme nitric oxide synthase. This enzyme can be localized by different methods, including immunocytochemistry and the histochemical reaction for NADPH diaphorase. It has been demonstrated in various vertebrate cells and tissues, and recently several studies dealing with the production of nitric oxide in invertebrates have been published. Diploblastic animals, flatworms and nematodes seem to lack NADPH diaphorase activity but it has been found in the rest of the phyla studied. The most frequently reported sites for the production of nitric oxide are the central and peripheral nervous systems and, in primitive molluscs, the muscle cells. In insects, it has also been described in the Malpighian tubules. The roles of nitric oxide in invertebrates are closely related to the physiological actions described in vertebrates, namely, neurotransmission, defence, and salt and water balance. The recent cloning of the first nitric oxide synthase from an invertebrate source could open interesting avenues for further studies.  相似文献   

5.
Nitric oxide (NO) is implicated in a wide variety of biological roles. NO is generated from three nitric oxide synthase (NOS) isoforms: neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) all of which are found in the lung. While there are no isoform-specific inhibitors of NOS, the recent development and characterization of mice deficient in each of the NOS isoforms has allowed for more comprehensive study of the importance of NO in the lung circulation. Studies in the mouse have identified the role of NO from eNOS in modulating pulmonary vascular tone and in attenuating the development of chronic hypoxic pulmonary hypertension.  相似文献   

6.
We have shown earlier that H(2)S acts as a mediator of inflammation. In this study, we have investigated the involvement of substance P and neurogenic inflammation in H(2)S-induced lung inflammation. Intraperitoneal administration of NaHS (1-10 mg/kg), an H(2)S donor, to mice caused a significant increase in circulating levels of substance P in a dose-dependent manner. H(2)S alone could also cause lung inflammation, as evidenced by a significant increase in lung myeloperoxidase activity and histological evidence of lung injury. The maximum effect of H(2)S on substance P levels and on lung inflammation was observed 1 h after NaHS administration. At this time, a significant increase in lung levels of TNF-alpha and IL-1beta was also observed. In substance P-deficient mice, the preprotachykinin-A knockout mice, H(2)S did not cause any lung inflammation. Furthermore, pretreatment of mice with CP-96345 (2.5 mg/kg ip), an antagonist of the neurokinin-1 (NK(1)) receptor, protected mice against lung inflammation caused by H(2)S. However, treatment with antagonists of NK(2), NK(3), and CGRP receptors did not have any effect on H(2)S-induced lung inflammation. Depleting neuropeptide from sensory neurons by capsaicin (50 mg/kg sc) significantly reduced the lung inflammation caused by H(2)S. In addition, pretreatment of mice with capsazepine (15 mg/kg sc), an antagonist of the transient receptor potential vanilloid-1, protected mice against H(2)S-induced lung inflammation. These results demonstrate a key role of substance P and neurogenic inflammation in H(2)S-induced lung injury in mice.  相似文献   

7.
Summary Three isozymes of nitric oxide synthase (NOS) have been identified, cDNAs isolated and sequenced, and antibodies produced against each isozyme. Isozyme I (found primarily in central and peripheral neuronal cells), II (in cytokine-induced cells), and III (in endothelial cells) show less than 58% identity in the deduced amino acid sequences from humans. Many investigators have produced isozyme-specific antibodies and used these antibodies to locate these proteins in various cells and tissues. NOS-I is constitutively expressed, and the enzymatic activity is regulated by Ca2+ and calmodulin. The anti-NOS-I antibodies have allowed investigators to characterize non-adrenergic non-cholinergic neurons as nitrergic neurons, revealed NOS-I immunoreactivity in neurons and macula densa cells of the kidney and pancreatic islet cells, human skeletal muscle, and to demonstrate that various structures within the brain and spinal cord contain NOS-I. NOS-II is not regulated by Ca2+ and has been implicated in the pathophysiology of sepsis and autoimmune diseases. The anti-NOS-II antibodies have localized this isoform to infiltrating macrophages in pancreatic islets of diabetic rats, infiltrating macrophages and myocytes of a transplant heart model in rats, various cell types in bacterially and endotoxin-treated rats, alveolar macrophages in areas of inflammation in humans, and vascular smooth muscle cells of human atherosclerotic aneurysm. Isoform III is similar to NOS-I in that it is constitutively expressed and regulated by Ca2+ and calmodulin. Anti-NOS-III antibodies have found that this isoform is relatively specific for endothelial cells.  相似文献   

8.
BACKGROUND: Nitric oxide (NO) has been implicated as a mediator of penile erection, because the neuronal isoform of NO synthase (NOS) is localized to the penile innervation and NOS inhibitors selectively block erections. NO can also be formed by two other NOS isoforms derived from distinct genes, inducible NOS (iNOS) and endothelial NOS (eNOS). To clarify the source of NO in penile function, we have examined mice with targeted deletion of the nNOS gene (nNOS- mice). MATERIALS AND METHODS: Mating behavior, electrophysiologically induced penile erection, isolated erectile tissue isometric tension, and eNOS localization by immunohistochemistry and Western blot were performed on nNOS- mice and wild-type controls. RESULTS: Both intact animal penile erections and isolated erectile tissue function are maintained in nNOS mice, in agreement with demonstrated normal sexual behaviors, but is stereospecifically blocked by the NOS inhibitor, L-nitroarginine methyl ester (L-NAME). eNOS is abundantly present in endothelium of penile vasculature and sinusoidal endothelium within the corpora cavemosa, with levels that are significantly higher in nNOS- mice than in wild-type controls. CONCLUSIONS: eNOS mediates NO-dependent penile erection in nNOS- animals and normal penile erection. These data clarify the role of nitric oxide in penile erection and may have implications for therapeutic agents with selective effects on NOS isoforms.  相似文献   

9.
Nitric oxide (NO*) is a multifunctional messenger molecule generated by a family of enzymes called the nitric oxide synthases (NOSs). Although NOSs have been identified in skeletal muscle, specifically brain NOS (bNOS) and endothelial NOS (eNOS), their role has not been well clarified. The goals of this investigation were to (1) characterize the immunoreactivity, Ca(2+) dependence, and activity of NOS in human and rat skeletal muscle and (2) using a rat model, investigate the effect of chronic blockade of NOS on skeletal muscle structure and function. Our results showed that both human and rodent skeletal muscle had NOS activity. This NOS activity was similar to that of the endothelial and brain NOS isoforms in that it was calcium-dependent. However, Western blot analysis consistently showed that a polyclonal antibody raised against a peptide sequence of human inducible NOS (iNOS) reacted with a protein with a molecular weight (95 kDa) that was different from that of other NOS isoforms. RT-PCR analysis identified the mRNA expression of not only eNOS and bNOS but also iNOS in human and rat muscle. Inhibition of nitric oxide synthase in rats with N(omega)-nitro-L-arginine methyl ester (L-NAME) resulted in a progressive, severe reduction in walking speed (30-fold reduction in walking velocity at day 22, P < 0.001), muscle fiber cross-sectional area (40% reduction at day 22, P < 0.001), and muscle mass (40% reduction in dry weight at day 22, P < 0.01). Rats fed the same regimen of the enantiomer of L-NAME (d-NAME) had normal motor function, muscle fiber morphology, and muscle mass. Taken together, these results imply that there may be a novel nitric oxide synthase in muscle and that NO. generated from muscle may be important in muscle function.  相似文献   

10.
Nitric oxide and nitric oxide synthase activity in plants   总被引:26,自引:0,他引:26  
Research on NO in plants has gained considerable attention in recent years mainly due to its function in plant growth and development and as a key signalling molecule in different intracellular processes in plants. The NO emission from plants is known since the 1970s, and now there is abundant information on the multiple effects of exogenously applied NO on different physiological and biochemical processes of plants. The physiological function of NO in plants mainly involves the induction of different processes, including the expression of defence-related genes against pathogens and apoptosis/programmed cell death (PCD), maturation and senescence, stomatal closure, seed germination, root development and the induction of ethylene emission. NO can be produced in plants by non-enzymatic and enzymatic systems. The NO-producing enzymes identified in plants are nitrate reductase, and several nitric oxide synthase-like activities, including one localized in peroxisomes which has been biochemically characterized. Recently, two genes of plant proteins with NOS activity have been isolated and characterized for the first time, and both proteins do not have sequence similarities to any mammalian NOS isoform. However, different evidence available indicate that there are other potential enzymatic sources of NO in plants, including xanthine oxidoreductase, peroxidase, cytochrome P450, and some hemeproteins. In plants, the enzymatic production of the signal molecule NO, either constitutive or induced by different biotic/abiotic stresses, may be a much more common event than was initially thought.  相似文献   

11.
The distribution of the three nitric oxide synthase (NOS) isoforms was determined immunohistochemically in the human minor and major salivary glands with comparison to that of rat salivary glands. In contrast to rat glands, which contained a dense plexus of neuronal NOS-immunoreactive nerve fibers, only a minority of the nerve fibers in human glands showed neuronal NOS immunoreactivity. Human labial and submandibular glands contained sparse NOS-immunoreactive fibers, while only occasional nerve fibers in the parotid or sublingual glands were stained. Furthermore, in contrast to the animal glands, most duct epithelial cells in all human salivary glands were immunoreactive for neuronal NOS. No specific immunoreactivity for inducible or endothelial NOS were observed in the nerve fibers or duct epithelium. We provide evidence to suggest that the role of nitric oxide in the regulation of salivary gland function is different in human as compared to experimental animals. Nitricergic innervation in human tissue is very sparse and thus nitric oxide is probably of minor importance as a neural regulator of salivary glands. Instead, NOS localized in duct epithelial cells suggests that nitric oxide might directly regulate saliva secretion and it is a putative source of nitrates previously reportedly secreted into the saliva.  相似文献   

12.
There is recent evidence that mouse and human spermatozoa contain constitutive nitric oxide synthase (cNOS) and can synthesize nitric oxide. The aim of this study was to investigate whether the inhibition of human sperm cNOS could affect sperm-oocyte fusion and sperm binding to the zona pellucida (ZP). N(G)-nitro-L-arginine methyl ester (L-NAME) was used as cNOS inhibitor. Sperm-oocyte fusion was evaluated using the hamster egg penetration test (HEPT). The ZP binding was evaluated using the hemizona assay. L-NAME added from the onset of capacitation strongly inhibited sperm-oocyte fusion. This inhibitory effect was dose dependent, stereospecific, and suppressed by L-arginine in a dose-dependent manner. L-NAME also inhibited sperm-oocyte fusion in the HEPT enhanced with progesterone (P), where P (5 microM) was added for 15 min to capacitated sperm. A lesser but significant inhibition was also observed when sperm suspensions were exposed to L-NAME following capacitation in both versions of HEPT. On the contrary, L-NAME did not affect ZP binding. In conclusion, the present study provides the evidence that cNOS plays a role in the human sperm's capacity to fuse with oocyte but not in the ZP binding.  相似文献   

13.
Neuronal nitric-oxide synthase (nNOS) is a constitutively expressed enzyme responsible for the production of nitric oxide (NO*) from l-arginine and O2. Nitric oxide is an intra- and intercellular messenger that mediates a diversity of signaling pathways in target cells. In the absence of l-arginine, nNOS has been shown to generate superoxide (O2*). Superoxide, either directly or through its self-dismutation to H2O2, is likewise believed to be a cell-signaling agent. Because nNOS can generate NO* and O2*, we examined the activation of cellular signal transduction pathways in nNOS-transfected cells grown in the presence or absence of l-arginine. Spin trapping/EPR spectroscopy confirmed that stimulated nNOS-transfected cells grown in an l-arginine environment secreted NO* into the surrounding milieu. Production of NO* blocked Ca2+ ionophore-induced activation of the ERK1/2 through a mechanism involving inhibition of the Ras G-protein and Raf-1 kinase. In contrast, ERK activation was largely unaffected in nNOS-transfected cells grown in l-arginine-free media. Inhibition of nNOS-generated NO* with the competitive NOS inhibitor, NG-nitro-l-arginine methyl ester, in cells grown in l-arginine restored ERK1/2 activation to levels similar to that found when nNOS was activated in l-arginine-free media. These findings indicate that nNOS can differentially regulate the ERK signal transduction pathway in a manner dependent on the presence of l-arginine and the production of NO*.  相似文献   

14.
Because sensitivity of equine pulmonary vasculature to endogenous as well as exogenous nitric oxide (NO) has been demonstrated, we examined whether endogenous NO production plays a role in exercise-induced arterial hypoxemia. We hypothesized that inhibition of NO synthase may alter the distribution of ventilation-perfusion mismatching, which may affect the exercise-induced arterial hypoxemia. Arterial blood-gas variables were examined in seven healthy, sound Thoroughbred horses at rest and during incremental exercise protocol leading to galloping at maximal heart rate without (control; placebo = saline) and with N(omega)-nitro-L-arginine methyl ester (L-NAME) administration (20 mg/kg iv). The experiments were carried out in random order, 7 days apart. At rest, L-NAME administration caused systemic hypertension, pulmonary hypertension, and bradycardia. During 120 s of galloping at maximal heart rate, significant arterial hypoxemia, desaturation of hemoglobin, hypercapnia, hyperthermia, and acidosis occurred in the control as well as in NO synthase inhibition experiments. However, statistically significant differences between the treatments were not found. In both treatments, exercise caused a significant rise in hemoglobin concentration, but the increment was significantly attenuated in the NO synthase inhibition experiments, and, therefore, arterial O(2) content (Ca(O(2))) increased to significantly lower values. These data suggest that, whereas L-NAME administration does not affect pulmonary gas exchange in exercising horses, it may affect splenic contraction, which via an attenuation of the rise in hemoglobin concentration and Ca(O(2)) may limit performance at higher workloads.  相似文献   

15.
During the development of the brain, nitric oxide and synapsins, the latter being phosphoproteins associated to presynaptic membrane vesicles, are abundant in presynaptic terminals and play important and similar roles in neurotransmitter release, morphogenesis, synaptogenesis, and synaptic plasticity. These mechanisms are fundamental for neuronal development and plasticity and constitute important factors for the formation of neuroanatomical structures. Neural nitric oxide synthase (nNOS), synapsin I, and nNOS adapter protein (CAPON) constitute a ternary complex necessary for specific NO and synapsin functions at a presynaptic level. It is not known whether NO absence may affect the presence and/or activity of synapsins during brain development. To understand the role of NO in synaptogenesis, we studied the effects of NOS inhibition on synapsin I expression at a postnatal stage. Rat pups were treated with a competitive NOS antagonist, N-nitro-L-arginine methyl ester, from postnatal days 3 to 23. Control pups received exclusively an equivalent volume of saline solution. Histochemical and immunochemical techniques for NADPH-d and synapsin I, respectively, were carried out. NOS inhibition elicited a significant reduction in synapsin I immunoreactive density and NADPH-d activity in the brain in the analyzed areas-prefrontal cortex, hippocampus, and dorsal thalamus. These data show that the alterations originated by NO and synapsin deficiencies produce a diminution in synaptic density. Thus, functions that depend on the formation of synaptic connections such as learning and memory could be affected by NO deficiency.  相似文献   

16.
17.
Inhibition of nitric oxide (NO) synthase activity by L-NG-Nitroarginine (NO2Arg) in brain preparations is not reversed by dialysis and is enhanced by prolonged preincubation of NO2Arg with the enzyme. By contrast, the weaker inhibition by NO2Arg of macrophage NO synthase is fully reversible. NO2Arg inhibits NO synthase activity in the brain after i.p. administration of 5 or 50 mg/kg. This in vivo inhibition also appears to be irreversible. The potent in vivo inhibition of central NO synthase by NO2Arg may facilitate studies of the physiologic function of NO as a neuronal messenger.  相似文献   

18.
Nitric oxide synthase and postischemic liver injury   总被引:8,自引:0,他引:8  
The objective of this study was to determine what roles the endothelial cell and inducible isoforms of nitric oxide synthase (eNOS, iNOS) play in ischemia and reperfusion (I/R)-induced liver injury in vivo in mice genetically deficient in each isoform of NOS. We found that 45 min of partial (70%) liver ischemia and 5 h of reperfusion induced substantial liver injury as assessed by the release of large and significant amounts of the liver-specific enzyme alanine aminotransferase (ALT) into the serum of wild-type (wt) mice. The enhanced ALT levels were not due to increased recruitment of potentially damaging PMNs, which could mediate hepatocyte injury, as neither histopathological inspection nor quantitative MPO determinations revealed the presence of PMNs in the liver at this time point. In addition, we observed a significant enhancement in liver injury in eNOS-deficient but not iNOS-deficient mice subjected to liver I/R compared to postischemic wt mice. Taken together, these data suggest that eNOS- but not iNOS-derived NO plays an important role in limiting or downregulating I/R-induced liver injury in vivo following 5 h of reperfusion.  相似文献   

19.
Nitric oxide synthase: models and mechanisms   总被引:6,自引:0,他引:6  
The overproduction or underproduction of nitric oxide has been implicated in pathological symptoms such as endotoxic shock, diabetes, allograft rejection, and myocardial ischimia/reperfusion injury. A thorough understanding of the biosynthesis of nitric oxide is necessary to probe and manipulate these signaling events. There is also considerable pharmacological interest in developing selective inhibitors of the several isoforms of nitric oxide synthase. The recently determined crystal structures of complexes between nitric oxide synthase and substrate, the mechanisms of the enzymatic reaction that generate nitric oxide and chemical precedents and models for these reactions are now coming into focus, but there are still numerous fascinating and unanswered questions regarding nitric oxide biosynthesis.  相似文献   

20.
Reactive hyperemia is the sudden rise in blood flow after release of an arterial occlusion. Currently, the mechanisms mediating this response in the cutaneous circulation are poorly understood. The purpose of this study was to 1). characterize the reactive hyperemic response in the cutaneous circulation and 2). determine the contribution of nitric oxide (NO) to reactive hyperemia. Using laser-Doppler flowmetry, we characterized reactive hyperemia after 3-, 5-, 10-, and 15-min arterial occlusions in 10 subjects. The total hyperemic response was calculated by taking the area under the curve (AUC) of the hyperemic response minus baseline skin blood flow (SkBF) [i.e., total hyperemic response = AUC - [baseline SkBF as %maximal cutaneous vascular conductance (CVC(max) x duration of hyperemic response in s]]. For the characterization protocol, the total hyperemic response significantly increased as the period of ischemia increased from 5 to 15 min (P < 0.05). However, the 3-min response was not significantly different from the 5-min response. In the NO contribution protocol, two microdialysis fibers were placed in the forearm skin of eight subjects. One site served as a control and was continuously perfused with Ringer solution. The second site was continuously perfused with 10 mM NG-nitro-l-arginine methyl ester (l-NAME) to inhibit NO synthase. CVC was calculated as flux/mean arterial pressure and normalized to maximal blood flow (28 mM sodium nitroprusside). The total hyperemic response in control sites was not significantly different from l-NAME sites after a 5-min occlusion (3261 +/- 890 vs. 2907 +/- 531% CVC(max. s). Similarly, total hyperemic responses in control sites were not different from l-NAME sites (9155 +/- 1121 vs. 9126 +/- 1088% CVC(max. s) after a 15-min arterial occlusion. These data suggest that NO does not directly mediate reactive hyperemia and that NO is not produced in response to an increase in shear stress in the cutaneous circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号