首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Effects of pretreatment with caffeine on Ca2+ release induced by caffeine, thymol, quercetin, or p-chloromercuriphenylsulfonic acid (pCMPS) from the heavy fraction of sarcoplasmic reticulum (SR) were studied and compared with those effects on caffeine contracture and tetanus tension in single fibers of frog skeletal muscle. Caffeine (1-5 mM) did induce transient Ca2+ release from SR vesicles, but subsequent further addition of caffeine (10 mM, final concentration) induced little Ca2+ release. Ca2+ release induced by thymol, quercetin, or pCMPS was also inhibited by pretreatment with caffeine. In single muscle fibers, pretreatment with caffeine (1-5 mM) partially reduced the contracture induced by 10 mM caffeine. However, tetanus tension was almost maximally induced by electrical stimulus in caffeine-treated fibers. These results indicate that SR, which becomes less sensitive to caffeine, thymol, quercetin, or pCMPS by pretreatment with caffeine, can still respond to a physiological signal transmitted from transverse tubules.  相似文献   

2.
Calsequestrin (CSQ) is a high capacity Ca(2+)-binding protein present in the lumen of sarcoplasmic reticulum (SR) in striated muscle cells and has been shown to regulate the ryanodine receptor Ca(2+) release channel activity through interaction with other proteins present in the SR. Here we show that overexpression of wild-type CSQ or a CSQ mutant lacking the junction binding region (amino acids 86-191; Delta junc-CSQ) in mouse skeletal C2C12 myotube enhanced caffeine- and voltage-induced Ca(2+) release by increasing the Ca(2+) load in SR, whereas overexpression of a mutant CSQ lacking a Ca(2+) binding, aspartate-rich domain (amino acids 352-367; Delta asp-CSQ) showed the opposite effects. Depletion of SR Ca(2+) by thapsigargin initiated store-operated Ca(2+) entry (SOCE) in C2C12 myotubes. A large component of SOCE was inhibited by overexpression of wild-type CSQ or Delta junc-CSQ, whereas myotubes transfected with Delta asp-CSQ exhibited normal function of SOCE. These results indicate that the aspartate-rich segment of CSQ, under conditions of overexpression, can sustain structural interactions that interfere with the SOCE mechanism. Such retrograde activation mechanisms are possibly taking place at the junctional site of the SR.  相似文献   

3.
Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic disorder of skeletal muscle that segregates with >60 mutations within the MHS-1 locus on chromosome 19 coding for ryanodine receptor type 1 (RyR1). Although some MHRyR1s have been shown to enhance sensitivity to caffeine and halothane when expressed in non-muscle cells, their influence on EC coupling can only be studied in skeletal myotubes. We therefore expressed WTRyR1, six of the most common human MHRyR1s (R163C, G341R, R614C, R2163C, V2168M, and R2458H), and a newly identified C-terminal mutation (T4826I) in dyspedic myotubes to study their functional defects and how they influence EC coupling. Myotubes expressing any MHRyR1 were significantly more sensitive to stimulation by caffeine and 4-CmC than those expressing WTRyR1. The hypersensitivity of MH myotubes extended to K+ depolarization. MH myotubes responded to direct channel activators with maximum Ca2+ amplitudes consistently smaller than WT myotubes, whereas the amplitude of their responses to depolarization were consistently larger than WT myotubes. The magnitudes of responses attainable from myotubes expressing MHRyR1s are therefore related to the nature of the stimulus rather than size of the Ca2+ store. The functional changes of MHRyR1s were directly analyzed using [3H]ryanodine binding analysis of isolated myotube membranes. Although none of the MHRyR1s examined significantly altered EC50 for Ca2+ activation, many failed to be completely inhibited by a low Ca2+ (相似文献   

4.
Several types of reagents that react with amino acid side chains induced repetitive phasic contracture of skinned skeletal muscle from frogs. The presence of 10 mM procaine or 5 mM magnesium in the medium or disruption of the sarcoplasmic reticulum (SR) eliminated this contracture, indicating that the calcium-induced calcium-release mechanism of SR is involved in the contraction. Dithiothreitol inhibited the contracture induced by chloramine T, N-acetylimidazole, or p-chloromercuriphenylsulfonic acid (pCMPS) but not in the case of carbodiimide, phenylglyoxal, trinitrobenzenesulfonic acid, diethylpyrocarbonate (DEP), or N-chlorosuccinimide (NCS). Therefore, modification of groups other than the sulfhydryl ones seems to induce contractures under such conditions. The amplitude of the caffeine-induced contracture decreased after treatment with pCMPS, DEP, or NCS. NCS shifted the pCa-tension curve toward low pCa in the SR-disrupted fibers. This shift would explain the decrease in the caffeine contracture. It is tentatively concluded that pCMPS and DEP release a large amount of calcium from SR.  相似文献   

5.
Rabbit right ventricular papillary muscles were cooled from 30 to approximately 1 degree C immediately after discontinuing electrical stimulation (0.5 Hz). This produced a contracture that was 30-50% of the preceding twitch magnitude and required 20-30 s to develop. The contractures were identical in cooling solutions with normal (144 mM) or low (2.0 mM) Na. They were therefore not Na-withdrawal contractures. Contracture activation was considerably slower than muscle cooling (approximately 2.5 s to cool below 2 degrees C). Cooling contractures were suppressed by caffeine treatment (10.0 mM). Rapid cooling did not cause sufficient membrane depolarization (16.5 +/- 1.2 mV after 30 s of cooling) to produce either a voltage-dependent activation of contracture or a gated entry of Ca from the extracellular space. Contractures induced by treating resting muscles with 5 X 10(-5) M strophanthidin at 30 degrees C exhibited pronounced tension noise. The Fourier spectrum of this noise revealed a periodic component (2-3 Hz) that disappeared when the muscle was cooled. Cooling contractures decayed with rest (t1/2 = 71.0 +/- 9.3 s). This decay accelerated in the presence of 10.0 mM caffeine and was prevented and to some extent reversed when extracellular Na was reduced to 2.0 mM. 20 min of rest resulted in a net decline in intracellular Ca content of 1.29 +/- 0.38 mmol/kg dry wt. I infer that cooling contractures are principally activated by Ca from the sarcoplasmic reticulum (SR). The properties of these contractures suggest that they may provide a convenient relative index of the availability of SR Ca for contraction. The rest decay of cooling contractures (and hence the decay in the availability of activating Ca) is consistent with the measured loss in analytic Ca during rest. The results suggest that contraction in heart muscle can be regulated by an interaction between sarcolemmal and SR Ca transport.  相似文献   

6.
(a) The effects of caffeine on the composition and volume of the terminal cisternae (TC) of the sarcoplasmic reticulum (SR) in frog skeletal muscle were determined with rapid freezing, electron microscopy, and electron probe analysis. (b) Caffeine (5 mM) released approximately 65% of the Ca content of the TC in 1 min and 84% after 3 min. The release of Ca from the TC was associated with a highly significant increase in its Mg content. This increase in Mg was not reduced by valinomycin. There was also a small increase in the K content of the TC at 1 min, although not after 3 min of caffeine contracture. (c) On the basis of the increase in Mg content during caffeine contracture and during tetanus (Somlyo, A. V., H. Gonzalez- Serratos, H. Shuman, G. McClellan, and A. P. Somlyo, 1981, J. Cell Biol., 90:577-594), we suggest that both mechanisms of Ca release are associated with an increase in the Ca and Mg permeability of the SR membranes, the two ions possibly moving through a common channel. (d) There was a significant increase in the P content of the TC during caffeine contracture, while in tetanized muscle (see reference above) there was no increase in the P content of the TC. (e) Mitochondrial Ca content was significantly increased (at 1 and at 3 min) during caffeine contracture. Valinomycin (5 microM) blocked this mitochondrial Ca uptake. (f) The sustained Ca release caused by caffeine in situ contrasts with the transient Ca release observed in studies of fragmented SR preparations, and could be explained by mediation of the caffeine-induced Ca release by a second messenger produced more readily in intact muscle than in isolated SR. (g) The TC were not swollen in rapidly frozen, caffeine-treated muscles, in contrast to the swelling of the TC observed in conventionally fixed, caffeine-treated preparation, the latter finding being in agreement with previous studies. (h) The fractional volume of the TC in rapidly frozen control (resting) frog semitendinosus muscles (approximately 2.1%) was less than the volume (approximately 2.5%) after glutaraldehyde-osmium fixation.  相似文献   

7.
At concentrations between 1 to 10 mM, caffeine reduced the Ca-accumulating capacity of fragmented reticulum obtained from frog and rabbit muscle. With 8 mM caffeine enough Ca was released from frog reticulum to account for the force of the contracture. Caffeine did not affect all reticulum membranes equally. The fraction which was spun down at 2000 g was more sensitive than the lighter fractions. The percentage of the total accumulated Ca released by caffeine decreased with decreasing Ca content of the reticulum. In parallel with their known effects on the caffeine contracture, a drop in temperature increased the caffeine-induced Ca release while procaine inhibited it. Caffeine also inhibited the rate of Ca uptake, which may in part account for the prolongation of the active state caused by caffeine.  相似文献   

8.
We have investigated the effects on spontaneous SR Ca release of modulating the sarcoplasmic reticulum ryanodine receptor (RyR) with low (<0.5 mM) concentrations of caffeine. Experiments were performed on isolated rat ventricular myocytes. Intracellular Ca concentration was measured with Indo-1 or Fluo-3 in voltage-clamped cells. Spontaneous Ca release was produced by elevating external Ca to 5 mM. Caffeine application increased the frequency of spontaneous release. Both the magnitude of the spontaneous Ca transients and the integral of the resulting Na-Ca exchange current were decreased by caffeine. The combination of increased frequency of spontaneous release and decreased Ca efflux per event meant that the Ca efflux per unit time was unaffected by low concentrations of caffeine. The SR Ca content was reduced by caffeine. The extra Ca efflux calculated from the Na-Ca exchange current integrals occurring during the initial burst of spontaneous activity on application of caffeine accounted for this reduction of SR Ca content. In contrast to these maintained effects on spontaneous release, caffeine had only transient effects on stimulated Ca release produced by depolarizing pulses. We conclude that stimulation of the RyR results in spontaneous release at SR Ca contents lower than those at which release would normally occur. Therefore, the balance between normal and spontaneous Ca release can be shifted by modulation of the RyR. This will have important consequences for arrhythmogenesis due to spontaneous Ca release.  相似文献   

9.
We have shown that TRPC3 (transient receptor potential channel canonical type 3) is sharply up-regulated during the early part of myotube differentiation and remains elevated in mature myotubes compared with myoblasts. To examine its functional roles in muscle, TRPC3 was "knocked down" in mouse primary skeletal myoblasts using retroviral-delivered small interference RNAs and single cell cloning. TRPC3 knockdown myoblasts (97.6 +/- 1.9% reduction in mRNA) were differentiated into myotubes (TRPC3 KD) and subjected to functional and biochemical assays. By measuring rates of Mn(2+) influx with Fura-2 and Ca(2+) transients with Fluo-4, we found that neither excitation-coupled Ca(2+) entry nor thapsigargin-induced store-operated Ca(2+) entry was significantly altered in TRPC3 KD, indicating that expression of TRPC3 is not required for engaging either Ca(2+) entry mechanism. In Ca(2+) imaging experiments, the gain of excitation-contraction coupling and the amplitude of the Ca(2+) release seen after direct RyR1 activation with caffeine was significantly reduced in TRPC3 KD. The decreased gain appears to be due to a decrease in RyR1 Ca(2+) release channel activity, because sarcoplasmic reticulum (SR) Ca(2+) content was not different between TRPC3 KD and wild-type myotubes. Immunoblot analysis demonstrated that TRPC1, calsequestrin, triadin, and junctophilin 1 were up-regulated (1.46 +/- 1.91-, 1.42 +/- 0.08-, 2.99 +/- 0.32-, and 1.91 +/- 0.26-fold, respectively) in TRPC3 KD. Based on these data, we conclude that expression of TRPC3 is tightly regulated during muscle cell differentiation and propose that functional interaction between TRPC3 and RyR1 may regulate the gain of SR Ca(2+) release independent of SR Ca(2+) load.  相似文献   

10.
Changes in intracellular calcium concentration ([Ca2+]i) evoked by prolonged depolarisation (120 mM KCl) or by the application of 15 mM caffeine were measured on skeletal muscle cells in primary culture. The extrusion rate (PVmax) of calcium from the myoplasm was determined, which in turn enabled the calculation of the calcium flux (Fl) underlying the measured calcium transients. PVmax was found to increase during differentiation, from 107 +/- 10 microM/s at the early myotube stage to 596 +/- 36 microM/s in secondary myotubes. This was paralleled by a decrease in resting [Ca2+]i from 99 +/- 4 to 51 +/- 2 nM. The depolarisation-evoked Fl rose to peak and then ceased despite the continuous presence of KCl. In contrast, the caffeine-induced Fl showed a peak and a clear steady-level with a peak-to-steady ratio of 5.6 +/- 1.2. Removal of external calcium suppressed the depolarisation--induced flux by 88 +/- 5% indicating that both an influx and a release from the SR underlie the K(+)-evoked calcium transients. Subsequent applications of caffeine resulted in essentially identical fluxes indicating an efficient refilling of the internal stores. Moreover, if a depolarisation-induced calcium transient preceded the second caffeine-evoked release, the latter was significantly larger than the first suggesting that much of the calcium that entered was stored in the SR rather than extruded.  相似文献   

11.
Caffeine has been reported to have a positive and (or) a negative inotropic effect on cardiac muscle. In this study, the force-frequency and postrest characteristics of rat atrium were studied in the presence of caffeine (1.0-10 mM) to see if the interval between beats affected the response of cardiac muscle to caffeine. When stimulation frequency was 0.5 or 2.0 Hz, there was a positive followed by a negative inotropic response with 1, 5, or 10 mM caffeine. Incomplete relaxation occurred under these circumstances, giving rise to contracture. At low frequency of stimulation (0.1 Hz) caffeine had only a negative inotropic effect, and this effect was greater with 1 mM caffeine than with 5 mM caffeine. In the absence of caffeine, when stimulation at 0.5 or 3 Hz was interrupted, a pause of 2-20 s resulted in potentiation. When caffeine was present (2.0 mM), postrest potentiation was severely attenuated, but the steady-state contraction amplitude within the range 0.5-3.0 Hz was not different. These results are consistent with the hypothesis that caffeine induces a leak of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is extruded from the cell, possibly by Na+/Ca2+ exchange. Sarcoplasmic reticular uptake of Ca2+ and the translocation to release sites appear not to be affected by caffeine within 1-5 mM concentrations.  相似文献   

12.
Central core disease (CCD) is a human myopathy that involves a dysregulation in muscle Ca(2)+ homeostasis caused by mutations in the gene encoding the skeletal muscle ryanodine receptor (RyR1), the protein that comprises the calcium release channel of the SR. Although genetic studies have clearly demonstrated linkage between mutations in RyR1 and CCD, the impact of these mutations on release channel function and excitation-contraction coupling in skeletal muscle is unknown. Toward this goal, we have engineered the different CCD mutations found in the NH(2)-terminal region of RyR1 into a rabbit RyR1 cDNA (R164C, I404M, Y523S, R2163H, and R2435H) and characterized the functional effects of these mutations after expression in myotubes derived from RyR1-knockout (dyspedic) mice. Resting Ca(2)+ levels were elevated in dyspedic myotubes expressing four of these mutants (Y523S > R2163H > R2435H R164C > I404M RyR1). A similar rank order was also found for the degree of SR Ca(2)+ depletion assessed using maximal concentrations of caffeine (10 mM) or cyclopiazonic acid (CPA, 30 microM). Although all of the CCD mutants fully restored L-current density, voltage-gated SR Ca(2)+ release was smaller and activated at more negative potentials for myotubes expressing the NH(2)-terminal CCD mutations. The shift in the voltage dependence of SR Ca(2)+ release correlated strongly with changes in resting Ca(2)+, SR Ca(2)+ store depletion, and peak voltage-gated release, indicating that increased release channel activity at negative membrane potentials promotes SR Ca(2)+ leak. Coexpression of wild-type and Y523S RyR1 proteins in dyspedic myotubes resulted in release channels that exhibited an intermediate degree of SR Ca(2)+ leak. These results demonstrate that the NH(2)-terminal CCD mutants enhance release channel sensitivity to activation by voltage in a manner that leads to increased SR Ca(2)+ leak, store depletion, and a reduction in voltage-gated Ca(2)+ release. Two fundamentally distinct cellular mechanisms (leaky channels and EC uncoupling) are proposed to explain how altered release channel function caused by different mutations in RyR1 could result in muscle weakness in CCD.  相似文献   

13.
The muscular dysgenesis recessive autosomal mutation is characterized by a total lack of muscular contraction and a myofibrillar non-organization. Many abnormalities involved in the excitation-contraction coupling are found in mdg/mdg myotubes: 1) the internal structural organization of the membrane coupling between the sarcoplasmic reticulum (SR) and the transverse (T)-tubule forming the triadic association is defective: the triad number is decreased in the muscle and there are a lack of periodic densities between the SR and T-tubule apposed membranes. 2) the voltage-dependent Ca2+ channel contents, identified by binding with the specific blocker PN 200-110, are decreased. The two fast (30 ms) and slow (100 ms) Ca2+ currents present in normal myotubes are absent in mdg/mdg myotubes in vitro. 3) the Ca2+-dependent K+ conductance triggering an action potential followed by a long lasting after hyperpolarization (ahp) is absent in mdg/mdg myotubes. This indicates a lack of the free intracellular Ca2+ increased by the action potential. These results suggest that: 1) the lack of differentiated triadic junctions is directly correlated with very low amounts of voltage-dependent Ca2+ channels; 2) the low amount of Ca2+ channels results directly in decreased Ca2+ currents; 3) the decreased Ca2+ currents are the consequence of the low intracellular Ca2+ concentration which is not sufficient to trigger a contraction. However, the addition of normal motoneurones to mdg/mdg myotubes in culture induces, few days later, an increase in Ca2+ currents.  相似文献   

14.
The effects of caffeine and procaine on the Ca2+-gated cation channel in sarcoplasmic reticulum (SR) vesicles were studied by measuring choline influx. The choline influx in SR vesicles was measured by following the change in light scattering intensity using a stopped flow apparatus. From the kinetic analysis of the rate of choline influx, the following results were obtained. (1) The rate of choline influx was enhanced when Ca2+ bound to the Ca2+-receptor site of the Ca2+-gated cation channel. (2) Caffeine enhanced the choline influx by increasing only the affinity of Ca2+ for the receptor site of the channel and thus regulated the equilibrium between open and closed states of the channel. The affinity increased about 14-fold upon caffeine binding. The dissociation constant of caffeine was 10 mM. (3) In contrast, procaine itself blocked the choline influx mediated by the Ca2+-gated cation channel. The blockade followed a single-site titration curve with a Ca2+-dependent dissociation constant of 0.44 mM at 2 x 10(-6) M Ca2+. The Ca2+-dependence was explained by assuming that procaine would bind to the inhibitory site only when the channel was open. (4) Procaine also inhibited the choline influx enhanced by caffeine. The blockade could be explained on the basis of the above kinetic model.  相似文献   

15.
In noncontracting, dysgenic murine muscle, excitation is uncoupled from contraction. To test whether the gene lesion is expressed as a defect in the regulation of the intracellular free Ca2+ levels, cultured normal and dysgenic muscle at various stages of development (proliferative myoblasts, early, late, and mature myotubes) were exposed to increasing increments (0.5-mM steps) of extracellular Ca2+ in ionophore A23187-Ca2+-EGTA-buffered media. Normal and dysgenic muscle at all stages (except myoblast) displayed contractures at approximately 500 microM free Ca2+ and higher. Experiments using finer increments of Ca2+ and different ionophore concentrations indicated an external Ca2+ threshold for contracture at 265 microM Ca2+ for early and late myotubes and 47-78 microM for mature normal and dysgenic myotubes. Low extracellular concentrations of calcium (14 microM and 0.76 nM) caused elongation of both normal and dysgenic myotubes. Mature cells were depolarized by exposure to increasing extracellular K+ and monitored by intracellular recording; normal and dysgenic myotubes showed similar reductions in membrane potentials. Depolarization to -35 mV elicited contractures in normal myotubes, but even depolarization to -9 mV in dysgenic cells elicited no response. Thus steady-state depolarization of dysgenic muscle does not cause contractures, which can, however, be elicited by increasing the intracellular free Ca2+. These results offer new evidence for a possible defect in the regulation of Ca2+ levels in dysgenic muscle.  相似文献   

16.
Duchenne and mdx muscle tissues lack dystrophin where it normally interacts with glycoproteins in the sarcolemma. Intracellular free calcium ([Ca2+]i) is elevated in Duchenne and mdx myotubes and is correlated with abnormally active calcium-specific leak channels in dystrophic myotubes. We fused Duchenne human and normal mouse myoblasts and identified heterokaryon myotubes by Hoechst 33342 staining to measure the degree to which dystrophin introduced by normal nuclei could incorporate throughout the myotube at the sarcolemma and restore normal calcium homeostasis. Dystrophin expression in myotubes was determined by immunofluorescence and confocal laser scanning microscopy. Dystrophin was expressed at the sarcolemma in normal mouse and heterokaryon myotubes, but not in Duchenne myotubes. In heterokaryons, extensive dystrophin localization occurred at the sarcolemma even where only Duchenne nuclei were present, indicating that dystrophin does not exhibit nuclear domains. Heterokaryon, normal mouse and Duchenne myotube [Ca2+]i was measured using fura-2 and fluorescence ratio imaging. Heterokaryon and normal mouse myotubes were found to maintain similar levels of [Ca2+]i. In contrast, Duchenne myotubes had significantly higher [Ca2+]i (p < 0.001). Furthermore, the ability of heterokaryons to maintain normal [Ca2+]i did not depend on greater numbers of normal nuclei than Duchenne being present in the myotube. These results support the view that dystrophin expression in heterokaryons allows for efficient control of [Ca2+]i.  相似文献   

17.
The purpose of this investigation was to determine the effects of reduced pH on Ca(2+)-induced Ca2+ release (CICR) from skeletal muscle sarcoplasmic reticulum (SR). Frog semitendinosus fiber bundles (1-3/bundle) were chemically skinned via saponin treatment (50 micrograms/mL, 20 min), which removes the sarcolemma and leaves the SR functional. The SR was first depleted of Ca2+ then loaded for 2 min at pCa (log free Ca2+ concentration) 6.6. CICR was then evoked by exposing the fibers to pCa 5-7 for 5-60 s. CICR was evoked both in the absence of ATP and Mg2+ and in the presence of beta, gamma-methyleneadenosine-5'-triphosphate (AMPPCP, a nonhydrolyzable form of ATP) and Mg2+. Ca2+ remaining in the SR was then assayed via caffeine (25 mM) contracture. In all cases, CICR evoked at pH 6.5 resulted in larger caffeine contractures than that evoked at 7.0, suggesting that more Ca2+ was released during CICR at the higher pH. Accordingly, rate constants for CICR were significantly greater at pH 7.0 than at pH 6.5. These results indicate that reduced pH depresses CICR from skeletal muscle SR.  相似文献   

18.
Ag+-induced Ca2+ release in isolated sarcoplasmic reticulum (SR) was studied by the stopped flow method monitoring chlortetracycline fluorescence change. After improving the experimental procedure, the initial rate of Ca2+ release could be determined more precisely than before. Micromolar concentrations of Ag+ specifically enhanced Ca2+ efflux from heavy fraction of SR vesicles (HSR). This specific effect was referred to as Ag+-induced calcium release. The Ag+-induced Ca2+ efflux was activated by caffeine and ATP, but was inhibited by Mg2+ and procaine. Further, Ag+ enhanced the Ca2+-induced Ca2+ release over the whole range of Ca2+ concentrations, similarly to ATP. Parallel to Ca2+ efflux, Mg2+ efflux, measured by the same method, was also activated by Ag+. Choline permeability determined by the light scattering method was also activated by Ag+. The results suggest that Ag+ binds to the activation site of the Ca2+-induced Ca2+ release channel and opens the channel. The Ag+ binding site is different from the Ca2+ binding site but similar to the ATP binding site.  相似文献   

19.
We examined how ryanodine interfered with Ca2+-releasing action of caffeine in guinea-pig aorta. Ryanodine (10 microM) decreased the caffeine-induced contraction depending on the time of pretreatment with the agent. The development of ryanodine-effect with time was neither due to a slow access to its binding site nor due to the depletion of stored Ca2+. Ryanodine more potently inhibited the second or the subsequent contraction due to caffeine than the first one even after the agent was removed from the bath after first caffeine. The enhancement of ryanodine-effect depended on the history of Ca2+ release but not on an increase in cytoplasmic Ca2+. The data suggest that an opening of Ca2+ release channel enhances the interaction of ryanodine with the channel.  相似文献   

20.
Xestospongin B, a macrocyclic bis-1-oxaquinolizidine alkaloid extracted from the marine sponge Xestospongia exigua, was highly purified and tested for its ability to block inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release. In a concentration-dependent manner xestospongin B displaced [(3)H]IP(3) from both rat cerebellar membranes and rat skeletal myotube homogenates with an EC(50) of 44.6 +/- 1.1 microM and 27.4 +/- 1.1 microM, respectively. Xestospongin B, depending on the dose, suppressed bradykinin-induced Ca(2+) signals in neuroblastoma (NG108-15) cells, and also selectively blocked the slow intracellular Ca(2+) signal induced by membrane depolarization with high external K(+) (47 mM) in rat skeletal myotubes. This slow Ca(2+) signal is unrelated to muscle contraction, and involves IP(3) receptors. In highly purified isolated nuclei from rat skeletal myotubes, Xestospongin B reduced, or suppressed IP(3)-induced Ca(2+) oscillations with an EC(50) = 18.9 +/- 1.35 microM. In rat myotubes exposed to a Ca(2+)-free medium, Xestospongin B neither depleted sarcoplasmic reticulum Ca(2+) stores, nor modified thapsigargin action and did not affect capacitative Ca(2+) entry after thapsigargin-induced depletion of Ca(2+) stores. Ca(2+)-ATPase activity measured in skeletal myotube homogenates remained unaffected by Xestospongin B. It is concluded that xestospongin B is an effective cell-permeant, competitive inhibitor of IP(3) receptors in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号