首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basement-membrane proteoglycans, biosynthetically labelled with [35S]sulphate, were isolated from normal and transformed mouse mammary epithelial cells. Proteoglycans synthesized by normal cells contained mainly heparan sulphate and, in addition, small amounts of chondroitin sulphate chains, whereas transformed cells synthesized a relatively higher proportion of chondroitin sulphate. Polysaccharide chains from transformed cells were of lower average Mr and of lower anionic charge density compared with chains isolated from the untransformed counterparts, confirming results reported previously [David & Van den Berghe (1983) J. Biol. Chem. 258, 7338-7344]. A large proportion of the chains isolated from normal cells bound with high affinity to immobilized antithrombin, and the presence of 3-O-sulphated glucosamine residues, previously identified as unique markers for the antithrombin-binding region of heparin [Lindahl, Bäckström, Thunberg & Leder (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 6551-6555], could be demonstrated. A significantly lower proportion of the chains derived from transformed cells bound with high affinity to antithrombin, and a corresponding decrease in the amount of incorporated 3-O-sulphate was observed.  相似文献   

2.
Subfractions of 35S-labelled rat skin heparin proteoglycans with various degrees of high affinity for antithrombin were obtained by gradient elution from a column of antithrombin-agarose. Heparin chains released from the proteoglycan preparations by beta-elimination with alkali were re-fractionated on the same column. Proportions of chains with high affinity for antithrombin (HA-chains) ranged from 17% to 76%. These separations also revealed three overlapping subfractions of HA-chains. Their proportions varied in a manner consistent with a stepwise increase in the degree of affinity of HA-chains for antithrombin, this presumably being due to the biosynthesis of increasing numbers of antithrombin-binding sites per chain. The anticoagulant activity, with respect to thrombin neutralization, ranged from 32 units/mg to 287 units/mg. It is suggested that HA-chains may have from one to five or six antithrombin-binding sites. Thus the asymmetric distribution of these sites in rat skin heparin proteoglycans is much more marked than was realized from the earlier work of Horner & Young [(1982) J. Biol. Chem. 257, 8749-8754].  相似文献   

3.
Heparin with high anticoagulant activity was isolated from the two marine clam species Anomalocardia brasiliana and Tivela mactroides. A large portion of the polysaccharide chains of both preparations bound with high affinity to immobilized antithrombin. Titrations monitored by tryptophan fluorescence showed that clam polysaccharide chains with Mr approximately 22,500 contained up to three binding sites for antithrombin and that the binding constants for the interaction of these chains with antithrombin were higher than those reported for mammalian heparin of comparable size. Structural analysis of clam heparin fractions and subfractions of clam heparin with differing affinity for immobilized antithrombin revealed the presence of large amounts (up to 25-30% of the total disaccharide units) of the 3-O-sulfated saccharide sequences (-GlcNSO3)-GlcA-GlcNSO3(3-OSO3)- and (-GlcNSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-, previously identified as unique markers for the antithrombin-binding region of heparin. The content of these saccharide sequences was found to increase with increasing affinity of the parent polysaccharide for antithrombin. Structural analysis of the clam heparins also demonstrated the occurrence of a novel saccharide sequence, tentatively identified as (-GlcNSO3)-IdA-GlcNSO3(3,6-di-OSO3)-, that has not previously been found in heparin or related polysaccharides. The contents of this latter sequence, at most 3-4% of the total disaccharide units, showed no correlation with the affinity for antithrombin.  相似文献   

4.
Adult male rats were given [35S]sulphate intraperitoneally. Heparan [35S]sulphate (HS) chains were recovered from adipose tissue, brain, carcase, heart, intestine, kidneys, liver, lungs, skin and spleen by digestion with Pronase, precipitation with cetylpyridinium chloride, digestion with chondroitin ABC lyase and DNAase and gradient elution from DEAE-Sephacel. Purity was confirmed by agarose-gel electrophoresis and degradation with HNO2. Fractionation by gradient elution from antithrombin-agarose indicated that the proportion of HS with high binding affinity for antithrombin (HA-HS) ranged from 4.7% (kidneys) to 21.5% (brain). On a mass basis the major sources of HA-HS were carcase, skin and intestine. HA-HS from intestine was arbitrarily divided into subfractions I-VI, with anticoagulant activities ranging from 1 to 60 units/mg [by amidolytic anti-(Factor IIa) assay] and from 4 to 98 units/mg [by amidolytic anti-(Factor Xa) assay], indicating that the antithrombin-binding-site densities of HA-HS chains covered a wide range, as shown previously for rat HA-heparin chains [Horner, Kusche, Lindahl & Peterson (1988) Biochem. J. 251, 141-145]. HA-HS subfractions II, IV and VI were mixed with samples of HA-[3H]heparin chains and rechromatographed on antithrombin-agarose. Affinity for matrix-bound antithrombin did not correlate with anticoagulant activity, e.g. HA-HS subfraction IV [38 anti-(Factor Xa) units/mg] was co-eluted with HA-heparin chains [127 anti-(Factor Xa) units/mg].  相似文献   

5.
Latent antithrombin (LAT) is a partially denatured form of human antithrombin (AT). LAT does not inhibit clotting of the blood, but has previously been shown to inhibit angiogenesis and carcinogenesis. Another probably partially denatured form is the so-called prelatent AT (P-LAT), described by Larsson et al. [J. Biol. Chem. 276 (2001) 11996]. In the present work, an analytical heparin affinity chromatography method is described that separates an AT form, which is formed during the pasteurization process and which we believe to be identical to the previously described P-LAT, from native AT and LAT. Non-pasteurized AT was shown to contain no P-LAT, while four, heat-treated commercial AT products all contained P-LAT (1-6%, mean=4%). P-LAT has a slightly lower affinity to heparin than does native AT, but exhibits a much stronger heparin affinity when compared to LAT. P-LAT and native AT were shown to have very similar thrombin inhibiting activity, while LAT lacks such activity.  相似文献   

6.
Rat skin heparin proteoglycan labelled biosynthetically with 35S was fractionated on a column of antithrombin-Sepharose into fractions with varying degrees of affinity for antithrombin. These were treated with NaOH to release heparin chains (Mr 60,000-100,000), by beta-elimination or incubated with serum to produce fragments of the same order of size as commercial heparin (Mr 5000-30,000), by endoglycosidase cleavage. Chains and fragments were then fractionated on antithrombin-Sepharose. The various fractions were deaminated with HNO2 at pH 1.5 followed by reduction with NaB3H4. Approx 90% of the incorporated 3H was associated with disaccharides. These were fractionated by high-performance ion-exchange chromatography. A unique minor component corresponding to the sequence glucuronosyl-N-sulphoglucosaminyl (3,6-di-O-sulphate) in the polysaccharide was found only in fractions with high affinity for antithrombin. The glucosamine residue linked to C-4 of this glucuronosyl unit was predominantly (or exclusively) N-sulphated rather than N-acetylated, pointing to a structural difference between the antithrombin-binding region of rat heparin and that of pig mucosal heparin. Calculations based on the distribution of the glucosaminyl 3-O-sulphate group showed that approximately two-thirds of the total antithrombin-binding regions present in the unfractionated material were accommodated by only 20% of the proteoglycan molecules, and by 10% of the polysaccharide chains. While most of the proteoglycan molecules thus lacked such regions (and hence affinity for antithrombin) a minor proportion of the polysaccharide chains contained on the average three binding regions per molecule. These findings support by direct chemical analysis an earlier proposal, based on anticoagulant activities of similar rat skin heparin fractions, that the distribution of antithrombin-binding sites in intact heparin proteoglycans is markedly non-random.  相似文献   

7.
X J Sun  J Y Chang 《Biochemistry》1990,29(38):8957-8962
Arginyl residues of human antithrombin III have been implicated to involve in the heparin binding site [Jorgensen, A. M., Borders, C. L., & Fish, W. W. (1985) Biochem, J. 231, 59-63]. We have performed chemical modification of antithrombin with (p-hydroxyphenyl)glyoxal (HPG) in order to determine the locations of these arginine residues. Antithrombin was modified with 12 mM HPG in the absence and presence of heparin (2-fold by weight to antithrombin). In the absence of heparin, about 3-4 mol of arginines/mol of antithrombin were modified within 60 min, and the modification led to the loss of 95% of the inhibitor's heparin cofactor activity as well as heparin-induced fluorescence enhancement and 50% of its progressive inhibitory activity. In the presence of heparin, the extent of modification was diminished by 30% and modified antithrombin retained approximately 70% of its heparin cofactor activity. Peptide mapping and subsequent sequence analysis revealed that selective HPG modification occurred at Arg129 and Arg145 and that their modifications were protected upon binding of heparin to antithrombin. We conclude that Arg129 and Arg145 are situated within the heparin binding site of human antithrombin III.  相似文献   

8.
Arocas V  Turk B  Bock SC  Olson ST  Björk I 《Biochemistry》2000,39(29):8512-8518
The interaction of a well-defined pentasaccharide sequence of heparin with a specific binding site on antithrombin activates the inhibitor through a conformational change. This change increases the rate of antithrombin inhibition of factor Xa, whereas acceleration of thrombin inhibition requires binding of both inhibitor and proteinase to the same heparin chain. An extended heparin binding site of antithrombin outside the specific pentasaccharide site has been proposed to account for the higher affinity of the inhibitor for full-length heparin chains by interacting with saccharides adjacent to the pentasaccharide sequence. To resolve conflicting evidence regarding the roles of Lys136 and Lys139 in this extended site, we have mutated the two residues to Ala or Gln. Mutation of Lys136 decreased the antithrombin affinity for full-length heparin by at least 5-fold but minimally altered the affinity for the pentasaccharide. As a result, the full-length heparin and pentasaccharide affinities were comparable. The reduced affinity for full-length heparin was associated with the loss of one ionic interaction and was caused by both a lower overall association rate constant and a higher overall dissociation rate constant. In contrast, mutation of Lys139 affected neither full-length heparin nor pentasaccharide affinity. The rate constants for inhibition of thrombin and factor Xa by the complexes between antithrombin and full-length heparin or pentasaccharide were unaffected by both mutations, indicating that neither Lys136 nor Lys139 is involved in heparin activation of the inhibitor. Together, these results show that Lys136 forms part of the extended heparin binding site of antithrombin that participates in the binding of full-length heparin chains, whereas Lys139 is located outside this site.  相似文献   

9.
Approximately half of all rat skin heparin proteoglycans have polysaccharide chains that have no sites with high binding affinity for antithrombin. The rest have chains with high-affinity antithrombin-binding-site densities ranging from zero to five sites per chain, with a high degree of variation. Proteoglycans vary in size because of diversity in the number of chains per molecule; the relationship between proteoglycan size and high-affinity antithrombin-binding-site density has not been studied previously. Polydisperse heparin proteoglycans from rat skin, labelled biosynthetically with 35S, were fractionated by gel filtration on Bio-Gel A-150m and arbitrarily divided into five fractions of decreasing average molecular size. Fractionation of these products on antithrombin-agarose showed that the proportion of proteoglycans with high affinity for antithrombin decreased from 39% to 25% as molecular size decreased. However, as the molecular size of high-affinity proteoglycans decreased, the proportion of their chains that had high affinity increased from 29% to 59%. Therefore molecular size is a significant factor in determining the proportion of high-affinity chains in heparin proteoglycans. A model of heparin biosynthesis is proposed in which areas of specific enzyme activity that control the synthesis of the antithrombin-binding-site sequence are sparsely and nonrandomly distributed on mast-cell Golgi membranes. It is postulated that the likelihood of a developing proteoglycan encountering one of these hypothetical areas is molecular-size-dependent.  相似文献   

10.
The kinetics of inhibition of human alpha-thrombin and coagulation Factor Xa by antithrombin III were examined under pseudo-first-order reaction conditions as a function of the concentration of heparan sulphate with high affinity for antithrombin III. The maximum observed second-order rate constant was, for the antithrombin III-thrombin reaction, 1.2 x 10(9) M-1.min-1 compared with 2.4 x 10(9) M-1.min-1 in the presence of high-affinity heparin. However, the maximum rate was catalysed by much higher concentrations of heparan sulphate (1.3 microM) than of heparin (0.025 microM). Differences were also observed in the maximal acceleration of the antithrombin III-Factor Xa interaction: 1.2 x 10(9) M-1.min-1 at 0.2 microM-heparin sulphate compared with 2.2 x 10(9) M-1.min-1 at 0.04 microM-heparin. The differences in properties of heparan sulphate and heparin were analysed by using the random bi-reactant model of heparin action [Griffith (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 5460-5464]. It was observed that the apparent binding affinity for thrombin was higher for heparan sulphate (180 nM) than for heparin (14 nM). The rate constant for transformation of the antithrombin III-Factor Xa complex into irreversible product differed between heparan sulphate (96 min-1) and heparin (429 min-1). These properties of the high-affinity heparan sulphate may be of importance in consideration of a putative role in the control of intravascular haemostasis.  相似文献   

11.
The antithrombin-binding region of heparin is a pentasaccharide sequence with the predominant structure -GlcNAc(6-OSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-Ido A(2-OSO3)- GlcNSO3(6-OSO3)-. By using the 3-O-sulfated glucosamine residue as a marker for the anti-thrombin-binding sequence, the location of this sequence within the heparin chain was investigated. Heparin with high affinity for antithrombin (HA-heparin) contains few N-acetyl groups located outside the antithrombin-binding region, and cleavage at such groups was therefore expected to be essentially restricted to this region. HA-heparin was cleaved at N-acetylated glucosamine units by partial deacetylation followed by treatment with nitrous acid at pH 3.9, and the resulting fragments with low affinity for anti-thrombin (LA-fragments) were recovered after affinity chromatography on immobilized antithrombin. The LA-fragments were further divided into subfractions of different molecular size by gel chromatography and were then analyzed with regard to the occurrence of the nonreducing terminal GlcA-GlcNSO3(3,6-di-OS-O3)- sequence. Such units were present in small, intermediate-sized as well as large fragments, suggesting that the antithrombin-binding regions were randomly distributed along the heparin chains. In another set of experiments, HA-heparin was subjected to limited, random depolymerization by nitrous acid (pH 1.5), and the resulting reducing terminal anhydromannose residues were labeled by treatment with NaB3H4. The molecular weight distributions of such labeled LA-fragments, determined by gel chromatography, again conformed to a random distribution of the antithrombin-binding sequence within the heparin chains. These results are in apparent disagreement with previous reports (Radoff, S., and Danishefsky, I. (1984) J. Biol. Chem. 259, 166-172; Rosenfeld, L., and Danishefsky, I. (1988) J. Biol. Chem. 263, 262-266) which suggest that the antithrombin-binding region is preferentially located at the nonreducing terminus of the heparin molecule.  相似文献   

12.
The interactions of two proteinase inhibitors, heparin cofactor II and antithrombin, with thrombin are potentiated by heparin. Using two methods, we have studied the potentiating effects of a series of heparin (poly)saccharides with high affinity for antithrombin and mean Mr ranging from approx. 1700 to 18,800. First, catalytic amounts of heparin (poly)saccharide were added to purified systems containing thrombin and either heparin cofactor II or antithrombin. Residual thrombin activity was determined with a chromogenic substrate. It was found that only the higher-Mr polysaccharides (Mr greater than 8000) efficiently catalysed thrombin inhibition by heparin cofactor II, there being a progressive catalytic effect with increasing Mr of the polysaccharide. Weak accelerating effects were noted with low-Mr saccharides (Mr less than 8000). This contrasted with the well-characterized interaction of heparin with antithrombin and thrombin, where heparin oligosaccharides of Mr less than 5400 had absolutely no ability to accelerate the reaction, while (poly)saccharides of Mr exceeding 5400 showed rapidly increasing catalytic activity with increasing Mr. Secondly, these and other heparin preparations were added in a wide concentration range to plasma with which 125I-labelled thrombin was then incubated for 30 s. Inhibited thrombin was determined from the distribution of labelled thrombin amongst inhibitor-thrombin complexes, predominantly antithrombin-thrombin and heparin cofactor II-thrombin complexes. In this situation, where the inhibitors competed for thrombin and for the (poly)saccharides, it was found that, provided the latter were of high affinity for antithrombin and exceeded a Mr of 5400, thrombin inhibition in plasma was mediated largely through antithrombin. Polysaccharides of Mr exceeding 8000 that were of low affinity for antithrombin accelerated thrombin inhibition in plasma through their interaction with heparin cofactor II. High concentrations of saccharides of Mr 1700-5400 exhibited a size-dependent acceleration of thrombin inhibition, not through their interaction with antithrombin, but through their interaction with heparin cofactor II.  相似文献   

13.
The specificity of endothelial binding sites for heparin was investigated with heparin fractions and fragments differing in their Mr, charge density and affinity for antithrombin III, as well as with heparinoids and other anionic polyelectrolytes (polystyrene sulphonates). The affinity for endothelial cells was estimated by determining I50 values in competition experiments with 125I-heparin. We found that affinity for endothelial cells increases as a function of Mr and charge density (degree of sulphation). Binding sites are not specific receptors for heparin. Other anionic polyelectrolytes, such as pentosan polysulphates and polystyrene sulphonates, competed with heparin for binding to endothelial cells. Fractions of standard heparin with high affinity for antithrombin III also had greater affinity for endothelium. However, these two properties of heparin (affinity for antithrombin III and affinity for endothelial cells) could be dissociated. Oversulphated heparins and oversulphated low-Mr heparin fragments had lower anticoagulant activity and higher affinity for endothelial cells than did their parent compounds. Synthetic pentasaccharides, bearing the minimal sequence for binding to antithrombin III, did not bind to endothelial cells. Binding to endothelial cells involved partial neutralization of heparin. Bound heparin exhibited only 5% and 7% of antifactor IIa and antifactor Xa specific activity, respectively. In the presence of 200 nM-antithrombin III, and in the absence of free heparin, a limited fraction (approx. 30%) of bound heparin was displaced from endothelial cells during a 1 h incubation period. These data suggested that a fraction of surface-bound heparin could represent a pool of anticoagulant.  相似文献   

14.
Temperature-dependent regulation of affinity binding between bioactive ligands and their cell membrane receptors is an attractive approach for the dynamic control of cellular adhesion, proliferation, migration, differentiation, and signal transduction. Covalent conjugation of bioactive ligands onto thermoresponsive poly(N-isopropylacrylamide) (PIPAAm)-grafted surfaces facilitates the modulation of one-on-one affinity binding between bioactive ligands and cellular receptors by changing temperature. For the dynamic control of the multivalent affinity binding between heparin and heparin-binding proteins, thermoresponsive cell culture surface modified with heparin, which interacts with heparin-binding proteins such as basic fibroblast growth factor (bFGF), has been proposed. Heparin-functionalized thermoresponsive cell culture surface induces (1) the multivalent affinity binding of bFGF in active form and (2) accelerating cell sheet formation in the state of shrunken PIPAAm chains at 37°C. By lowering temperature to 20°C, the affinity binding between bFGF and immobilized heparin is reduced with increasing the mobility of heparin and the swollen PIPAAm chains, leading to the detachment of cultured cells. Therefore, heparin-functionalized thermoresponsive cell culture surface was able to enhance cell proliferation and detach confluent cells as a contiguous cell sheet by changing temperature. A cell cultivation system using heparin-functionalized thermoresponsive cell culture surface is versatile for immobilizing other heparin-binding proteins such as vascular endothelial growth factor, fibronectin, antithrombin III, and hepatocyte growth factor, etc. for tuning the adhesion, growth, and differentiation of various cell species.  相似文献   

15.
Antithrombin, a major coagulation inhibitor in mammals, has for the first time been cDNA cloned from a fish species. The predicted mature liver antithrombin of Atlantic salmon (Salmo salar) consists of 430 amino acids and shows about 67% sequence identity to mammalian and chicken antithrombins. Due to a single nucleotide replacement, Asn135 of the antithrombin in higher vertebrates is substituted by Asp in the salmon homolog. Hence, in contrast to the vertebrate antithrombins known so far, salmon antithrombin lacks the potential glycosylation site located close to the heparin binding site. The existence of only three N-linked side chains is evidenced by the sequential removal of three carbohydrate chains from salmon antithrombin during timed-digestion with N-glycosidase F. The high heparin binding affinity of the salmon inhibitor, Kd of 2.2 and 48 nM at I = 0.15 and 0.3, respectively, is very similar to that of the minor human isoform beta-antithrombin, which is not glycosylated at Asn135. Furthermore, the invariant third-position Ser137 at this glycosylation site of mammalian and chicken antithrombins is substituted by Thr in the salmon, a replacement that has been shown to induce full glycosylation in human antithrombin. Thus a rapidly reacting pool of antithrombin may have evolved in two different ways: absence of a glycosylation site in lower vertebrates vs. incomplete glycosylation of a part of the circulating antithrombin in higher vertebrates. Salmon antithrombin appears to have three complex oligosaccharide side chains containing sialic acid terminally linked alpha(2-3) to galactose, while trace amounts of Galbeta(1-4)GlcNAc suggest microheterogeneity due to partial loss of sialic acid.  相似文献   

16.
The binding of heparin causes a conformational change in antithrombin to give an increased heparin binding affinity and activate the inhibition of thrombin and factor Xa. The areas of antithrombin involved in binding heparin and stabilizing the interaction in the high-affinity form have been partially resolved through the study of both recombinant and natural variants. The role of a section of the N-terminal segment of antithrombin, residues 22-46 (segment 22-46), in heparin binding was investigated using rapid kinetic analysis of the protein cleaved at residues 29-30 by limited proteolysis with thermolysin. The cleaved antithrombin had 5.5-fold lowered affinity for heparin pentasaccharide and 1.8-fold for full-length, high-affinity heparin. It was shown that, although the initial binding of heparin is slightly enhanced by the cleavage, it dissociates much faster from the cleaved form, giving rise to the overall decrease in heparin affinity. This implies that the segment constituting residues 22-46 in the N terminus of antithrombin hinders access to the binding site for heparin, hence the increased initial binding for the cleaved form, whereas, when heparin is bound, segment 22-46 is involved in the stabilization of the binding interaction, as indicated by the increased dissociation constant. When the heparin pentasaccharide is bound to antithrombin prior to incubation with thermolysin, it protects the N-terminal cleavage site, implying that segment 22-46 moves to interact with heparin in the conformational change and thus stabilizes the complex.  相似文献   

17.
Novel compounds presenting anticoagulant activity, such as sulfated polysaccharides, open new perspectives in medicine. Elucidation of the molecular mechanism behind this activity is desirable by itself, as well as because it allows for the design of novel compounds. In the present study, we investigated the action of an algal sulfated galactan, which potentiates alpha-thrombin inactivation by antithrombin. Our results indicate the following: 1) both the sulfated galactan and heparin potentiate protease inactivation by antithrombin at similar molar concentrations, however they differ markedly in the molecular size required for their activities; 2) this galactan interacts predominantly with exosite II on alpha-thrombin and, similar to heparin, catalyzes the formation of a covalent complex between antithrombin and the protease; 3) the sulfated galactan has a higher affinity for alpha-thrombin than for antithrombin. We propose that the preferred pathway of sulfated galactan-induced inactivation of alpha-thrombin by antithrombin starts with the polysaccharide binding to the protease through a high-affinity interaction. Antithrombin is then added to the complex and the protease is inactivated by covalent interactions. Finally, the antithrombin-alpha-thrombin covalent complex dissociates from the polysaccharide chain. This mechanism resembles the action of heparin with low affinity for antithrombin, as opposed to heparin with high affinity for serpin.  相似文献   

18.
Human plasma alpha1-antitrypsin inhibits human pancreatic trypsin, chymotrypsin and elastase, which are massively released into the blood stream during acute pancreatitis. To examine whether the plasma proteins of individuals with genetic deficiency of alpha1-antitrypsin are protected against the deleterious action of these enzymes by other inhibitors, we have tested their inhibition by alpha2-antiplasmin and antithrombin. We have determined the inhibition rate constants kass and calculated d(t), the in vivo inhibition time. Surprisingly, trypsin is inhibited faster by alpha2-antiplasmin [kass=2.5 x 10(6) M(-1)S(-1), d(t)=2.3 s] and antithrombin [kass=1.7 x 10(5) M(-1)s(-1), d(t)=5.8 s] than by alpha1-antitrypsin [d(t)=17 s or 116 s in alpha1-antitrypsin-sufficient or alpha1-antitrypsin-deficient individuals, respectively]. Low molecular weight heparin accelerates the inhibition of trypsin by antithrombin by a factor of 16 [d(t)=0.36 s]. Antithrombin and alpha2-antiplasmin are not physiological inhibitors of chymotrypsin and elastase. These enzymes are, however, physiologically inhibited by alpha1-antitrypsin and alpha1-antichymotrypsin even in alpha1-antitrypsin-deficient individuals. We conclude that (i) low molecular weight heparin may be helpful in the management of acute pancreatitis, and (ii) genetically determined alpha1-antitrypsin deficiency probably does not lead to a significantly increased risk of plasma protein degradation during this disease.  相似文献   

19.
Oligosaccharides (10-20 monosaccharide units) with high affinity for antithrombin, as well as larger high-affinity heparin fractions (having relative molecular masses between 6,000 and 21,500), all markedly accelerated the inhibition of Factor Xa by antithrombin. Moreover, all high-affinity oligosaccharides and heparins enhanced, to a similar extent, the amount of free proteolytically modified antithrombin cleaved at the reactive bond by Factor Xa. In contrast, a minimum high-affinity heparin size of approximately 18 monosaccharide units was required to significantly accelerate the inactivation of thrombin by antithrombin and to enhance the production of modified antithrombin by this enzyme. All high-affinity fractions studied had similar affinities for antithrombin, as determined by fluorescence titrations. In competition experiments, binary complexes of antithrombin with octadecasaccharide or larger high-affinity heparins, but not with smaller oligosaccharides, displaced inactivated 125I-thrombin from matrix-linked low-affinity heparin. Moreover, similar binary complexes with 3H-labeled octadecasaccharide or larger chains, but not with smaller oligosaccharides, were capable of binding to matrix-linked inactivated thrombin. These results indicate that simultaneous binding of antithrombin and thrombin to high-affinity heparin is a prerequisite to the acceleration of the antithrombin-thrombin reaction and that the minimum heparin sequence capable of binding both proteins comprises approximately 18 monosaccharide units. Similar complex formation apparently is not required for the acceleration of the antithrombin-Factor Xa reaction.  相似文献   

20.
Novel compounds presenting anticoagulant activity, such as sulfated polysaccharides, open new perspectives in medicine. Elucidation of the molecular mechanism behind this activity is desirable by itself, as well as because it allows for the design of novel compounds. In the present study, we investigated the action of an algal sulfated galactan, which potentiates α-thrombin inactivation by antithrombin. Our results indicate the following: 1) both the sulfated galactan and heparin potentiate protease inactivation by antithrombin at similar molar concentrations, however they differ markedly in the molecular size required for their activities; 2) this galactan interacts predominantly with exosite II on α-thrombin and, similar to heparin, catalyzes the formation of a covalent complex between antithrombin and the protease; 3) the sulfated galactan has a higher affinity for α-thrombin than for antithrombin. We propose that the preferred pathway of sulfated galactan-induced inactivation of α-thrombin by antithrombin starts with the polysaccharide binding to the protease through a high-affinity interaction. Antithrombin is then added to the complex and the protease is inactivated by covalent interactions. Finally, the antithrombin–α-thrombin covalent complex dissociates from the polysaccharide chain. This mechanism resembles the action of heparin with low affinity for antithrombin, as opposed to heparin with high affinity for serpin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号