共查询到20条相似文献,搜索用时 8 毫秒
1.
Initial triggering of M-phase in starfish oocytes: a possible novel component of maturation-promoting factor besides cdc2 kinase 总被引:4,自引:0,他引:4 下载免费PDF全文
《The Journal of cell biology》1996,132(1):125-135
G2-phase-arrested immature starfish oocytes contain inactive cdc2 kinase and cdc25 phosphatase, and an inactivator for cdc2 kinase. In this system, we have studied how the regulatory balance is apped toward the initial activation of cdc2 kinase. During the hormone-dependent period (Guerrier, P., and M. Doree, 1975. Dev. Biol. 47:341-348), p34cdc2 and cdc25 protein are already converted, though not fully, to active forms, whereas the inactivators for cdc2 kinase and cdc25 phosphatase are able to exhibit their activities if the hormone were removed. We produced "triggered oocytes," in which due to a neutralizing anticdc25 antibody, the activation of cdc2 kinase is prevented out cdc25 protein is phosphorylated slightly after the maturation-inducing hormonal stimulus. In contrast to control immature oocytes, in triggered oocytes the injected cdc2 kinase is not inactivated, and accordingly the level of cdc2 kinase activity required for meiosis reinitiation is much less. These results imply the presence of a cdc2 kinase activity-independent process(es) that suppresses the inactivator for cdc2 kinase and initially phosphorylates cdc25 protein, although this process is reversible during the initial activation of cdc2 kinase. At the most initial triggering of M-phase, the cdc2 kinase activity-independent process might trip the switch leading to the initial activation of cdc2 kinase. Thereafter, in parallel, the cdc2 kinase-dependent feedback loops described by others may cause further increase in cdc2 kinase activity. We propose that a putative suppressor, which downregulates the inactivator for cdc2 kinase independently of nuclear components, might be a previously unrecognized component of maturation-promoting factor. 相似文献
2.
Immature starfish oocytes are surrounded by envelopes consisting of follicular cells. These cells adhere to each other and to the oocyte, immobilizing the latter within the ovary. When isolated oocytes in their follicles are treated with 1-methyladenine (1-MeAde), germinal vesicle breakdown (GVBD) and follicular envelope breakdown (FEBD) occur simultaneously. The 1-MeAde acts on the oocyte surface to produce a maturation-promoting factor (MPF) in the cytoplasm, which brings about GVBD. In the present study, MPF was found to induce FEBD as well as GVBD when injected into immature oocytes with their follicles in Asterina pectinifera. Although GVBD was induced by MPF in the presence of cytochalasin D, this drug prevented MPF-induced FEBD, and each follicular cell remained in situ on the surface of the oocyte. However, desmosomes connecting the processes of the follicle cell with the oocyte surface were disrupted following MPF injection even in the presence of cytochalasin D, and the processes became detached from the oocyte. FEBD occurred in these oocytes when cytochalasin D was removed, resulting in the formation of a small follicular clump by microfilament-mediated contraction of the follicle cells. These results show that FEBD is not brought about by the direct action of 1-MeAde but by the action of MPF. Therefore, in starfish, spawning as well as oocyte maturation is directly triggered by MPF produced under the influence of 1-MeAde. 相似文献
3.
WILLIAM R. ECKBERG MICHELLE R. JOHNSON ROBERT E. PALAZZO 《Invertebrate reproduction & development.》2013,57(1-3):71-79
Summary We present the results of a variety of studies showing that activation of protein kinase C (PKC) in oocytes of Chaetopterus pergamentaceus results in germinal vesicle breakdown (GVBD). Phorbol esters and diacylglycerol can initiate a morphologically normal GVBD accompanied by a spectrum of associated biochemical processes, including increased protein phosphorylation, a shift in protein synthesis and activation of a protein kinase, maturation promoting factor (MPF). MPF activation is essential for GVBD in response to phorbol esters. In addition, inhibitors of PKC can block naturally-induced GVBD. We also present evidence that PKC can phosphorylate p34cde2, the catalytic subunit of MPF and that phosphorylation by PKC increases the histone H1 kinase activity of immunoprecipitated MPF. Immunoblot studies show that Chaetopterus oocyte p34cdc2 is not tyrosine phosphorylated prior to the initiation of GVBD, indicating that activation of MPF at GVBD in this species does not require p80cdc25, the activator of MPF at mitosis. These results suggest that PKC is an essential regulator of GVBD which can directly phosphorylate and regulate p34cdc2. Since PKC is the intracellular receptor for and is directly activated by tumor-promoters, tumor promotion might involve acceleration of the cell cycle through modification of the enzymatic activity of MPF by PKC. 相似文献
4.
Cyclin is a component of maturation-promoting factor from Xenopus 总被引:88,自引:0,他引:88
Highly purified maturation-promoting factor (MPF) from Xenopus eggs contains both cyclin B1 and cyclin B2 as shown by Western blotting and immunoprecipitation using Xenopus anti-B-type cyclin antibodies. Immunoprecipitates with these antibodies display the histone H1 kinase activity characteristic of MPF, for which exogenously added B1 and B2 cyclins are both substrates. Protein kinase activity against cyclin oscillates in maturing oocytes and activated eggs with the same kinetics as p34cdc2 kinase activity. These data indicate that B-type cyclin is the other component of MPF besides p34cdc2. 相似文献
5.
Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation 总被引:18,自引:0,他引:18
During mouse oocyte maturation the regulation of the activity of a cytoplasmic maturation-promoting factor (MPF) was examined. The mouse MPF activity was determined based on its ability to induce maturation in immature starfish oocytes after microinjection with the cytoplasm from mouse oocytes. MPF appeared initially at germinal vesicle breakdown (GVBD), and its activity fluctuated in exact correspondence with meiotic cycles, reaching a peak at each metaphase and almost disappearing at the time of emission of the first polar body. Cycloheximide affected neither the initial MPF appearance nor GVBD. Thereafter, however, in the presence of cycloheximide the meiotic spindle was not formed and MPF disappeared, although the chromosomes remained condensed. After removing cycloheximide, MPF reappeared and was followed by the first metaphase and subsequently by polar body emission. Finally the meiotic cycle progressed to the second metaphase. Thus, for the appearance of MPF, there is a critical period shortly before the first metaphase, after which protein synthesis is required. In the presence of either cytochalasin D or colcemid, MPF activity remained at elevated levels. Addition of cycloheximide to such cytochalasin-treated oocytes, in which the meiotic cycle was arrested at the first metaphase, caused the MPF levels to decrease and was followed by movement of chromosomes to both poles where they decondensed and two nucleus-like structures were formed. Thus, the disappearance of MPF may initiate the metaphase-anaphase transition. Furthermore, detailed cytological examination revealed that chromosomes in cytochalasin-treated oocytes were monovalent while those treated only with cycloheximide were divalent, suggesting that dissociation of the synapsis is a prerequisite for chromosome decondensation after the disappearance of MPF. In all these respects, MPF seems to be a metaphase-promoting factor rather than just a maturation-promoting factor. 相似文献
6.
Cytoplasmic extracts of meiotically mature mouse oocytes were injected into immature Xenopus laevis oocytes, which underwent germinal vesicle breakdown within 2 h. Germinal vesicle breakdown was not inhibited by incubation of the Xenopus oocytes in cycloheximide (20 micrograms/ml). Identically prepared extracts of meiotically immature mouse oocytes, arrested at the germinal vesicle stage by dibutyryl cyclic AMP (100 micrograms/ml), did not induce germinal vesicle breakdown in Xenopus oocytes. The results show that maturation-promoting factor activity appears during the course of oocyte maturation in the mouse. 相似文献
7.
M Yamashita S Fukada M Yoshikuni P Bulet T Hirai A Yamaguchi Y H Lou Z Zhao Y Nagahama 《Developmental biology》1992,149(1):8-15
Maturation-promoting factor (MPF) activity has been demonstrated for the first time in fish oocytes. We purified MPF from a 100,000g supernatant of crushed, naturally spawned carp oocytes using four chromatography columns: Q-Sepharose Fast-Flow, p13suc1-affinity Sepharose, Mono S, and Superose 12. The final preparation was purified over 1000-fold with a recovery of about 1%. On Superose 12, MPF eluted as a single peak with an apparent molecular weight of 100 kDa. SDS-PAGE analysis of the active fractions after Superose 12 revealed the presence of four proteins of 33, 34, 46, and 48 kDa. A monoclonal antibody against the PSTAIR sequence of cdc2 kinase recognized the 33- and 34-kDa proteins for which the 46- and 48-kDa proteins are endogenous substrates. The 46- and 48-kDa proteins were recognized by a monoclonal antibody against Escherichia coli-produced goldfish cyclin B, but not by an anti-cyclin A antibody. When oocytes were matured in the presence of 32P, the labeling was seen with the 34-kDa protein, but not with the 33-kDa protein. The 34-kDa protein corresponded to the MPF activity, but the 33-kDa protein did not. These findings indicate that carp MPF is a complex of cdc2 kinase and cyclin B, and further that active MPF contains the phosphorylated form of cdc2 kinase. 相似文献
8.
Extraction and preliminary characterization of maturation-promoting factor from starfish oocytes 总被引:6,自引:0,他引:6
Cytoplasm of maturing starfish oocytes possesses a factor which induces maturation upon injection into immature oocytes. Such maturation-promoting factor (MPF) was extracted from maturing oocytes of Asterina pectinifera and characterized preliminarily. After 1-methyladenine (1-MeAde) treatment, maturing oocytes were packed in a centrifuge tube to remove jelly and excess medium, and then crushed by centrifugation. The turbid supernatant was homogenized with a buffer containing NaF, Na-beta-glycerophosphate, ATP, EGTA and leupeptin, followed by centrifugation. MPF extracted in the supernatant was purified partially by ammonium sulfate precipitation, hydrophobic chromatography on pentyl-agarose and gel filtration on Sephacryl S-300. The final material induced maturation in the recipient starfish oocytes when 0.5 ng of protein was injected in a volume of 400 pl. The maturation response included germinal vesicle breakdown, and formation of polar bodies and egg pronucleus. Such MPF preparation induced maturation in oocytes of Xenopus laevis as well. Further, starfish MPF was found to be a heat-labile protein; its molecular weight (MW) was estimated as 300 X 10(3) D by gel filtration and its sedimentation coefficient value as 5S by centrifugation on sucrose density gradients. 相似文献
9.
Pannone G Bufo P Serpico R Rubini C Zamparese R Corsi F Pedicillo MC Pannone G Staibano S De Rosa G Lo Muzio L 《Histology and histopathology》2007,22(11):1241-1249
Survivin is a recently described inhibitor of apoptosis and mitotic regulator which is selectively over-expressed in human tumors. Its expression rate is predictive of disease progression, early recurrences and resistance to therapy. Up-regulation of survivin in oral pre-malignant lesions (OPL) and in oral squamous cell carcinoma (OSCC) has already been demonstrated in previous studies. A critical step for activation of survivin has been identified in the phosphorylation on Thr34 by the main mitotic kinase p34cdc2-cyclin B1. The aim of this work was to investigate the relationship between survivin, its phosphorylated active form (p-survivin) and M-phase promoting factor (MPF), p34cdc2-cyclin B1 in oral carcinogenesis. 32 OSCCs and 17 OPLs from surgical specimens were studied for cyclin B1, p-survivin, survivin, and p34cdc2 expression by immunohistochemistry. All cases of OSCC expressed survivin and its expression rate was correlated to p-survivin levels (P<0.05). Cyclin B1 was positive in 80% of cases, while p-34cdc2 was over-expressed in all OSCCs. All OPLs associated with OSCC expressed survivin and its levels were correlated to p-survivin levels (P<0.05). Cyclin B1 was positive in 70% of cases, while p-34cdc2 was positive in all OPLs. In conclusion, this study demonstrated that MPF, survivin and p-survivin are expressed during early and late phase of oral carcinogenesis. MPF proteins, which are co-expressed on mitotic apparatus, could represent a potential target for therapies based on manipulation of survivin phosphorylation, which would induce apoptosis in cancer cells. 相似文献
10.
Maturation promoting factor, cyclin and the control of M-phase 总被引:44,自引:0,他引:44
T Hunt 《Current opinion in cell biology》1989,1(2):268-274
11.
In starfish, oocyte maturation is induced by 1-methyladenine (1-MeAde). 1-MeAde acts on the oocyte surface to produce a cytoplasmic maturation-promoting factor (MPF), which in turn brings about germinal vesicle breakdown and subsequent process of oocyte maturation. The participation of germinal vesicle material in the production of MPF was investigated with oocytes of the starfish, Asterina pectinifera. When enucleated oocytes or oocyte fragments without germinal vesicles were treated with 1-MeAde, MPF was found to be produced. However, the amount of MPF produced was small as compared with that in the case of intact oocytes with germinal vesicles. The capacity of the enucleated oocytes to produce MPF was restored when germinal vesicle material was injected. On the other hand, it has been known that the amount of MPF increases when MPF is injected into intact oocytes (amplification of MPF). However, in the case of enucleated oocytes such increase of MPF was no longer observed, suggesting that germinal vesicle material is required for MPF amplification. 相似文献
12.
M-phase Promoting Factor (MPF; the cyclin B-cdk 1 complex) is activated at M-phase onset by removal of inhibitory phosphorylation of cdk1 at thr-14 and tyr-15. At M-phase exit, MPF is destroyed by ubiquitin-dependent cyclin proteolysis. Thus, control of MPF activity via inhibitory phosphorylation is believed to be particularly crucial in regulating transition into, rather than out of, M-phase. Using the in vitro cell cycle system derived form Xenopus eggs, here we show, however, that inhibitory phosphorylation of cdk1 contributes to control MPF activity during M-phase exit. By sampling extracts at very short intervals during both meiotic and mitotic exit, we found that cyclin B1-associated cdk1 underwent transient inhibitory phosphorylation at tyr-15 and that cyclin B1-cdk1 activity fell more rapidly than the cyclin B1 content. Inhibitory phosphorylation of MPF correlated with phosphorylation changes of cdc25C, the MPF phosphatase, and physical interaction of cdk1 with wee1, the MPF kinase, during M-phase exit. MPF down-regulation required Ca(++)/calmodulin-dependent kinase II (CaMKII) and cAMP-dependent protein kinase (PKA) activities at meiosis and mitosis exit, respectively. Treatment of M-phase extracts with a mutant cyclin B1-cdk1AF complex, refractory to inhibition by phosphorylation, impaired binding of the Anaphase Promoting Complex/Cyclosome (APC/C) to its co-activator Cdc20 and altered M-phase exit. Thus, timely M-phase exit requires a tight coupling of proteolysis-dependent and proteolysis-independent mechanisms of MPF inactivation. 相似文献
13.
Madgwick S Nixon VL Chang HY Herbert M Levasseur M Jones KT 《Developmental biology》2004,275(1):68-81
Mammalian eggs naturally arrest at metaphase of the second meiotic division, until sperm triggers a series of Ca(2+) spikes that result in activation of the anaphase-promoting complex/cyclosome (APC/C). APC/C activation at metaphase targets destruction-box containing substrates, such as cyclin B1 and securin, for degradation, and as such eggs complete the second meiotic division. Cyclin B1 degradation reduces maturation (M-phase)-promoting factor (MPF) activity and securin degradation allows sister chromatid separation. Here we examined the second meiotic division in mouse eggs following expression of a cyclin B1 construct with an N-terminal 90 amino acid deletion (Delta 90 cyclin B1) that was visualized by coupling to EGFP. This cyclin construct was not an APC/C substrate, and so following fertilization, sperm were incapable of stimulating Delta 90 cyclin B1 degradation. In these eggs, chromatin remained condensed and no pronuclei formed. As a consequence of the lack of pronucleus formation, sperm-triggered Ca(2+) spiking continued indefinitely, consistent with a current model in which the sperm-activating factor is localized to the nucleus. Because Ca(2+) spiking was not inhibited by Delta 90 cyclin B1, the degradation timing of securin, visualized by coupling it to EGFP, was unaffected. However, despite rapid securin degradation, sister chromatids remained attached. This was a direct consequence of MPF activity because separation was induced following application of the MPF inhibitor roscovitine. Similar observations regarding the ability of MPF to prevent sister chromatid separation have recently been made in Xenopus egg extracts and in HeLa cells. The results presented here show this mechanism can also occur in intact mammalian eggs and further that this mechanism appears conserved among vertebrates. We present a model in which metaphase II arrest is maintained primarily by MPF levels only. 相似文献
14.
15.
Maturation-promoting factor (MPF) was purified 20- to 30-fold from unfertilized eggs of Xenopus laevis, by ammonium sulfate precipitation and chromatography on pentyl-agarose and arginine-agarose. The final material induces maturation in 50% of the recipient oocytes when 5 ng of protein is injected in a volume of 20 ml. The maturation response includes precocious germinal vesical breakdown, elevated protein phosphorylation, amplification of cytoplasmic MPF, and formation of an activatable egg blocked at second meiotic metaphase. These eggs are capable of cleavage and, in some cases, of gastrulation. A quantitative in vivo assay of MPF is described and a unit of MPF activity is defined as that amount causing a 50% maturation frequency when oocytes are injected each with a 20-nl test volume. Maturation frequency has a very high-order dependence on MPF concentration. The purification procedure selects simultaneously for endogenous protein phosphorylation systems containing kinases, protein substrates, and phosphatases. This fact, as well as the finding that ATP enhances MPF activity at least twofold when included in the dilution medium for assay, is discussed in terms of the possible involvement of protein phosphorylation in MPF activation and inactivation. 相似文献
16.
Partial purification of the maturation-promoting factor MPF from unfertilized eggs of Xenopus laevis 总被引:5,自引:0,他引:5
P Nguyen-Gia M Bomsel J P Labrousse C L Gallien H Weintraub 《European journal of biochemistry》1986,161(3):771-777
A 200-fold purification of the maturation-promoting factor or MPF from unfertilized eggs of Xenopus laevis is reported for the first time. Purification was achieved by three successive column chromatographies on hydroxyapatite, trisacryl blue and L-arginine-agarose. The presence of MPF was assessed by the usual maturation criteria after injections of test material into immature stage VI unstimulated X. laevis oocytes: the precocious appearance of the maturation spot (within 45-120 min), the germinal vesicle breakdown, the presence of the first polar body and the second metaphase spindle. Purification was monitored by the decrease of the minimal amount of protein injected in a constant volume (50 nl) required to induce 50% frequency of germinal vesicle breakdown. This amount decreased from 500 ng in the crude extract to 2.5 ng in the 200-fold purified material. Analysis by SDS-PAGE of the crude extract showed about 40 Coomassie-blue-stained polypeptides with molecular masses ranging from 300 kDa to 20 kDa, whereas in the 200-fold purified MPF only 5 stained polypeptides were revealed, with molecular masses of 62, 53, 49, 39 and 37 kDa. In vitro phosphorylations for the detection of kinase activities for endogenous and exogenous substrates were monitored by analysis of autoradiograms of SDS-PAGE, after treatment of fractions with [gamma-32P]ATP. Only inactive fractions eluted from columns ahead of MPF, and fractions containing MPF activity were tested. Phosphorylation of numerous stained polypeptides was demonstrated in the crude MPF extract and exogenous substrates such as phosvitin, casein and histone type II-AS were also strongly phosphorylated. In the MPF fraction, purified on hydroxyapatite, a polypeptide of 53 kDa was more highly and specifically phosphorylated and the presence of kinase activities was observed for the above three exogenous substrates. In the 100-fold and 200-fold purified MPF, phosphorylation of endogenous substrates could not be shown and kinase activities for the above three substrates were drastically decreased as compared with the crude and purified MPF obtained after hydroxyapatite column chromatography. However, neither endogenous phosphorylations nor kinase activities with the above exogenous substrates could be shown in inactive fractions eluted ahead of MPF at the different purification steps. Some characteristics of the purified material are also described in this paper. 相似文献
17.
Kikuchi K Naito K Noguchi J Shimada A Kaneko H Yamashita M Aoki F Tojo H Toyoda Y 《Biology of reproduction》2000,63(3):715-722
Deterioration in the quality of mammalian oocytes during the metaphase-II arrest period is well known as "oocyte aging." Oocytes in which aging has occurred are called aged oocytes, and these oocytes show enhanced activation and higher fragmentation rates after parthenogenetic activation. Previously we showed that porcine aged oocytes had low maturation/M-phase promoting factor (MPF) activity, and we suggested that this low MPF activity contributed at least in part to the aging phenomena. In the present study, we examined the relationship between MPF activity and these aging phenomena by artificially regulating MPF activity in porcine metaphase-II-arrested oocytes. Since we have shown recently that aged porcine oocytes contain abundant phosphorylated inactive MPF, so-called pre-MPF, we used vanadate and caffeine, which affect the phosphorylation status of MPF, to regulate MPF activity. Incubation of 48-h-matured oocytes with vanadate for 1 h increased the phosphorylation of MPF and decreased MPF activity. The parthenogenetic activation and fragmentation rates were significantly increased compared with those of control oocytes. Conversely, treatment of 72-h-cultured aged oocytes with caffeine (last 10 h of culture) decreased the level of pre-MPF and elevated MPF activity. These oocytes revealed significantly lower parthenogenetic activation rates and a lower percentage of fragmentation than did untreated aged oocytes. These results indicate that not only the increased ability for parthenogenetic activation but also the increased fragmentation rate observed in porcine aged oocytes may be attributable in part to the gradual decrease in MPF activity during prolonged culture. Control of MPF phosphorylation with these agents may allow for some degree of manipulation of oocyte aging. 相似文献
18.
The anaphase-promoting complex (APC) mediates the ubiquitination and degradation of key M-phase regulators, including cyclins and the anaphase inhibitor securin. Intriguingly, securin can also inhibit the degradation of cyclin B. This competition between substrates permits the accumulation of enough cyclin to drive entry into M phase. 相似文献
19.
The effects of FSH-stimulated cumulus cells on the regulatory mechanisms of chromatin condensation and maturation-promoting factor (MPF) activation around the time of germinal vesicle breakdown (GVBD) in bovine oocytes were examined. Chromatin condensation occurred in oocytes arrested at the germinal vesicle (GV) stage by protein synthesis inhibitor, cycloheximide, but this condensation was blocked by FSH-stimulated cumulus cells. However, treatment with cyclic AMP (cAMP)-dependent protein kinase inhibitor, H-8, dramatically increased the proportion of oocytes possessing GVs with condensed bivalents. Under the condition of inhibited protein synthesis, the phosphorylation form of p34cdc2 kinase was not changed due to chromatin condensation, although the activity of histone H1 kinase was significantly increased compared with that of oocytes possessing GVs with filamentous bivalents. The cycloheximide-dependent GVBD block was overcome by okadaic acid (OA) in 48 and 13% of the oocytes in the absence and presence of FSH, respectively. An initial 6-h culture period critical for protein synthesis was necessary for OA to counteract the inhibitory effect exerted by cycloheximide on the induction of GVBD and activation of histone H1 kinase in the absence of FSH, whereas this first culture period was prolonged for 2 h in the presence of FSH. Furthermore, even in FSH-stimulated oocytes, H-8 facilitated an OA-counteracted overcome of the cycloheximide-dependent GVBD block after 2 h of initial culture for protein synthesis. From these results, it is concluded that cAMP-dependent protein kinase activity regulated by cumulus cells following FSH-stimulation requests plays a role in the complex mechanism of chromatin condensation and MPF activation leading to meiotic resumption in bovine oocytes. 相似文献
20.
Control of oocyte aging during manipulation of matured oocytes should have advantages for recently developed reproductive technologies, such as cloning after nuclear transfer. We have shown that the enhanced activation ability and fragmentation of porcine in vitro matured and aged oocytes bore a close relationship to the gradual decrease in maturation/M-phase promoting factor (MPF) activity and that porcine aged oocytes contained plenty of MPF, but it was in an inactive form, pre-MPF, as a result of phosphorylation of its catalytic subunit p34(cdc2) and, therefore, had low MPF activity. We incubated porcine oocytes with vanadate and caffeine, which affected the phosphorylation status and MPF activity, and evaluated their activation abilities and fragmentation frequencies. Incubation of nonaged oocytes with vanadate increased p34(cdc2) phosphorylation and reduced MPF activity to levels similar to those of aged oocytes and increased their parthenogenetic activation and fragmentation rates compared with those of the control oocytes. Conversely, treating aged oocytes with caffeine reduced p34(cdc2) phosphorylation and increased MPF activity. These oocytes showed significantly lower parthenogenetic activation and fragmentation rates than aged mature oocytes. These results suggest that MPF activity is a key mechanism of oocyte aging and controlling MPF activity by altering p34(cdc2) phosphorylation with these chemicals may enable oocyte aging to be manipulated in vitro. We expect those ideas will be applied practically to pig cloning. 相似文献