首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present study we investigated the specificity and sensitivity of the chemiluminescence (CL) dye and luminol analogue 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H) dione (L-012) to detect reactive oxygen species (ROS) such as superoxide, peroxynitrite and hydrogen peroxide in cell free systems as well as in isolated mitochondria. The results obtained by L-012 were compared with other CL substances such as luminol, lucigenin, coelenterazine and the fluorescence dye dihydroethidine. The results indicate that the L-012-derived chemiluminescence induced by superoxide from hypoxanthine/xanthine oxidase (HX/XO) or by 3-morpholino sydnonimine (SIN-1)-derived peroxynitrite largely depends on the incubation time. Irrespective of the experimental conditions, L-012-derived CL in response to HX/XO and SIN-1 was 10-100 fold higher than with other CL dyes tested. In a cell-free system, authentic peroxynitrite yielded a higher L-012-enhanced CL signal than authentic superoxide and the superoxide-induced signal in cell-free as well as isolated mitochondria increased in the presence of equimolar concentrations of nitrogen monoxide (NO). The superoxide signal/background ratio detected by L-012-enhanced CL in isolated mitochondria with blocked respiration was 7 fold higher than that obtained by the superoxide sensitive fluorescence dye dihydroethidine. We conclude that L-012-derived CL may provide a sensitive and reliable tool to detect superoxide and peroxynitrite formation in mitochondrial suspensions.  相似文献   

2.
In the present study we investigated the specificity and sensitivity of the chemiluminescence (CL) dye and luminol analogue 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H) dione (L-012) to detect reactive oxygen species (ROS) such as superoxide, peroxynitrite and hydrogen peroxide in cell free systems as well as in isolated mitochondria. The results obtained by L-012 were compared with other CL substances such as luminol, lucigenin, coelenterazine and the fluorescence dye dihydroethidine. The results indicate that the L-012-derived chemiluminescence induced by superoxide from hypoxanthine/xanthine oxidase (HX/XO) or by 3-morpholino sydnonimine (SIN-1)-derived peroxynitrite largely depends on the incubation time. Irrespective of the experimental conditions, L-012-derived CL in response to HX/XO and SIN-1 was 10–100 fold higher than with other CL dyes tested. In a cell-free system, authentic peroxynitrite yielded a higher L-012-enhanced CL signal than authentic superoxide and the superoxide-induced signal in cell-free as well as isolated mitochondria increased in the presence of equimolar concentrations of nitrogen monoxide (NO). The superoxide signal/background ratio detected by L-012-enhanced CL in isolated mitochondria with blocked respiration was 7 fold higher than that obtained by the superoxide sensitive fluorescence dye dihydroethidine. We conclude that L-012-derived CL may provide a sensitive and reliable tool to detect superoxide and peroxynitrite formation in mitochondrial suspensions.  相似文献   

3.
Reactive oxygen species (ROS) play important roles in the defense mechanism against infection and in the pathogenesis of various diseases. Although chemical properties of ROS generated by leukocytes have been studied extensively, methods available for their analysis are not sufficiently sensitive. We found that 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H)dione (L-012) reacted with various types of ROS generated by activated neutrophils in human blood and oral cavity, and from peritoneal cavity of the rat, and developed strong chemiluminescence (CHL). Under physiological conditions, opsonized zymosan-dependent CHL intensity of L-012 in human blood and rat peritoneal neutrophils was about 100 and 10 times higher than that of luminol and luciferin analog MCLA, respectively. Phorbol ester-activated CHL of oral neutrophils was also higher with L-012 than that with luminol and MCLA. The presence of either superoxide dismutase, catalase, uric acid, deferoxamine, or azide decreased CHL intensity of L-012 by 52, 57, 57, 63, and 91%, respectively. Kinetic analysis revealed that L-012 developed CHL predominantly by reacting with hydroxyl radical and hypochlorite. Thus, highly sensitive L-012 permits studies on ROS generation by complex biological systems, such as leukocytes, and on the role of ROS in the pathogenesis of various diseases.  相似文献   

4.
Luminol and lucigenin chemiluminescence (CL) responses produced by separated human blood polymorphonuclear leukocytes (pmn) and monocytes (mono) have been studied following stimulation with the surface-receptor agonist fMLP (a synthetic chemotactic peptide) and the protein kinase C activator phorbol myristate acetate (PMA). Pmn produced two- to threefold the luminol CL and superoxide anion (O2) levels of mono; lucigenin CL was similar for both cell-types. The myeloperoxidase (MPO) inhibitor salicylhydroxamic acid (SHA) abrogated luminol but not lucigenin CL in both cell types, but did not further inhibit the already grossly subnormal luminol CL responses seen with MPO-deficient cells which produced normal lucigenin CL. SHA also profoundly inhibited the luminol CL response in a cell-free MPO–H2O2 system. Mono lucigenin CL does not appear to specifically measure O2 production. These data show that luminol CL provides a useful measure of pmn and also mono MPO activity. However, analysis of the effects of various reactive oxygen species (ROS) scavengers, assessed on phagocyte and cell-free CL systems (both MPO–H2O2 and superoxide generating) suggest that the luminol CL signal is not entirely dependent on MPO activity.  相似文献   

5.
《Luminescence》2004,19(1):37-42
Luminol‐, isoluminol‐ or lucigenin‐enhanced chemiluminescence (CL) was used to measure the production of reactive oxygen species by rat blood leukocytes. Opsonized zymosan (OZ), phorbol‐12‐myristate‐13‐acetate (PMA), calcium ionophore A23187 (Ca‐I) or N‐formyl‐Met‐Leu‐Phe (fMLP) were used as activators. The CL signal of isolated blood leukocytes decreased in rank order of luminol > isoluminol > lucigenin. The kinetic pro?les of luminol‐ and isoluminol‐enhanced CL were similar upon stimulation by each activator tested. The remarkably higher luminol and isoluminol CL responses were obtained after OZ stimulation when compared with other activators. However, when lucigenin was used, the PMA‐ and OZ‐stimulated CL were comparable. The presence of plasma increased OZ‐activated CL because of the enhanced phagocytosis of OZ. This was demonstrated by determining the phagocytosis of the ?uorescent OZ using a ?ow cytometer. In contrast, the presence of plasma decreased PMA‐activated CL, due to the antioxidant properties of plasma as determined by the CL method. As far as whole blood is concerned, only OZ activated luminol‐enhanced CL was reliable. Blood volumes over 5 µL decreased CL activity due to the scavenging ability of erythrocytes. The results suggest that 0.5 µL whole blood is suf?cient for routine luminol‐enhanced CL analysis of whole blood oxidative burst in rats. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
This study used chemiluminescence, an "on-line" photon-counting technique, to detect and characterize activated O2 species in vitro and in isolated rat lungs. The sensitivity and specificity of enhanced chemiluminescence for superoxide anion (O2-.) and hydrogen peroxide (H2O2) was evaluated in vitro. The effect of media conditions (such as O2 tension, albumin concentration, and sulfhydryl group availability) on luminescence was assessed in vitro. Xanthine-xanthine oxidase (X-XO) primarily produced superoxide anion in vitro. Enhanced chemiluminescence varied directly with the dose of luminescent probe used and the quantity of activated O2 species administered. The strength of the luminescent signal was also dependent on the concentration of albumin and O2 in the media. Lucigenin was more sensitive than luminol to the presence of O2-. and, unlike luminol, lucigenin did not alter radical production by XO. However, neither luminescent probe was specific for O2-., as both detected H2O2 and O2 in vitro. H2O2-induced chemiluminescence was inhibited by catalase but not superoxide dismutase (SOD), while X-XO-induced luminescence was inhibited by SOD but not catalase. SOD-inhibitable chemiluminescence was a sensitive and specific marker for O2-. production in vitro. Once the sensitivity-specificity of enhanced chemiluminescence was defined in vitro, this technique was used to explore the mechanism by which exogenous X-XO reduced hypoxic vasoconstriction in isolated rat lungs. The vascular paresis, caused by administration of X-XO to the rat lung, resulted from a brief burst of O2-. production rather than a sustained alteration of lung radical levels.  相似文献   

7.
The participation of reactive oxygen species (ROS) in luminescence (chemiluminescence and autofluorescence induced by ultraviolet light of 360-380 nm) was analyzed. Microspores, the pollen (male gametophyte) of Hippeastrum hybridum, Philadelphus grandiflorus, and Betula verrucosa and vegetative microspores of the spore-breeding plant Equisetum arvense served as models. It was found that the addition of the chemiluminescent probe lucigenin, which luminesces in the presence of superoxide anionradicals, leads to intensive chemiluminescence of microspores. No emission was observed in the absence of lucigenin and in the presence of the dye luminol as a chemiluminescent probe. The emission decreased significantly if superoxide dismutase, an enzyme of the superoxide anionradical dismutation during which this radical disappeared, was added before the dye addition. The autofluorescence intensity of microspores decreased in the presence of both superoxide dismutase and peroxidase, an enzyme destroying hydrogen peroxide and organic peroxides. The most significant effect was noted after the addition of peroxidase, which indicates a greater contribution of peroxides to this type of emission. The fumigation with ozone, which increases the amount of ROS on the cell surface, enhanced the intensity of the chemiluminescence of microspores with lucigenin, but decreased the intensity of the autofluorescence of microspores. Exogenous peroxides (hydrogen peroxide and tert-butylhydroperoxide) stimulated the autofluorescence of pollen and vegetative spores in a concentration-dependent manner. It was shown that the formation of ROS contributes to the luminescence of plant microspores, which reflects their functional state.  相似文献   

8.
Neopterin is synthesized by human monocyte-derived macrophages primarily upon stimulation with the cytokine interferon-gamma. We studied the influence of neopterin on the generation of reactive oxygen species (ROS) in human peripheral blood neutrophils. Radical formation was measured using a biochemiluminometer. Neutrophils were isolated from peripheral blood of healthy donors. The generation of ROS by neutrophils suspended in Earl's solution (pH=7.4) at 37 degrees C was investigated by monitoring of chemiluminescence using luminol and lucigenin as light emitters. Neopterin induced chemiluminescence in suspensions of neutrophils in the presence of luminol, but not of lucigenin. Neopterin affected only adhesive cells. Addition of neopterin into the suspension of the cells involving D-mannitol, L-histidine and diazabicyclo[2.2.2]octane (DABCO) decreased luminol-dependent chemiluminescence (LDCL) of the neutrophils. The action of superoxide dismutase (SOD) and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reduced neopterin-induced LDCL of neutrophils. Data suggest that neutrophils respond on exposure to neopterin with additional generation of singlet oxygen, hydroxyl radical and nitric oxide by nicotinamide adenine dinucleotide phosphate (NADPH)-independent pathways.  相似文献   

9.
Unstimulated alveolar macrophages, but not polymorphonuclear leukocytes, elicit chemiluminescence from lucigenin which cannot be entirely accounted for by the resting level of superoxide generation. This chemiluminescence was inhibited by both superoxide scavengers and inhibitors of mitochondrial respiration. Although 12-O-tetradecanoyl phorbol-13-acetate addition resulted in a significant increase in cellular superoxide generation, an unexpected decrease in lucigenin chemiluminescence was noted. These results suggest that mitochondria in alveolar macrophages may be a site of lucigenin accumulation and dioxygenation and that 12-O-tetradecanoyl phorbol-13-acetate may modulate this activity.  相似文献   

10.
Neutrophil-derived oxidants have been implicated in both damage to biomolecules and the metabolic activation of xenobiotics. Since the bone marrow is a relatively neutrophil-rich tissue which is subject to xenobiotic toxicity, we have characterized the oxidant generating capability of neutrophilic cells isolated from femurs of male C57BL/6J mice. Addition of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) to neutrophil preparations (70 +/- 5% ring neutrophils and metamyelocytes) elicited superoxide anion generation, as indicated by superoxide dismutase (SOD)-inhibitable acetylated cytochrome c reduction, and oxidant-dependent chemiluminescence (CL) from luminol or lucigenin. The interaction of benzo[a]pyrene-7,8-dihydrodiol (BP-diol), a proximate carcinogenic metabolite of benzo[a]pyrene (BP), with TPA-stimulated bone marrow neutrophils resulted in azide-inhibitable CL (90%) indicative of its myeloperoxidase-dependent oxidation to an excited-state intermediate. Covalent binding of [3H]BP-diol to exogenous DNA was similarly increased 3-fold in the presence of TPA-stimulated bone marrow neutrophils. Recently, our laboratory has shown that in addition to CL, TPA-stimulated human polymorphonuclear leukocytes can activate BP-diol to an intermediate which covalently binds to DNA and elicits mutagenicity in Salmonella typhimurium TA100. These observations combined with our current results suggest a possible role for neutrophil-derived oxidants in the mechanisms of chemically-induced bone marrow toxicity.  相似文献   

11.
Recent studies indicate that some raphidophycean red tide flagellates produce substances able to scavenge superoxide, whereas there have been no reports on superoxide scavenger production by dinophycean red tide flagellates. In this study, we examined the superoxide-scavenging activity of aqueous extracts from dinophycean red tide flagellates, Gymnodinium spp., Scrippsiella trochoidea, and Karenia sp., by a luminol analog L-012-dependent chemiluminescence (CL) method and an electron spin resonance (ESR)-spin trapping method, and compared the activity to that of raphidophycean red tide flagellates, Chattonella spp., Heterosigma akashiwo, and Fibrocapsa japonica. In the experiment applying the L-012-dependent CL method, only the aqueous extracts from raphidophycean red tide flagellates showed superoxide-scavenging activity. On the other hand, applying the ESR-spin trapping method, we found that the aqueous extracts from dinophycean red tide flagellates also showed superoxide-scavenging activity. This is the first report on the production of a superoxide-scavenger by dinophycean red tide flagellates.  相似文献   

12.
Chicken heterophil polymorphonuclear leukocytes (CPMNLs) have NADPH oxidase activity, but lack myeloperoxidase (MPO). Stimulation of CPMNLs by phorbol 12-myristate 13-acetate or chicken opsonified zymosan results in luminol-dependent chemiluminescence (CL) activity, which is small relative to that of human peroxidase-positive neutrophils (HPMNLs), as well as lucigenin-dependent CL, comparable to HPMNL responses. Inhibitors were used to investigate and characterize the CL activity of CPMNLs. Inhibition constants were calculated, using Dixon inhibition analysis, or were reported as the concentration producing 50% inhibition of the magnitude of CL responses. Azide and cyanide are effective inhibitors of luminol CL in HPMNLs, although these peroxidase inhibitors do not inhibit either luminol or lucigenin CL of CPMNLs. Since these agents also inhibit eosinophil peroxidase, lack of inhibition of CPMNL CL indicates that the small percentages of peroxidase-positive eosinophils in CPMNL preparations are not responsible for the luminol CL observed. Iodoacetate and fluoride, pre-oxidase and pre-peroxidase inhibitors of glycolytic metabolism, effectively inhibit lucigenin and luminol CL activities in CPMNLs. Superoxide dismutase competitively inhibits lucigenin and luminol CL in CPMNLs, but catalase is an ineffective inhibitor. Although luminol is efficiently dioxygenated by a MPO-dependent mechanism in HPMNL, use of peroxidase-deficient CPMNLs indicates that this substrate does not exclusively measure peroxidase activity.  相似文献   

13.
The influence of recombinant human tumor necrosis factor-alpha (TNF-alpha) and calcium ionophore A23187 on luminol- and lucigenin-dependent chemiluminescence capacity (CL) of human polymorphonuclear leukocytes (PMN) has been studied. The CL response of TNF-alpha treated PMN is amplified by lucigenin, but not luminol. TNF-alpha and A23287 synergistically induced both the luminol- and lucigenin-dependent early CL response. The combination of A23187 and activator of protein kinase C--phorbol (myristoyl-13-acetyl)--also provoked early CL response. While the combination of TNF-alpha and A23187 decreased late CL response compared to A23187 alone. The obtained results suggests that synergistic CL response of PMN induced by TNF-alpha and A23187 is connected with activation of protein kinase by TNF-alpha.  相似文献   

14.
Hyperlipidemia may induce oxidative stress, which is important in the pathogenesis of atherosclerosis. Dioscorea rhizome (DR) is the powdered form of yams, and possesses antioxidant and hypolipidemic function. We therefore investigated the antioxidative and antiatherogenic effects of DR on hyperlipidemic rabbits. The control group was fed chow containing 0.5% cholesterol and 10% corn oil. The probucol and DR groups were fed the same diet as the control group but with the addition of 100 mg probucol/kg chow and 200 mg DR/kg chow, respectively. Total cholesterol and triacylglycerol plasma levels, RBC hemolysis T50, lucigenin chemiluminescence, and luminol chemiluminescence increased in the control group compared with the normal group, and decreased in the probucol and DR groups compared with the control group. The activity of antioxidant enzymes superoxide dismutase and catalase was significantly higher in the probucol and DR group than in the control group. The level of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in liver DNA was lower in the probucol and DR group than in the control group. Eighty percent of the intimal surface of the thoracic aorta was covered with atherosclerotic lesions in the control group but only 40% of the surface was covered in the DR group. These results suggest that supplementation with DR reduces oxidative stress and attenuates atherosclerosis in hyperlipidemic rabbits.  相似文献   

15.
In this study, we investigated the pathways (including the formation of hydroxyl radicals and chloramines) leading to luminol chemiluminescence induced by hypochlorite generated in a suspension of stimulated rabbit polymorphonuclear leukocytes. Chemiluminescence of leukocytes stimulated by phorbol myristate acetate, which was enhanced by luminol (0.02 mM), did not change in the presence of dimethyl sulfoxide at moderate concentrations (0.02–2.6 mM), under which the latter should manifest the specific ability to scavenge hydroxyl radicals. This indicates that stimulation of polymorphonuclear leukocytes is not accompanied by the generation of hydroxyl radicals with the involvement of superoxide anion and hypochlorite synthesized by myeloperoxidase. At high concentrations of dimethyl sulfoxide (260 mM), chemiluminescence markedly declined because dimethyl sulfoxide directly reacts with hypochlorite. The luminol emission intensity considerably increased after its addition to a suspension of leukocytes that were preliminarily stimulated for 10 min. This effect was caused by the accumulation of hydrogen peroxide rather than chloramines. Exogenous amino acids and taurine at high concentrations (3–15 mM) quench chemiluminescence. All these data indicate that chemiluminescence in the system studied is largely determined by the direct initial reaction of hypochlorite with luminol, the emission intensity increasing as a result of oxidation of luminol transformation products by hydrogen peroxide.  相似文献   

16.
The hemodynamic and anti-ischemic effects of nitroglycerin (GTN) are rapidly blunted as a result of the development of nitrate tolerance. Hydralazine has been shown to prevent tolerance in experimental and clinical studies, all of which may be at least in part secondary to antioxidant properties of this compound. The antioxidant effects of hydralazine were tested in cell free systems, cultured smooth muscle cells, isolated mitochondria, and isolated vessels. Inhibitory effects on the formation of superoxide and/or peroxynitrite formation were tested using lucigenin and L-012 enhanced chemiluminescence as well as DHE-fluorescence. The peroxynitrite scavenging properties were also assessed by inhibition of nitration of phenol. Prevention of impairment of NO downstream signaling and GTN bioactivation was determined by measurement of P-VASP (surrogate parameter for the activity of the cGMP-dependent kinase-I, cGK-I) and mitochondrial aldehyde dehydrogenase (ALDH-2) activity. Hydralazine dose-dependently decreased the chemiluminescence signal induced by peroxynitrite from SIN-1 and by superoxide from HX/XO in a cell free system, by superoxide in smooth muscle cells and mitochondria acutely challenged with GTN. Moreover, hydralazine inhibited the peroxynitrite-mediated nitration of phenols as well as proteins in smooth muscle cells in a dose-dependent fashion. Finally, hydralazine normalized impaired cGK-I activity as well as impaired vascular ALDH-2 activity. Our results indicate that hydralazine is a highly potent radical scavenger. Thus, the combination with isosorbide dinitrate (ISDN) will favorably influence the nitroso-redox balance in the cardiovascular system in patients with congestive heart failure and may explain at least in part the improvement of prognosis in patients with chronic congestive heart failure.  相似文献   

17.
8‐Amino‐5‐chloro‐7‐phenylpyrido[3,4‐d]pyridazine‐1,4(2H,3H)dione (L‐012) was recently synthesized as a new chemiluminescence (CL) probe; the light intensity and the sensitivity of L‐012 are higher than those of other CL probes such as luminol. Previously, our group developed four lophine‐based CL enhancers of the horseradish peroxidase (HRP)‐catalyzed CL oxidation of luminol, namely 2‐(4‐hydroxyphenyl)‐4,5‐diphenylimidazole (HDI), 2‐(4‐hydroxyphenyl)‐4,5‐di(2‐pyridyl)imidazole (HPI), 4‐(4,5‐diphenyl‐1H‐imidazol‐2‐yl)phenylboronic acid (DPA), and 4‐[4,5‐di(2‐pyridyl)‐1H‐imidazol‐2‐yl]phenylboronic acid (DPPA), and showed that DPPA was suitable for the photographic detection of HRP. In this study, we replaced luminol with L‐012 and evaluated these as L‐012‐dependent CL enhancers. In addition, to detect HRP and/or H2O2 with higher sensitivity, each detection condition for the L‐012–HRP–H2O2 enhanced CL was optimized. All the derivatives enhanced the L‐012‐dependent CL as well as luminol CL; HPI generated the highest enhanced luminescence. Under optimized conditions for HRP detection, the detection limit of HRP was 0.08 fmol. By contrast, the detection limit of HRP with the enhanced L‐012‐dependent CL using 4‐iodophenol, which is a common enhancer of luminol CL, was 1.1 fmol. With regard to H2O2 detection, the detection limits for enhanced CL with HPI and 4‐iodophenol were 0.29 and 1.5 pmol, respectively. Therefore, it is demonstrated that HPI is the most superior L‐012‐dependent CL enhancer. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
M. Rost  E. Karge  W. Klinger 《Luminescence》1998,13(6):355-363
Evidence is provided that the amplifiers luminol and lucigenin react with different reactive oxygen species (ROS), depending on the ROS-generating system used. H2O2 is used to produce calibration curves for luminol- and lucigenin-amplified chemiluminescence. With this chemiluminescence generator we characterized the specificity and sensitivity of luminol- and lucigenin-amplified chemiluminescence and also studied penicillin G, a known enhancer of luminol-amplified chemiluminescence. The combination of luminol and lucigenin in reciprocally changing concentrations is effective in an additive manner, but the weak amplifier penicillin increases luminol-amplified chemiluminescence distinctly more than in an additive manner in different combinations. Lucigenin-amplified chemiluminescence is increased by penicillin at about 1% of the optimum concentration of penicillin; increasing concentrations of penicillin are less and less effective. On the other hand, low lucigenin concentrations enhance penicillin-amplified chemiluminescence at optimum penicillin concentrations more than in an additive manner. Fe2+ does not alter luminol-, lucigenin- or penicillin-amplified chemiluminescence. Co2+ increases luminol-amplified chemiluminescence by a factor of 100. Lucigenin- and penicillin-amplified chemiluminescence are minimally enhanced by Co2+. Cu2+ enhances luminol-amplified chemiluminescence with increasing concentrations by a factor of 1000. Lucigenin-amplified chemiluminescence increases also by the factor of 1000, but the concentration–reaction curve is not as steep. NaOCl enhances H2O2/Fe2+-driven luminol-amplified chemiluminescence in a concentration-dependent manner by a factor of 104 (in the highest concentration of 10 mmol/L) and lucigenin amplified chemiluminescence only by a factor of about 25. Catalase (CAT) abolishes luminol-, lucigenin- and penicillin-amplified chemiluminescence completely, whereas superoxide dismutase (SOD) has no effect on luminol- or penicillin-amplified chemiluminescence, but enhances lucigenin-amplified chemiluminescence five-fold increasingly with increasing SOD activity. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
We have shown that human spermatozoa generate and release reactive oxygen species that can be detected by chemiluminescence techniques. Analysis of the cellular mechanisms responsible for this activity suggests that the probe, luminol, undergoes an intracellular dioxygenation reaction mediated by hydrogen peroxide and a sperm peroxidase located within the acrosome. Support for this model included the following observations: (1) the luminol-dependent signal could be suppressed with peroxidase inhibitors, phenylhydrazine and sodium azide; (2) this suppression could be reversed by the addition of an azide-insensitive peroxidase, horse radish peroxidase (HRP); (3) inhibition of intracellular superoxide dismutase (SOD) with potassium cyanide (KCN) suppressed the luminol signal; (4) peroxidase activity could be detected in purified populations of human spermatozoa with 3,3',5,5' tetramethylbenzidine (TMB); (5) this peroxidase was active at the pH prevailing within the acrosomal vesicle; and (6) peroxidase activity and luminol-dependent chemiluminescence were minimal in spermatozoa exhibiting a congenital absence of acrosomes. Human spermatozoa could also generate lucigenin-dependent chemiluminescent signals that could neither be suppressed with peroxidase inhibitors nor enhanced by the addition of peroxidase. However, these signals could be enhanced by suppression of intracellular SOD with KCN or inhibited by exogenous SOD, suggesting that lucigenin was responding to superoxide anion released into the extracellular space. The ability of chemiluminescent techniques to detect and discriminate the production of superoxide and hydrogen peroxide by spermatozoa should facilitate the further analysis of reactive oxygen species as mediators of normal and abnormal human sperm function.  相似文献   

20.
In order to gain more knowledge on the role of tannins as antioxidants, their ability to protect (Salmo irideus) erythrocytes against oxidative stress was investigated. Antioxidant activity of different tannins (tannic, gallic and ellagic acid) was evaluated by chemiluminescence (CL) techniques using lucigenin and luminol as chemiluminogenic probes for the superoxide radical generated by the xanthine/xanthine oxidase system and hydrogen peroxide, respectively. The superoxide-scavenging activity of these tannins was shown for all the compounds; however, it is not clear if this is due to their ability of scavenging the superoxide radical or to their inhibitory activity on xanthine oxidase. Tannic and ellagic acid showed a marked effect on the reduction of H2O2-luminol chemiluminescence. The influence of these tannins on the rate of hemolysis in stressed trout erythrocytes was investigated and the results indicate that tannic acid accelerates the hemolytic event while gallic and ellagic acid have no significant effect. The possible protective action of these compounds against oxidative DNA damage was assessed using the comet assay, a rapid and sensitive single-cell gel electrophoresis technique, used to detect primary DNA damage in individual cells. The results here reported show that tannins under study are capable at low concentrations of protecting DNA breakage, while at high concentrations they can be genotoxic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号