首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have investigated the methylation status of the α-tubulin genes, and the degree of accumulation of their mRNAs in endosperm, embryo and seedling tissues of Zea mays L. We have found that many of the α-tubulin genes are differentially demethylated in the endosperm relative to the embryo and seedling. However, only for tubα2 and tubα4 could a correlation between DNA demethylation and increased RNA accumulation be detected. By analyzing the inbred lines W64A and A69Y and their reciprocal crosses, we have also identified in the endosperm two α-tubulin genes, tubα3 and tubα4, that are differentially demethylated if transmitted by the maternal germline, but that remain hypermethylated when transmitted by the paternal germline.  相似文献   

2.
3.
Imprinting is an epigenetic phenomenon referring to allele‐biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species‐specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent‐of‐origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum‐specific imprinted genes relative to these three plant species. Allele‐biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty‐six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT–PCR, and the majority of them showed endosperm‐specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5’ upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele‐differential methylation.  相似文献   

4.
    
Summary The highly regulated expression of zein genes in endosperm tissue suggests that trans-acting factors, by binding to cis-acting sequences, influence the coordinate and developmentally regulated expression of these genes. A 15 55 bp 5 flanking region of a zein gene was analysed for sites of specific interaction with nuclear proteins from endosperm and seedling tissue. At least four different protein binding sites were mapped to the zein 5 region by the nitrocellulose filter binding technique and two of these exhibit tissue-specific binding.  相似文献   

5.
6.
7.
An interesting question in maize development is why only a single zein gene is highly expressed in each of the 19-kDa zein gene clusters (A and B types), z1A2-1 and z1B4, in the immature endosperm. For instance, epigenetic marks could provide a structural difference. Therefore, we investigated the DNA methylation of the arrays of gene copies in both promoter and gene body regions of leaf (non-expressing tissue as a control), normal endosperm, and cultured endosperm. Although we could show that expressed genes have much lower methylation levels in promoter regions than silent ones in both leaf and normal endosperm, there was surprisingly also a difference in the pattern of the z1A and z1B gene clusters. The expression of z1B gene is suppressed by increased DNA methylation and activated with reduced DNA methylation, whereas z1A gene expression is not. DNA methylation in gene coding regions is higher in leaf than in endosperm, whereas no significant difference is observed in gene bodies between expressed and non-expressed gene copies. A median CHG methylation (25–30%) appears to be optimal for gene expression. Moreover, tissue-cultured endosperm can reset the DNA methylation pattern and tissue-specific gene expression. These results reveal that DNA methylation changes of the 19-kDa zein genes is subject to plant development and tissue culture treatment, but varies in different chromosomal locations, indicating that DNA methylation changes do not apply to gene expression in a uniform fashion. Because tissue culture is used to produce transgenic plants, these studies provide new insights into variation of gene expression of integrated sequences.  相似文献   

8.
9.
Genomic imprinting, the parent-of-origin-specific expression of genes, plays an important role in the seed development of flowering plants. As different sets of genes are imprinted and hence silenced in maternal and paternal gametophyte genomes, the contributions of the parental genomes to the offspring are not equal. Imbalance between paternally and maternally imprinted genes, for instance as a result of interploidy crosses, or in seeds in which imprinting has been manipulated, results in aberrant seed development. It is predominantly the endosperm, and not or to a far lesser extent the embryo, that is affected by such imbalance. Deviation from the normal 2m:1p ratio in the endosperm genome has a severe effect on endosperm development, and often leads to seed abortion. Molecular expression data for imprinted genes suggest that genomic imprinting takes place only in the endosperm of the developing seed. Although far from complete, a picture of how imprinting operates in flowering plants has begun to emerge. Imprinted genes on either the maternal or paternal side are marked and silenced in a process involving DNA methylation and chromatin condensation. In addition, on the maternal side, imprinted genes are most probably under control of the polycomb FIS genes.  相似文献   

10.
Zhang M  Xu C  von Wettstein D  Liu B 《Plant physiology》2011,156(4):1955-1966
It has been well established that DNA cytosine methylation plays essential regulatory roles in imprinting gene expression in endosperm, and hence normal embryonic development, in the model plant Arabidopsis (Arabidopsis thaliana). Nonetheless, the developmental role of this epigenetic marker in cereal crops remains largely unexplored. Here, we report for sorghum (Sorghum bicolor) differences in relative cytosine methylation levels and patterns at 5'-CCGG sites in seven tissues (endosperm, embryo, leaf, root, young inflorescence, anther, and ovary), and characterize a set of tissue-specific differentially methylated regions (TDMRs). We found that the most enriched TDMRs in sorghum are specific for the endosperm and are generated concomitantly but imbalanced by decrease versus increase in cytosine methylation at multiple 5'-CCGG sites across the genome. This leads to more extensive demethylation in the endosperm than in other tissues, where TDMRs are mainly tissue nonspecific rather than specific to a particular tissue. Accordingly, relative to endosperm, the other six tissues showed grossly similar levels though distinct patterns of cytosine methylation, presumably as a result of a similar extent of concomitant decrease versus increase in cytosine methylation that occurred at variable genomic loci. All four tested TDMRs were validated by bisulfite genomic sequencing. Diverse sequences were found to underlie the TDMRs, including those encoding various known-function or predicted proteins, transposable elements, and those bearing homology to putative imprinted genes in maize (Zea mays). We further found that the expression pattern of at least some genic TDMRs was correlated with its tissue-specific methylation state, implicating a developmental role of DNA methylation in regulating tissue-specific or -preferential gene expression in sorghum.  相似文献   

11.
A PCR-based genomic scan has been undertaken to estimate the extent and ratio of maternally versus paternally methylated DNA regions in endosperm, embryo, and leaf of Zea mays (maize). Analysis of several inbred lines and their reciprocal crosses identified a large number of conserved, differentially methylated DNA regions (DMRs) that were specific to the endosperm. DMRs were hypomethylated at specific methylation-sensitive restriction sites upon maternal transmission, whereas upon paternal transmission, the methylation levels were similar to those observed in embryo and leaf. Maternal hypomethylation was extensive and offers a likely explanation for the 13% reduction in methyl-cytosine content of the endosperm compared with leaf tissue. DMRs showed identity to expressed genic regions, were observed early after fertilization, and maintained at a later stage of endosperm development. The implications of extensive maternal hypomethylation with respect to endosperm development and epigenetic reprogramming will be discussed.  相似文献   

12.
The genomic organization of the zein structural genes and of regulatory loci influencing their expression suggests that control of zein gene expression will involve interactions between cis elements in the flanking DNA sequences and products from trans-acting genes. The interaction between fragments from the 5' flanking region of a zein gene and specific, double-stranded oligonucleotides with crude nuclear extracts from maize endosperm have been studied by nitrocellulose filter binding, gel retention and DNase I footprinting assays. Specific binding of a nuclear factor was observed and the exact position of the protein binding site was determined. The 22-nt binding site included 14 bp of a 15-bp sequence conserved in all zein genes.  相似文献   

13.
14.
We have investigated the methylation status of the -tubulin genes, and the degree of accumulation of their mRNAs in endosperm, embryo and seedling tissues of Zea mays L. We have found that many of the -tubulin genes are differentially demethylated in the endosperm relative to the embryo and seedling. However, only for tub2 and tub4 could a correlation between DNA demethylation and increased RNA accumulation be detected. By analyzing the inbred lines W64A and A69Y and their reciprocal crosses, we have also identified in the endosperm two -tubulin genes, tub3 and tub4, that are differentially demethylated if transmitted by the maternal germline, but that remain hypermethylated when transmitted by the paternal germline.  相似文献   

15.
Genomic imprinting is an epigenetic phenomenon leading to parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, genomic imprinting has mainly been observed in the endosperm, an ephemeral triploid tissue derived after fertilization of the diploid central cell with a haploid sperm cell. In an effort to identify novel imprinted genes in Arabidopsis thaliana, we generated deep sequencing RNA profiles of F1 hybrid seeds derived after reciprocal crosses of Arabidopsis Col-0 and Bur-0 accessions. Using polymorphic sites to quantify allele-specific expression levels, we could identify more than 60 genes with potential parent-of-origin specific expression. By analyzing the distribution of DNA methylation and epigenetic marks established by Polycomb group (PcG) proteins using publicly available datasets, we suggest that for maternally expressed genes (MEGs) repression of the paternally inherited alleles largely depends on DNA methylation or PcG-mediated repression, whereas repression of the maternal alleles of paternally expressed genes (PEGs) predominantly depends on PcG proteins. While maternal alleles of MEGs are also targeted by PcG proteins, such targeting does not cause complete repression. Candidate MEGs and PEGs are enriched for cis-proximal transposons, suggesting that transposons might be a driving force for the evolution of imprinted genes in Arabidopsis. In addition, we find that MEGs and PEGs are significantly faster evolving when compared to other genes in the genome. In contrast to the predominant location of mammalian imprinted genes in clusters, cluster formation was only detected for few MEGs and PEGs, suggesting that clustering is not a major requirement for imprinted gene regulation in Arabidopsis.  相似文献   

16.
Adenine methylation in zein genes   总被引:1,自引:0,他引:1  
This paper reports the novel finding of adenine methylation in higher plants. Comparison of restriction patterns of genomic maize DNA digested with enzymes MboI and Sau3A enabled us to detect the existence of adenine methylation in zein genes. Adenine methylation within or around zein genes turned out to be similar in endosperm (where zeins are actively synthesized) and in seedling tissue (where zein genes are not expressed). Furthermore, adenine methylation patterns were found to be similar both in wild-type and opaque-2 mutant plants. These lines of evidence suggest that adenine methylation is unrelated to the regulation of gene expression.  相似文献   

17.
18.
19.
20.
Aerides vandarum and Vanda stangeana are two rare and endangered vandaceous orchids with immense floricultural traits. The intergeneric hybrids were synthesized by performing reciprocal crosses between them. In vitro germination response of the immature hybrid embryos was found to be best on half-strength Murashige and Skoog medium supplemented with 20% (v/v) coconut water/liquid endosperm from tender coconut. Determination of hybridity was made as early as the immature seeds or embryos germinated in vitro, using randomly amplified polymorphic DNA (RAPD) markers. Out of 15 arbitrarily chosen decamer RAPD primers, two were found to be useful in amplification of polymorphic bands specific to the parental species and their presence in the reciprocal crosses. However, a decisive profile that can identify the reciprocal crosses could not be provided by RAPD. Amplification of the trnL-F non-coding regions of chloroplast DNA of the parent species and hybrids aided easy identification of the reciprocal crosses from the fact that maternal inheritance of chloroplast DNA held true for these intergeneric hybrids. Subsequent restriction digestion of the polymerase chain reaction (PCR) amplified trnL-F non-coding regions of chloroplast DNA also consolidated the finding. Such PCR-based molecular markers could be used for early determination of hybridity and easy identification of the reciprocal crosses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号