首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing beta-lactam antibiotics, such as cephalexin and ampicillin. N-terminal amino acid sequencing of the purified alpha-amino acid ester hydrolase allowed cloning and genetic characterization of the corresponding gene from an A. turbidans genomic library. The gene, designated aehA, encodes a polypeptide with a molecular weight of 72,000. Comparison of the determined N-terminal sequence and the deduced amino acid sequence indicated the presence of an N-terminal leader sequence of 40 amino acids. The aehA gene was subcloned in the pET9 expression plasmid and expressed in Escherichia coli. The recombinant protein was purified and found to be dimeric with subunits of 70 kDa. A sequence similarity search revealed 26% identity with a glutaryl 7-ACA acylase precursor from Bacillus laterosporus, but no homology was found with other known penicillin or cephalosporin acylases. There was some similarity to serine proteases, including the conservation of the active site motif, GXSYXG. Together with database searches, this suggested that the alpha-amino acid ester hydrolase is a beta-lactam antibiotic acylase that belongs to a class of hydrolases that is different from the Ntn hydrolase superfamily to which the well-characterized penicillin acylase from E. coli belongs. The alpha-amino acid ester hydrolase of A. turbidans represents a subclass of this new class of beta-lactam antibiotic acylases.  相似文献   

2.
头孢菌素酰化酶   总被引:2,自引:0,他引:2  
7-氨基头孢烷酸(7-amino cephalosporanic acid, 7-ACA)是医药工业合成大多数头孢菌素的重要原料.头孢菌素酰化酶(cephalosporin acylase, CA)催化头孢菌素C(CPC)和戊二酰-7-氨基头孢烷酸(GL-7ACA)的水解反应, 生成7-ACA.根据CA催化底物的不同, 可将其划分为两类:CPC酰化酶和GL-7ACA酰化酶.由CA的同源性、分子质量大小和基因结构, 可以把头孢菌素酰化酶划分为五种;讨论了酶的基本性质.通过CA与N端亲核水解酶(Ntn水解酶)的比较, 推测CA属于Ntn水解酶, 并由此可以进一步理解它们的生理功能.  相似文献   

3.
A novel method for detecting microorganisms capable of producing cephalosporin C (CPC) acylase and/or 7-(4-carboxybutanamido)cephalosporanic acid (GL-7-ACA) acylase has been developed. The method is based on the degradation of 2-nitro-5-(6-bromohexanoylamino)benzoic acid (NBHAB), a chromogenic substrate, into yellow 2-nitro-5-aminobenzoic acid by the action of the CPC acylase or the GL-7-ACA acylase. This method is very sensitive and quite specific, and has been successfully applied to screen the acylases from a variety of bacteria. A large number of colonies isolated on a plate surface from more than 67 samples and several known bacteria were tested by the NBHAB paper. Five NBHAB-positive strains and isolates were obtained. They were further examined by the reaction of their bacterial cells upon CPC and GL-7-ACA, respectively, and by thin-layer chromatography in order to distinguish the CPC acylase from the GL-7-ACA acylase.  相似文献   

4.
Semisynthetic cephalosporins are primarily synthesized from 7-aminocephalosporanic acid (7-ACA), mainly by environmentally toxic chemical deacylation of cephalosporin C (CPC). Thus, the enzymatic conversion of CPC to 7-ACA by cephalosporin acylase (CA) would be very interesting. However, CAs use glutaryl-7-ACA (GL-7-ACA) as a primary substrate and the enzymes have low turnover rates for CPC. The active-site residues of a CA were mutagenized to various residues to increase the deacylation activity of CPC, based on the active-site conformation of the CA structure. The aim was to generate sterically favored conformation of the active-site to accommodate the D-alpha-aminoadipyl moiety of CPC, the side-chain moiety that corresponds to the glutaryl moiety of GL-7-ACA. A triple mutant of the CA, Q50betaM/Y149alphaK/F177betaG, showed the greatest improvement of deacylation activity to CPC up to 790% of the wild-type. Our current study is an efficient method for improving the deacylation activity to CPC by employing the structure-based repetitive saturation mutagenesis.  相似文献   

5.
The penicillin G acylase (PGA) and cephalosporin acylase (CA) families, which are members of the N-terminal (Ntn) hydrolases, are valuable for the production of backbone chemicals like 6-aminopenicillanic acid and 7-aminocephalosporanic acid (7-ACA), which can be used to synthesize semi-synthetic penicillins and cephalosporins, respectively. Regardless of the low sequence similarity between PGA and CA, the structural homologies at their active-sites are very high. However, despite this structural conservation, they catalyze very different substrates. PGA reacts with the hydrophobic aromatic side-chain (the phenylacetyl moiety) of penicillin G (PG), whereas CA targets the hydrophilic linear side-chain (the glutaryl moiety) of glutaryl-7-ACA (GL-7-ACA). These different substrate specificities are likely to be due to differences in the side-chains of the active-site residues. In this study, mutagenesis of active-site residues binding the side-chain moiety of PG changed the substrate specificity of PGA to that of CA. This mutant PGA may constitute an alternative source of engineered enzymes for the industrial production of 7-ACA.  相似文献   

6.
Semisynthetic cephalosporins are important antibacterials in clinical practice. Semisynthetic cephalosporins are manufactured by derivatizing 7-aminocephalosporanic acid (7-ACA) and its desacetylated form. Microbial enzymes such as D-amino acid oxidase, glutaryl-7-ACA acylase and cephalosporin esterase are being used as biocatalysts for the conversion of cephalosporin C (CEPH-C) to 7-ACA and its desacetylated derivatives. Recent developments in the field of enzymatic modifications of cephalosporin with special emphasis on group of enzymes called as cephalosporin acylase is discussed in this review. Aspects related to screening methods, isolation and purification, immobilization, molecular cloning, gene structure and expression and protein engineering of cephalosporin acylases have been covered. Topics pertaining to enzymatic modifications of cephalosporin by D-amino acid oxidase, cephalosporin methoxylase and beta-lactamase are also covered.  相似文献   

7.
We performed a comparative characterization of three new cephalosporin acylases which were prepared from E. coli recombinant strains and found originally from Pseudomonas sp. A14, Bacillus laterosporus J1 and Pseudomonas diminuta N176. Both A14 and N176 acylases consisted of two non-identical subunits (α, β) whose molecular weights were 28,000 (α), 61,000 (β) and 26,000 (α), 58,000 (β), respectively, whereas J1 acylase consisted of a single peptide with molecular weight of 70,000. The maximum specific activities of A14, J1 and N176 acylases for glutaryl 7-ACA were 7.1, 5.3 and 100 units/mg, respectively, and that of N176 acylase for cephalosporin C was 3.1 units/mg. The Km values of glutaryl 7-ACA for A14, J1 and N176 acylases were 2.1, 3.2 and 2.6 mM, respectively, and that of cephalosporin C for N176 acylase was 4.8 mM. A14, J1 and N176 acylases exhibited differential activities for cephalosporins having an aliphatic dicarboxylic acid in the acyl side chain and only N176 acylase showed an activity for cephalosporin C. N176 acylase as well as A14 acylase also showed a weak activity for a cephalosporin derivative having a heterocyclic carboxylic acid in the side chain. A14, J1 and N176 acylases catalyzed the reverse reaction to synthesize glutaryl 7-ACA from 7-ACA and glutaric acid, although the rate of the synthesis was 10 to 105 fold slower than that of hydrolysis. The activities of the cephalosporin acylases were considerably inhibited by the reaction products, 7-ACA and glutaric acid. The types of the inhibition by 7-ACA and glutaric acid were both competitive. A14, J1 and N176 acylases were thermostable, their residual activities exceeding more than 90% after treatment at 50°C for 1 h at their optimal pHs.  相似文献   

8.
ABSTRACT

Semisynthetic cephalosporins are important antibacterials in clinical practice. Semisynthetic cephalosporins are manufactured by derivatizing 7-aminocephalosporanic acid (7-ACA) and its desacetylated form. Microbial enzymes such as D-amino acid oxidase, glutaryl-7-ACA acylase and cephalosporin esterase are being used as biocatalysts for the conversion of cephalosporin C (CEPH-C) to 7-ACA and its desacetylated derivatives. Recent developments in the field of enzymatic modifications of cephalosporin with special emphasis on group of enzymes called as cephalosporin acylase is discussed in this review. Aspects related to screening methods, isolation and purification, immobilization, molecular cloning, gene structure and expression and protein engineering of cephalosporin acylases have been covered. Topics pertaining to enzymatic modifications of cephalosporin by D-amino acid oxidase, cephalosporin methoxylase and β -lactamase are also covered.  相似文献   

9.
Cephalosporin acylases are a group of enzymes that hydrolyze cephalosporin C (CPC) and/or glutaryl 7-amino cephalosporanic acid (GL-7ACA) to produce 7-amino cephalosporanic acid (7-ACA). The acylase from Pseudomonas sp. 130 (CA-130) is highly active on GL-7ACA and glutaryl 7-aminodesacetoxycephalosporanic acid (GL-7ADCA), but much less active on CPC and penicillin G. The gene encoding the enzyme is expressed as a precursor polypeptide consisting of a signal peptide followed by alpha- and beta-subunits, which are separated by a spacer peptide. Removing the signal peptide has little effect on precursor processing or enzyme activity. Substitution of the first residue of the beta-subunit, Ser, results in a complete loss of enzyme activity, and substitution of the last residue of the spacer, Gly, leads to an inactive and unprocessed precursor. The precursor is supposed to be processed autocatalytically, probably intramolecularly. The two subunits of the acylase, which separately are inactive, can generate enzyme activity when coexpressed in Escherichia coli. Data on this and other related acylases indicate that the cephalosporin acylases may belong to a novel class of enzymes (N-terminal nucleophile hydrolases) described recently.  相似文献   

10.
Semisynthetic cephalosporins are synthesized from 7-amino cephalosporanic acid, which is produced by chemical deacylation or by a two-step enzymatic process of the natural antibiotic cephalosporin C. The known acylases take glutaryl-7-amino cephalosporanic acid as a primary substrate, and their specificity and activity are too low for cephalosporin C. Starting from a known glutaryl-7-amino cephalosporanic acid acylase as the protein scaffold, an acylase gene optimized for expression in Escherichia coli and for molecular biology manipulations was designed. Subsequently we used error-prone PCR mutagenesis, a molecular modeling approach combined with site-saturation mutagenesis, and site-directed mutagenesis to produce enzymes with a cephalosporin C/glutaryl-7-amino cephalosporanic acid catalytic efficiency that was increased up to 100-fold, and with a significant and higher maximal activity on cephalosporin C as compared to glutaryl-7-amino cephalosporanic acid (e.g., 3.8 vs. 2.7 U/mg protein, respectively, for the A215Y-H296S-H309S mutant). Our data in a bioreactor indicate an ~90% conversion of cephalosporin C to 7-amino-cephalosporanic acid in a single deacylation step. The evolved acylase variants we produced are enzymes with a new substrate specificity, not found in nature, and represent a hallmark for industrial production of 7-amino cephalosporanic acid.  相似文献   

11.
7-Aminocephalosporanic acid (7-ACA) is an important material in the production of semisynthetic cephalosporins, which are the best-selling antibiotics worldwide. 7-ACA is produced from cephalosporin C via glutaryl-7-ACA (GL-7-ACA) by a bioconversion process using d-amino acid oxidase and cephalosporin acylase (or GL-7-ACA acylase). Previous studies demonstrated that a single amino acid substitution, D433N, provided GL-7-ACA acylase activity for gamma-glutamyltranspeptidase (GGT) of Escherichia coli K-12. In this study, based on its three-dimensional structure, residues involved in substrate recognition of E. coli GGT were rationally mutagenized, and effective mutations were then combined. A novel screening method, activity staining followed by a GL-7-ACA acylase assay with whole cells, was developed, and it enabled us to obtain mutant enzymes with enhanced GL-7-ACA acylase activity. The best mutant enzyme for catalytic efficiency, with a k(cat)/K(m) value for GL-7-ACA almost 50-fold higher than that of the D433N enzyme, has three amino acid substitutions: D433N, Y444A, and G484A. We also suggest that GGT from Bacillus subtilis 168 can be another source of GL-7-ACA acylase for industrial applications.  相似文献   

12.
Directed evolution of a glutaryl acylase into an adipyl acylase.   总被引:2,自引:0,他引:2  
Semi-synthetic cephalosporin antibiotics belong to the top 10 of most sold drugs, and are produced from 7-aminodesacetoxycephalosporanic acid (7-ADCA). Recently new routes have been developed which allow for the production of adipyl-7-ADCA by a novel fermentation process. To complete the biosynthesis of 7-ADCA a highly active adipyl acylase is needed for deacylation of the adipyl derivative. Such an adipyl acylase can be generated from known glutaryl acylases. The glutaryl acylase of Pseudomonas SY-77 was mutated in a first round by exploration mutagenesis. For selection the mutants were grown on an adipyl substrate. The residues that are important to the adipyl acylase activity were identified, and in a second round saturation mutagenesis of this selected stretch of residues yielded variants with a threefold increased catalytic efficiency. The effect of the mutations could be rationalized on hindsight by the 3D structure of the acylase. In conclusion, the substrate specificity of a dicarboxylic acid acylase was shifted towards adipyl-7-ADCA by a two-step directed evolution strategy. Although derivatives of the substrate were used for selection, mutants retained activity on the beta-lactam substrate. The strategy herein described may be generally applicable to all beta-lactam acylases.  相似文献   

13.
Penicillin G acylase is an important enzyme in the commercial production of semisynthetic penicillins used to combat bacterial infections. Mutant strains of Providencia rettgeri were generated from wild-type cultures subjected to nutritional selective pressure. One such mutant, Bro1, was able to use 6-bromohexanamide as its sole nitrogen source. Penicillin acylase from the Bro1 strain exhibited an altered substrate specificity consistent with the ability of the mutant to process 6-bromohexanamide. The X-ray structure determination of this enzyme was undertaken to understand its altered specificity and to help in the design of site-directed mutants with desired specificities. In this paper, the structure of the Bro1 penicillin G acylase has been solved at 2.5 A resolution by molecular replacement. The R-factor after refinement is 0.154 and R-free is 0.165. Of the 758 residues in the Bro1 penicillin acylase heterodimer (alpha-subunit, 205; beta-subunit, 553), all but the eight C-terminal residues of the alpha-subunit have been modeled based on a partial Bro1 sequence and the complete wild-type P. rettgeri sequence. A tightly bound calcium ion coordinated by one residue from the alpha-subunit and five residues from the beta-subunit has been identified. This enzyme belongs to the superfamily of Ntn hydrolases and uses Ogamma of Ser beta1 as the characteristic N-terminal nucleophile. A mutation of the wild-type Met alpha140 to Leu in the Bro1 acylase hydrophobic specificity pocket is evident from the electron density and is consistent with the observed specificity change for Bro1 acylase. The electron density for the N-terminal Gln of the alpha-subunit is best modeled by the cyclized pyroglutamate form. Examination of aligned penicillin acylase and cephalosporin acylase primary sequences, in conjunction with the P. rettgeri and Escherichia coli penicillin acylase crystal structures, suggests several mutations that could potentially allow penicillin acylase to accept charged beta-lactam R-groups and to function as a cephalosporin acylase and thus be used in the manufacture of semi-synthetic cephalosporins.  相似文献   

14.
Pseudomonas cepacia BY21 was found to produce glutaryl acylase that is capable of deacylating glutaryl-7-aminocephalosporanic acid (glutaryl-7-ACA) to 7-aminocephalosporanic acid (7-ACA), which is a starting material for semi-synthetic cephalosporin antibiotics. Amino acids of the reported glutaryl acylases from variousPseudomonas sp. strains show a high similarity (>93% identity). Thus, with the known nucleotide sequences ofPseudomonas glutaryl acylases in GenBank, PCR primers were designed to clone a glutaryl acylase gene fromP. cepacia BY21. The unknown β-subunit gene of glutaryl acylase from chromosomal DNA ofP. cepacia BY21 was cloned successfully by PCR. The β-subunit amino acids ofP. cepacia BY21 acylase (GenBank accession number AY948547) were similar to those ofPseudomonas diminuta KAC-1 acylase except that Asn408 ofP. diminuta KAC-1 acylase was changed to Leu408.  相似文献   

15.
-Lactam acylases such as penicillin G acylases, penicillin V acylases and glutaryl 7-aminocephalosporanic acid acylases are used in the manufacture of 6-aminopenicillanic acid, 7-aminodesacetoxycephalosporanic acid and 7-aminocephalosporanic acid (7-ACA). Genetically-engineered strains producing 1050 U/g, 3200 U/g and 7000 to 10,000 U/I of penicillin G acylase, penicillin V acylase and glutaryl-7-ACA acylase, respectively, have been developed. The penicillin G acylase studied to date and the glutaryl-7-ACA acylase from Pseudomonas sp. share some common features: the active enzyme molecules are composed of two dissimilar subunits that are generated from respective precursor polypeptide; the proteolytic processing is a post-translational modification which is regulated by temperature; and the Ser residue at the N-terminus of the -sub-unit (Ser290; penicillin G acylase numbering) is implicated as the active site residue. Protein engineering, to generate penicillin G acylase molecules and their precursors with altered sequences, and the structure-function correlation of the engineered molecules are discussed.The authors are with Research and Development, Hindustan Antibiotics Ltd, Pimpri, Pune 411 018, India;  相似文献   

16.
一株产多种β-内酰胺类抗生素酰化酶菌株的筛选   总被引:1,自引:0,他引:1  
为了从大量的候选菌株中快速筛选头孢菌素酰化酶产生菌,设计并合成了一系列头孢菌素酰化酶的底物类似物。这些酰胺类的底物类似物由二部分组成,一部分为与头孢菌素相同或相似的侧链,另外一部分为发色基团或便于检测的基团。它们被酰化酶水解酰胺键以后可以方便快速的检测,因此用于对大量菌株进行快速筛选。采用这些化合物筛选到6株酰化酶阳性菌株。其中菌株ZH0650能够同时水解GL-7ACA和多个底物类似物。进一步研究表明,该菌至少产生3种酰化酶,AD-NABA酰化酶,青霉素G酰化酶和头孢菌素C酰化酶。我们初步纯化了AD-NABA酰化酶和青霉素G酰化酶,并对头孢菌素C酰化酶的活力进行了鉴定。这是首次报道的可以产生青霉素G酰化酶和头孢菌素酰化酶等多种酰化酶的菌株,具有良好的应用前景。  相似文献   

17.
Cephalosporin acylase (CA) is a recently identified N-terminal hydrolase. It is also a commercially important enzyme in producing 7-aminocephalosporanic acid (7-ACA), a backbone chemical in synthesizing semi-synthetic cephalosporin antibiotics. CA is translated as an inactive single chain precursor, being post-translationally modified into an active enzyme. The post-translational modification takes place in two steps. The first intramolecular autocatalytic proteolysis takes place at one end of the spacer peptide by a nucleophilic Ser or Thr, which in turn becomes a new N-terminal Ser or Thr. The second intermolecular modification cleaves off the other end of the spacer peptide by another CA. Two binary structures in complex with glutaryl-7-ACA (the most favored substrate of CAs) and glutarate (side chain of glutaryl-7-ACA) were determined, and they revealed the detailed interactions of glutaryl-7-ACA with the active site residues (Y. Kim and W. G. J. Hol (2001) Chem. Biol., in press). In this report: 1) we have mutated key active site residues into nonfunctional amino acids, and their roles in catalysis were further analyzed; 2) we performed mutagenesis studies indicating that secondary intermolecular modification is carried out in the same active site where deacylation reaction of CA occurs; and 3) the cleavage site of secondary intermolecular modification by another CA was identified in the spacer peptide using mutational analysis. Finally, a schematic model for intermolecular cleavage of CA is proposed.  相似文献   

18.
The enzymatic transformation of cephalosporin C to 7-amino-cephalosporanic acid (7-ACA) using coimmobilized -aminoacid oxidase (DAAO) and 7-β-(4-carboxybutanamido)cephalosporanic acid acylase (Gl-7-ACA acylase) is reported. The results from the coimmobilization of the two enzymes on different carriers and at different ratios of enzyme activities are described. When an inhibitor of catalase activity, such as NaN3 or H2O2, is present, the conversion rate to 7-ACA is higher, but more by-products are obtained. An optimum ratio of 60:1 between the enzymatic activities of DAAO and Gl-7-ACA acylase in the coimmobilized sample at 0.21 Ug−1 Gl-7-ACA acylase activity was determined. The results of using coimmobilized enzymes and of using a mixture of separately immobilized enzymes in the same process are compared.  相似文献   

19.
Cephalosporin C (CPC) acylase is an enzyme which hydrolyzes CPC to 7-aminocephalosporanic acid (7-ACA) directly, and therefore has great potential in industrial application. In this study, the CPC acylase from a recombinant Escherichia coli was purified to high purity by immobilized metal affinity chromatography, and the CPC acylase was covalently attached to three kinds of epoxy supports, BB-2, ES-V-1 and LX-1000EP. The immobilized CPC acylase with LX-1000EP as the support shows the highest activity (81 U g−1) suggesting its potential in industrial 7-ACA production. The activity of immobilized enzyme was found to be optimal at pH between 8.5 and 9.5 and to increase with temperature elevation until 55 °C. Immobilized CPC acylase showed good stability at pH between 8.0 and 9.5 and at temperature up to 40 °C. To avoid product degradation, the production of 7-ACA utilizing immobilized enzyme was carried out at 25 °C, pH 8.5 in a designed reactor. Under optimal reaction conditions, a very high 7-ACA yield of 96.7% was obtained within 60 min. In the results of repeated batch production of 7-ACA, 50% activity of the initial cycle was maintained after being recycled 24 times and the average conversion rate of CPC reached 98%.  相似文献   

20.
GL-7ACA酰化酶表达检测系统的建立   总被引:1,自引:0,他引:1  
戊二酰-7-氨基头孢烷酸(GL-7ACA)酰化酶能够催化GL-7ACA分解生成7-ACA,后者是工业半合成生产头孢类抗菌素所需的重要前体。为了准确地检测GL-7ACA酰化酶及其突变体的表达,本研究通过构建一系列质粒载体,建立了两个简便有效地测定GL-7ACA酰化酶基因acy表达量的系统,从而可对酶的比活力进行定量。我们将两个报告基因,即儿茶酚双加氧酶基因(xylE)和β-半乳糖苷酶基因(lacZ)分别置于acy基因的下游,使之与acy基因共用一个启动子,进行串联表达,各自构成一个多顺反子系统。实验证明,基因融合后的儿茶酚双加氧酶或β-半乳糖苷酶的活力可以间接反映acy的表达量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号