首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-five rhizobial strains were isolated from nodules of Lotus edulis, L. ornithopodioides, L. cytisoides, Hedysarum coronarium, Ornithopus compressus and Scorpiurus muricatus growing in Sardinia and Asinara Island. Basic characteristics applied to identification of rhizobia such as symbiotic properties, antibiotic- and salt-resistance, temperate-sensitivities, utilization of different sources of carbon and nitrogen were studied. The results from the 74 metabolic tests were used for cluster analysis of the new rhizobial isolates and 28 reference strains, belonging to previously classified and unclassified fast-, intermediate- and slow-growing rhizobia. All strains examined were divided into two large groups at a linkage distance of 0.58. None of the reference strains clustered with the new rhizobial isolates, which formed five subgroups almost respective of their plant origin. RFLP analysis of PCR-amplified 16S-23S rDNA IGS showed that the levels of similarity between rhizobial isolates from Ornithopus, Hedysarum and Scorpiurus, and the type strains of Rhizobium leguminosarum, Mesorhizobium loti, M. ciceri, M. mediterraneum, Sinorhizobium meliloti and Bradyrhizobium japonicum were not more than 30%. Thus, it can be assumed that these groups of new rhizobial isolates are not closely related to the validly described rhizobial species.  相似文献   

2.
刘璐  何寻阳  谢强  王克林 《生态学杂志》2015,26(12):3663-3669
调查了桂西北喀斯特24种常见豆科植物的结瘤情况及特征,并从15种宿主植物上获得39份根瘤样品,提取根瘤基因组DNA,扩增16S rDNA和nifH基因,构建系统发育树,对根瘤菌遗传多样性进行了研究.结果表明: 有15种豆科植物是结瘤的,其中14种为蝶形花亚科,1种为含羞草亚科,而云实亚科未发现结瘤.一些本应结瘤的植物未发现根瘤,可能与喀斯特土壤的保水性差有关.BLAST和系统发育分析结果均显示,来源于多种豆科植物的根瘤菌均归属于慢生根瘤菌属,仅有2个亮叶崖豆藤样品的根瘤菌归属于中慢生根瘤菌属.在系统发育树上,来源于同一地点或同一宿主植物的根瘤序列均表现出一定的聚集性,说明共生根瘤菌的种类可能受宿主植物及所处生态环境的共同影响.  相似文献   

3.
A total of 111 rhizobial strains were isolated from wild legumes in Xinjiang, an isolated region of northwest China. Nine genomic species belonging to four genera of Rhizobium, Mesorhizobium, Ensifer, and Bradyrhizobium were defined among these strains based on the characterization of amplified 16S ribosomal DNA restriction analysis (ARDRA), restriction fragment length polymorphism (RFLP) analysis of 16S-23S rDNA intergenic spacers (IGS), 16S rRNA gene sequencing and multilocus sequence analysis (MLSA). Twenty-five nodC types corresponding to eight phylogenetic clades were divided by RFLP and sequence analysis of the PCR-amplified nodC gene. The acid-producing Rhizobium and Mesorhizobium species were predominant, which may be related to both the local environments and the hosts sampled. The present study also showed the limitation of using nod genes to estimate the host specificity of rhizobia.  相似文献   

4.
神木地区耐旱灌木和草本豆科植物根瘤菌遗传多样性   总被引:1,自引:0,他引:1  
豆科植物具有抗逆性强、耐瘠薄的特性,许多豆科植物是荒漠地区的先锋植物,在生态环境保护中起重要作用.以神木地区主要的灌木和草本豆科植物-根瘤菌共生体系为材料,采用16S rRNA PCR-RFLP和序列分析等方法,对分离得到的55株菌进行多样性分析,其中,30株菌分离自灌木豆科植物紫穗槐和柠条,25株菌分离自草本豆科植物斜茎黄芪、苜蓿、草木樨黄芪等.结果表明: 这些菌株共有11种16S rRNA PCR-RFLP遗传图谱类型,分离自草本豆科植物的菌株主要归属于中慢生根瘤菌属、剑菌属、根瘤菌属、叶瘤杆菌属和土壤杆菌属5个属,分别与华癸中慢生根瘤菌、地中海中慢生根瘤菌、刺槐中慢生根瘤菌、费氏剑菌、草木樨剑菌、木兰根瘤菌、放射根瘤菌、突尼斯叶杆菌和根癌土壤杆菌系统发育关系最近.分离自灌木豆科植物的菌株仅归属于中慢生根瘤菌属,分别与华癸中慢生根瘤菌和地中海中慢生根瘤菌系统发育关系最近.华癸中慢生根瘤菌和地中海中慢生根瘤菌是两类豆科植物的共生菌种,表明在干旱地区,根瘤菌对两种类型豆科植物的选择共生存在差异,这与豆科植物种类有关,还可能与其所处生态环境有关.  相似文献   

5.
Fifty-five bacterial isolates were obtained from surface-sterilized nodules of woody and shrub legumes growing in Ethiopia: Crotalaria spp., Indigofera spp., and Erythrina brucei, and the food legumes soybean and common bean. Based on partial 16S rRNA gene sequence analysis, the majority of the isolates were identified as Gram-negative bacteria belonging to the genera Achromobacter, Agrobacterium, Burkholderia, Cronobacter, Enterobacter, Mesorhizobium, Novosphingobium, Pantoea, Pseudomonas, Rahnella, Rhizobium, Serratia, and Variovorax. Seven isolates were Gram-positive bacteria belonging to the genera Bacillus, Paenibacillus, Planomicrobium, and Rhodococcus. Amplified fragment length polymorphism (AFLP) fingerprinting showed that each strain was genetically distinct. According to phylogenetic analysis of recA, glnII, rpoB, and 16S rRNA gene sequences, Rhizobium, Mesorhizobium, and Agrobacterium were further classified into six different genospecies: Agrobacterium spp., Agrobacterium radiobacter, Rhizobium sp., Rhizobium phaseoli, Mesorhizobium sp., and putative new Rhizobium species. The strains from R. phaseoli, Rhizobium sp. IAR30, and Mesorhizobium sp. ERR6 induced nodules on their host plants. The other strains did not form nodules on their original host. Nine endophytic bacterial strains representing seven genera, Agrobacterium, Burkholderia, Paenibacillus, Pantoea, Pseudomonas, Rhizobium, and Serratia, were found to colonize nodules of Crotalaria incana and common bean on co-inoculation with symbiotic rhizobia. Four endophytic Rhizobium and two Agrobacterium strains had identical nifH gene sequences with symbiotic Rhizobium strains, suggesting horizontal gene transfer. Most symbiotic and nonsymbiotic endophytic bacteria showed plant growth-promoting properties in vitro, which indicate their potential role in the promotion of plant growth when colonizing plant roots and the rhizosphere.  相似文献   

6.
The diversity and phylogeny of 32 rhizobial strains isolated from nodules of common bean plants grown on 30 sites in Ethiopia were examined using AFLP fingerprinting and MLSA. Based on cluster analysis of AFLP fingerprints, test strains were grouped into six genomic clusters and six single positions. In a tree built from concatenated sequences of recA, glnII, rpoB and partial 16S rRNA genes, the strains were distributed into seven monophyletic groups. The strains in the groups B, D, E, G1 and G2 could be classified as Rhizobium phaseoli, R. etli, R. giardinii, Agrobacterium tumefaciens complex and A. radiobacter, respectively, whereas the strains in group C appeared to represent a novel species. R. phaseoli, R. etli, and the novel group were the major bean nodulating rhizobia in Ethiopia. The strains in group A were linked to R. leguminosarum species lineages but not resolved. Based on recA, rpoB and 16S rRNA genes sequences analysis, a single test strain was assigned as R. leucaenae. In the nodC tree the strains belonging to the major nodulating groups were clustered into two closely linked clades. They also had almost identical nifH gene sequences. The phylogenies of nodC and nifH genes of the strains belonging to R. leguminosarum, R. phaseoli, R. etli and the putative new species (collectively called R. leguminosarum species complex) were not consistent with the housekeeping genes, suggesting symbiotic genes have a common origin which is different from the core genome of the species and indicative of horizontal gene transfer among these rhizobia.  相似文献   

7.
8.
Woody legumes can play an important role in forest restoration on degraded land but the knowledge of woody legumes has lagged behind their uses. This study is a pioneer investigation to explore the ability of native woody legumes to form root nodules and fix nitrogen in Hong Kong. Nine sites of different habitat types were surveyed during both wet and dry seasons for two years. Young plants of woody legumes along studied transects were excavated. The patterns of nodulation and nodule morphology were recorded and the nitrogen fixing ability was tested by acetylene-reduction-assay. Twenty-eight species in 16 genera were examined, of which 20 species were nodulating and eight non-nodulating, including all six species in the Caesalpinioideae. Five species were new records to the world’s nodulation inventory. Bowringia callicarpa was a new species and genus examined, which was non-nodulating. The overall nodulation pattern was consistent with previous studies. Nodulation was more profuse in some shrub species while inconsistent in most tree species. Species with higher proportion of nodulated individual plants also tended to have more nodules in each plant. Spherical nodules were common in shrub and woody climber species whilst tree species usually had woody indeterminate nodules. Seasonal difference in the amount of senescent nodules was noted in most species. All the nodules tested by acetylene-reduction-assay were effectively nitrogen-fixing, with nitrogenase activity ranging from 4 μmol C2H4 g?1 h?1 to 20 μmol C2H4 g?1 h?1, which was comparable to other tropical tree species. The findings in nodulation pattern and nitrogen fixing ability of these species are essential in their application in forest restoration on degraded lands.  相似文献   

9.
Tropical forests have a high diversity of plant species; are they associated with a correspondingly rich microbial flora? We addressed this question by examining the symbiotic rhizobium bacteria that nodulate a diverse pool of forest legume species in Brazil. The 44 strains studied had been isolated from 29 legume tree species representing 13 tribes including all three subfamilies of the Leguminosae, and were chosen to represent major groups from a larger sample that had previously been characterized by SDS–PAGE of total proteins. Partial 16S rRNA gene sequence was determined, corresponding to positions 44–303 in the Escherichia coli sequence. Fifteen sequences were found, including six novel ones. However, all but one of them could be assigned to a genus because they grouped closely with sequences from previously described rhizobial species. Fast-growing strains had sequences similar to Rhizobium spp., Sinorhizobium spp. or Mesorhizobium spp., while the slow-growing strains had sequences similar to Bradyrhizobium spp. One strain with an intermediate growth rate had a unique sequence which indicated that the strain might belong to the genus Azorhizobium. Although the strains showed a variety of sequences, it was surprising that these strains isolated from taxonomically very diverse host plants in previously unexplored environments were mostly very similar to strains described previously, largely from agricultural systems.  相似文献   

10.
Odee  D.W.  Sutherland  J.M.  Makatiani  E.T.  McInroy  S.G.  Sprent  J.I. 《Plant and Soil》1997,188(1):65-75
Over 480 rhizobia were isolated from root nodules of woody legume and herbaceous trap host species grown in soils collected from 12 different Kenyan sites. The isolates were differentiated by growth and morphological characteristics, intrinsic antibiotic resistance (IAR) and salt (NaCl) tolerance levels (STL) when grown on yeast mannitol mineral salts agar and broth media.The bulk of the isolates (91%) were watery, milky-translucent and curdled milk types with moderate to copious extracellular polysaccharide (EPS). The rest were creamy or white opaque with little to moderate EPS production. Overall, they showed a wide range of growth rates: very fast-growing (mean generation time 1.6–2.5 h), fast-growing (2.8–4.8 h), intermediate between fast- and slow-growing (5.6–5.7 h) and slow- and very slow-growing (6.4–8.8 h). The isolates were tentatively grouped into Rhizobium spp., to include very fast, fast and intermediate (acid-producing) types; and Bradyrhizobium spp., to include very slow, slow and intermediate (alkali-producing) types.Bradyrhizobium spp. were more sensitive to antibiotics (40 g mL-1) than Rhizobium spp., contrary to the general opinion which indicates that they are normally resistant. Cluster analysis based on sensitivity responses of IAR and STL could not distinguish Rhizobium spp. from Bradyrhizobium spp., neither was there any association by site nor host of isolation except for those isolates trapped with Phaseolus vulgaris at Kibwezi.Our data demonstrated a high diversity of tropical rhizobia associated with trees.  相似文献   

11.
The natural rhizobial populations of Calliandra calothyrsus, Gliricidia sepium, Leucaena leucocephala and Sesbania sesban were assessed in soils from nine sites across tropical areas of three continents. The rhizobial population size varied from undetectable numbers to 1.8 x 104 cells/g of soil depending on the trap host and the soil. Calliandra calothyrsus was the most promiscuous legume, nodulating in eight soils, while S. sesban nodulated in only one of the soils. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analyses of the 16S rRNA gene and the internally transcribed spacer (ITS) region between the 16S and 23S rRNA genes were used to assess the diversity and relative abundance of rhizobia trapped from seven of the soils by C. calothyrsus, G. sepium and L. leucocephala. Representatives of the 16S rRNA RFLP groups were also subjected to sequence analysis of the first 950 base pairs of the 16S rRNA gene. Eighty ITS groups were obtained, with none of the ITS types being sampled in more than one soil. RFLP analysis of the 16S rRNA yielded 23 'species' groups distributed among the Rhizobium, Mesorhizobium, Sinorhizobium and Agrobacterium branches of the rhizobial phylogenetic tree. The phylogeny of the isolates was independent of the site or host of isolation, with different rhizobial groups associated with each host across the soils from widely separated geographical regions. Although rhizobial populations in soils sampled from the centre of diversity of the host legumes were the most genetically diverse, soil acidity was highly correlated with the diversity of ITS types. Our results support the hypothesis that the success of these tree legumes in soils throughout the tropics is the result of their relative promiscuity (permissiveness) allowing nodulation with diverse indigenous rhizobial types.  相似文献   

12.
Forty three rhizobial strains isolated from root nodules of Genista tinctoria growing in England, Ukraine, and Poland were compared with 21 representatives of the recognized rhizobial species and two unclassified Bradyrhizobium sp. (Lupinus) strains by performing a numerical analysis of 102 phenotypic features and with the reference bradyrhizobia by simplified AFLP analysis with one restriction enzyme PstI and one selective primer PstI-A. All Genista tinctoria microsymbionts were slow-growing bradyrhizobia with generation time of 10–14 h, acid tolerant, salt sensitive, and antibiotic resistant. Cluster analysis based on the phenotypic properties of all bacteria included, grouped dyer's broom rhizobia together with Bradyrhizobium strains, and classified them into three major phena according to their geographic origin. Genista tinctoria nodule isolates were separated into three clusters with the strain composition as in a phenogrouping by AFLP patterns. The presented results, suggest the relationship of G. tincoria microsymbionts to Bradyrhizobium species and show the usefulness of AFLP analysis for differentiation and classification of the studied rhizobia.  相似文献   

13.
In the course of a study on rhizobia nodulating six indigenous legume shrubs from the Canary Islands, one Rhizobium and 27 Bradyrhizobium Canarian isolates were characterised. It was found that those ascribed to Bradyrhizobium were promiscuous and formed effective nodules not only in their original host but on Chamecytisus proliferus subsp. proliferus (Tagasaste) as well. However, Rhizobium isolate RES-1 was more specific and only nodulated on its host (Teline canariensis). The serotyping of these isolates required a broad antisera panel due to the great antigenic diversity of these rhizobia, that appeared to be due to differences in their lipopolysaccharides, the main antigenic determinants, that showed great structural diversity. The 28 isolates studied produced 22 easily distinguishable electrophoretic profiles of lipopolysaccharides. Protein or plasmid electrophoretic profiles were equally or less discriminating than the lipopolysaccharides profiles and were more difficult to compare. The comparison of the lipopolysaccharide electrophoretic patterns is a more reliable and discriminating method than serotyping or electrophoretic protein and plasmid profile analysis for the identification of Bradyrhizobium strains. No correlation between the lipopolysaccharide profiles of the isolates and the plant from which they were obtained or their geographical origin was observed.  相似文献   

14.
15.
【目的】研究分离自四川攀枝花的银合欢根瘤菌的遗传多样性。【方法】采用联合16S rDNA RFLP和IGS RFLP的综合聚类分析(16S-IGS RFLP)、AFLP及多位点持家基因(16S rDNA,atpD,recA)序列的联合分析对供试银合欢根瘤菌进行研究。【结果】31株未知菌具有15种16S-IGS遗传图谱类型、27种AFLP类型。16S-IGS RFLP结果表明,没有未知菌与Bradyrhizobium的参比菌株聚在一起。在71.4%的相似水平上,31个未知菌按属的水平分成3个分支:S、M和R,分别分布在Sinorhizobium属(28株)、Mesorhizobium属(2株)和Rhizobium属(1株)。S分支的28个菌在84%的相似水平上,16S-IGS RFLP聚类图中构成3个群:群S1、群S2、群S3;在AFLP聚类图中构成9个AFLP群:S1–S9。多位点基因序列表明,代表菌株SCAU215、SCAU231分别与M.Plurifarium、R.huautlense亲缘关系最近。而分布于Sinorhizobium属SCAU222和SCAU228、SCAU213、SCAU216可能代表Sinorhizobium的3个新类群。【结论】攀枝花市银合欢根瘤菌遗传多样性丰富,分布于Sinorhizobium、Mesorhizobium和Rhizobium三个属,且优势类群为Sinorhizobium。  相似文献   

16.
This study characterized genetically 30 fast-growing rhizobial strains isolated from nodules of Asian and modern soybean genotypes that had been inoculated with soils from disparate regions of Brazil. Analyses by rep-PCR (ERIC and REP) and RAPD indicated a high level of genetic diversity among the strains. The RFLP-PCR and sequencing analysis of the 16S rRNA genes indicated that none of the strains was related to Sinorhizobium (Ensifer) fredii, whereas most were related to Rhizobium tropici (although they were unable to nodulate Phaseolus vulgaris) and to Rhizobium genomic species Q. One strain was related to Rhizobium sp. OR 191, while two others were closely related to Agrobacterium (Rhizobium) spp.; furthermore, symbiotic effectiveness with soybean was maintained in those strains. Five strains were related to Bradyrhizobium japonicum and B. elkanii, with four of them being similar to strains carried in Brazilian inoculants, therefore modifications in physiological properties, as a shorter doubling time might have resulted from adaptation to local conditions. Phospholipid fatty acid analysis (PFLA) was less precise in delineating taxonomic relationships. The strains fit into eight Nod-factor profiles that were related to rhizobial species, but not to N2-fixation capacity or competitiveness. The data obtained highlight the diversity and promiscuity of rhizobia in the tropics, being capable of nodulating exotic legumes and might reflect ecological strategies to survive in N-poor soils; in addition, the diversity could also represent an important source of efficient and competitive rhizobial strains for the tropics. Putative new rhizobial species were detected only in undisturbed soils. Three species (R. tropici, B. japonicum and B. elkanii) were found under the more sustainable management system known as no-till, while the only species isolated from soils under conventional till was R. tropici. Those results emphasize that from the moment that agriculture was introduced into undisturbed soils rhizobial diversity has changed, being drastically reduced when a less sustainable soil management system was adopted.  相似文献   

17.
从杨陵地区采集豆科树种刺槐的根瘤,经分离、纯化,获得40株未知菌株,并选取35株参比菌株,进行唯一碳源、氮源利用、对抗生素和染料的抗性、耐盐性、初始pH生长、生长温度范围及石蕊牛奶反应等共105项生理生化测定。结果表明:供试的刺槐根瘤菌在碳、氮源利用、抗生素敏感性、对染料的抗性程度等方面存在着差异。部分菌株具有较强的耐盐碱能力,其中42.5%的菌株能耐受3.0%的NaCl,17.5%的菌株可在初始pH12的YMA培养基上生长。从数值分类树状图可见,在86%的相似水平上未知菌株构成了3个新的类群,其中第1、2类群各有10株菌,中心菌株分别为NWYC113和NWYCl29,第3类群有7株菌,中心菌株为NWYC147。其分类地位需进一步研究和确定。  相似文献   

18.
At large spatial scales, exotic and native plant diversity exhibit a strong positive relationship. This may occur because exotic and native species respond similarly to processes that influence diversity over large geographical areas. To test this hypothesis, we compared exotic and native species–area relationships within six North American ecoregions. We predicted and found that within ecoregions the ratio of exotic to native species richness remains constant with increasing area. Furthermore, we predicted that areas with more native species than predicted by the species–area relationship would have proportionally more exotics as well. We did find that these exotic and native deviations were highly correlated, but areas that were good (or bad) for native plants were even better (or worse) for exotics. Similar processes appear to influence exotic and native plant diversity but the degree of this influence may differ with site quality.  相似文献   

19.
江汉平原及其周边地区花生根瘤菌的遗传多样性   总被引:12,自引:3,他引:12  
采用RAPD分析技术和16S-23S rRNA间隔区段(IGS)RFLP分析,分别对分离自江汉平原及其周缘地区的花生根瘤菌进行了遗传多样性和系统发育研究。结果表明,全部供试验菌分别在48%和50%的相似性水平分为Ⅰ、Ⅱ两群,供试花生根瘤菌与参比菌株B.japonicum和B.elkanii聚在群I,参比菌株Rhizobium Sinorhizobium,Mesorhizobium和Agrobacterium聚在群Ⅱ。供试花生根瘤菌的遗传多样性及其在系统发育中的地位主要受地域因素的影响,来自江汉平原中心地带天门和潜江的菌株在76%以上的相似性水平上聚在一起,处于周边地带的武汉和荆州,由于其特定的地理因素的影响。菌株的多样性更为丰富,部分菌株在分类上与其它地域的菌株相互融合,并在较高的相似水平存在一定摆动性,来自外缘随州的菌株,表现了明显的地理分隔作用,其在系统演化中的地位相对独立,总体上从平原腹地到外缘地区。根瘤菌地理分隔作用逐渐明显,在平原外缘的交接地带,根瘤菌的多样性最为丰富。  相似文献   

20.
西北部分地区苦马豆根瘤菌的遗传多样性   总被引:1,自引:0,他引:1  
苦马豆(Sphaerophysa salsula)是荒漠区重要的豆科植物。为了研究其共生根瘤菌的多样性, 本试验采用16S rDNA PCR-RFLP和16S rDNA全序列分析方法, 对西北部分地区的苦马豆根瘤菌进行了遗传多样性及系统发育分析。结果表明, 57株供试菌株共产生了9种遗传图谱类型, 对每种图谱类型的代表性菌株进行16S rDNA全序列分析的结果表明, 它们分别归属于中慢生根瘤菌属(Mesorhizobium)、根瘤菌属(Rhizobium)、中华根瘤菌属(Sinorhizobium)、土壤杆菌属(Agrobacterium)、叶杆菌属(Phyllobacterium)和Shinella kummerowiae。不同地域的菌株在多样性方面也有明显差异: 分离自银川的苦马豆根瘤菌的Jaccard相似性系数较低; 而来自民乐县和临泽县的菌株有着非常丰富的遗传多样性, 其Simpson指数分别为0.826和0.710, Shannon-Wiener指数分别为1.831和1.530。以上结果为进一步确定西北地区豆科植物根瘤菌的系统分类地位提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号