首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R L Stephens  P Horner  G Drapeau 《Peptides》1991,12(3):665-667
Intracisternal injection of 19 pmoles of bombesin in light-ether-anesthetized rats, five minutes after intracisternal vehicle, produced a 75% and 63% inhibition in gastric acid output and concentration, respectively, in 2-hour pylorus-ligated rats. Pretreatment of rats with the characterized peripheral bombesin antagonist N-acetyl-GRP(20-26)-O-CH3 (1 nmole) reversed the inhibitory effect of bombesin on gastric acid output and concentration. In contrast, the related bombesin antagonist N-acetyl-GRP-O-CH2-CH3 (1 nmole) was ineffective in this system. In urethane-anesthetized, acute gastric fistula rats infused with pentagastrin, intracisternal N-acetyl-GRP(20-26)-O-CH3 protected against the inhibition in gastric acid output produced by intracisternal bombesin (19 pmoles). Thus the recently characterized peripheral bombesin antagonist N-acetyl-GRP(20-26)-O-CH3 also appears to be effective in antagonizing central bombesin-induced inhibition in gastric acid secretion in two models. This represents a first report of a synthetic bombesin antagonist effective in reversing central bombesin-induced effects on gastric function.  相似文献   

2.
Nesfatin-1, a novel hypothalamic peptide, inhibits nocturnal feeding behavior and gastrointestinal motility in rodents. The effects of nesfatin-1 on gastrointestinal secretory function, including gastric acid production, have not been evaluated. Nesfatin-1 was injected into the fourth intracerebral ventricle (4V) of chronically cannulated rats to identify a nesfatin dose sufficient to inhibit food intake. Nesfatin-1 (2 μg) inhibited dark-phase food intake, in a dose-dependent fashion, for >3 h. Gastric acid production was evaluated in urethane-anesthetized rats. Nesfatin-1 (2 μg) was introduced via the 4V following endocrine stimulation of gastric acid secretion by pentagastrin (2 μg·kg(-1)·h(-1) iv), vagal stimulation with 2-deoxy-d-glucose (200 mg/kg sc), or no stimulus. Gastric secretions were collected via gastric cannula and neutralized by titration to determine acid content. Nesfatin-1 did not affect basal and pentagastrin-stimulated gastric acid secretion, whereas 2-deoxy-d-glucose-stimulated gastric acid production was inhibited by nesfatin-1 in a dose-dependent manner. c-Fos immunofluorescence in brain sections was used to evaluate in vivo neuronal activation by nesfatin-1 administered via the 4V. Nesfatin-1 caused activation of efferent vagal neurons, as evidenced by a 16-fold increase in the mean number of c-Fos-positive neurons in the dorsal motor nucleus of the vagus (DMNV) in nesfatin-1-treated animals vs. controls (P < 0.01). Finally, nesfatin-induced Ca(2+) signaling was evaluated in primary cultured DMNV neurons from neonatal rats. Nesfatin-1 caused dose-dependent Ca(2+) increments in 95% of cultured DMNV neurons. These studies demonstrate that central administration of nesfatin-1, at doses sufficient to inhibit food intake, results in inhibition of vagally stimulated secretion of gastric acid. Nesfatin-1 activates DMNV efferent vagal neurons in vivo and triggers Ca(2+) signaling in cultured DMNV neurons.  相似文献   

3.
The aims of present study were to determine whether angiotensin II (ANG II) in the paraventricular nucleus (PVN) is involved in the central integration of the cardiac sympathetic afferent reflex and whether this effect is mediated by the ANG type 1 (AT(1)) receptor. While the animals were under alpha-chloralose and urethane anesthesia, mean arterial pressure, heart rate, and renal sympathetic nerve activity (RSNA) were recorded in sinoaortic-denervated and cervical-vagotomized rats. A cannula was inserted into the left PVN for microinjection of ANG II. The cardiac sympathetic afferent reflex was tested by electrical stimulation (5, 10, 20, and 30 Hz in 10 V and 1 ms) of the afferent cardiac sympathetic nerves or epicardial application of bradykinin (BK) (0.04 and 0.4 microg in 2 microl). Microinjection of ANG II (0.03, 0.3, and 3 nmol) into the PVN resulted in dose-related increases in the RSNA responses to electrical stimulation. The percent change of RSNA response to 20- and 30-Hz stimulation increased significantly at the highest dose of ANG II (3 nmol). The effects of ANG II were prevented by pretreatment with losartan (50 nmol) into the PVN. Microinjection of ANG II (0.3 nmol) into the PVN significantly enhanced the RSNA responses to epicardial application of BK, which was abolished by pretreatment with losartan (50 nmol) into the PVN. These results suggest that exogenous ANG II in the PVN augments the cardiac sympathetic afferent reflex evoked by both electrical stimulation of cardiac sympathetic afferent nerves and epicardial application of BK. These central effects of ANG II are mediated by AT(1) receptors.  相似文献   

4.
The present study investigated the effect of acute thermal stimulation in conscious rats on the production of Fos, a marker of increased neuronal activity, in spinally projecting and nitrergic neurons in the hypothalamic paraventricular nucleus (PVN). The PVN contains a high concentration of nitrergic neurons, as well as neurons that project to the intermediolateral cell column (IML) of the spinal cord that can directly influence sympathetic nerve activity (SNA). During thermal stimulation, the PVN is activated, but it is unknown whether spinally projecting PVN neurons and the nitrergic neurons are involved. Compared with controls, rats exposed to an environmental temperature of 39 degrees C for 1 h had a 10-fold increase in the number of cells producing Fos in the PVN (133 +/- 23 vs. 1,336 +/- 43, respectively, P < 0.0001). Of the spinally projecting neurons in the PVN of heated rats (98 +/- 10), over 20% expressed Fos. Additionally, of the nitrergic neurons (NADPH-diaphorase positive) located in the parvocellular PVN (723 +/- 17), 40% also expressed Fos (P < 0.0001 compared with controls). Finally, there was a significant increase in the number of spinally projecting neurons in the PVN that were nitrergic and expressed Fos after heat exposure (12%) compared with controls (0.1%) (P < 0.0001). These results suggest that spinally projecting and nitrergic neurons in the PVN may contribute to the central pathways activated by thermal stimulation.  相似文献   

5.

Aims

Cyclooxygenase (COX) can be activated by nitric oxide-induced (NO-induced) conversion of cysteine thiol group of COX into S-nitrosothiol. We previously reported the involvement of brain COX/NO synthase (NOS) in centrally administered bombesin-, a stress-related neuropeptide, induced secretion of rat adrenal noradrenaline and adrenaline. To examine a possible involvement of the NO-induced modification of COX in bombesin-induced response, we investigated whether bombesin induces close proximity of COX-1 and neuronal NOS (nNOS) or S-nitroso-cysteine in pre-sympathetic spinally projecting neurons in the rat hypothalamic paraventricular nucleus (PVN), a regulatory center of adrenomedullary outflow.

Main methods

In twelve-week-old male Wistar rats, pre-sympathetic spinally projecting neurons in the PVN were labeled with a retrograde tracer Fluoro-Gold (FG). After intracerebroventricular administration of bombesin, we performed double immunohistochemical analysis for Fos and COX-1 or nNOS in FG-labeled PVN neurons. We also performed a fluorescent in situ proximity ligation assay (PLA) for visualizing of close proximity (< 40 nm) of COX-1 with nNOS or S-nitroso-cysteine.

Key. findings

Bombesin significantly increased the number of Fos-immunoreactive cells in FG-labeled PVN neurons with COX-1 or nNOS immunoreactivity. 7-Nitroindazole, a selective nNOS inhibitor, abolished Fos-immunoreactivity induced by bombesin in COX-1-immunoreactive FG-labeled PVN neurons. Bombesin also induced PLA-positive signals indicating close proximity of COX-1/nNOS and COX-1/S-nitroso-cysteine in FG-labeled PVN neurons.

Significance

Centrally administered bombesin possibly induces S-nitrosylation of COX-1 through close proximity of COX-1 and nNOS in pre-sympathetic spinally projecting PVN neurons, thereby activating COX-1 during the bombesin-induced activation of central adrenomedullary outflow in the rat.  相似文献   

6.
弧束核参与剌激下丘脑室旁核的镇痛作用   总被引:4,自引:1,他引:3  
蒋星红  俞光第 《生理学报》1991,43(2):120-127
This study was undertaken to evaluate the analgesic effect of paraventricular nucleus (PVN) stimulation with tail stimulation-vocalization test. The mechanism of this analgesia was analysed with nuclear lesion and microinjection technique. The main results were as follows: (1) Electrical stimulation of the PVN could significantly enhance the pain threshold and increase the content of AVP in brainstem measured by radioimmunoassay. (2) Solitary tract nucleus (STN) lesion could eliminate the analgesic effect induced by PVN stimulation. (3) Intranuclear microinjection of AVP-antagonist and AVP-antiserum into the STN could block the analgesic effect of PVN stimulation. (4) Intranuclear microinjection of AVP into the STN could mimick the analgesic effect similar to that of PVN stimulation. These results suggest that electrical stimulation of the PVN could produce an analgesic effect. This effect might be mediated by the activation of VP-ergic neurons in PVN and upon releasing VP from the descending fibers, the activities of neurons in the STN are influenced.  相似文献   

7.
Chronic heart failure (CHF) is characterized by sympathoexcitation, and the cardiac sympathetic afferent reflex (CSAR) is a sympathoexcitatory reflex. Our previous studies have shown that the CSAR was enhanced in CHF. In addition, central angiotensin II (ANG II) is an important modulator of this reflex. This study was performed to determine whether the CSAR evoked by stimulation of cardiac sympathetic afferent nerves (CSAN) in rats with coronary ligation-induced CHF is enhanced by ANG II in the paraventricular nucleus (PVN). Under alpha-chloralose and urethane anesthesia, renal sympathetic nerve activity (RSNA) was recorded. The RSNA responses to electrical stimulation (5, 10, 20, and 30 Hz) of the CSAN were evaluated. Bilateral microinjection of the AT1-receptor antagonist losartan (50 nmol) into the PVN had no significant effects in the sham group, but it abolished the enhanced RSNA response to stimulation in the CHF group. Unilateral microinjection of three doses of ANG II (0.03, 0.3, and 3 nmol) into the PVN resulted in dose-related increases in the RSNA responses to stimulation. Although ANG II also potentiated the RSNA response to electrical stimulation in sham rats, the RSNA responses to stimulation after ANG II into the PVN in rats with CHF were much greater than in sham rats. The effects of ANG II were prevented by pretreatment with losartan into the PVN in CHF rats. These results suggest that the central gain of the CSAR is enhanced in rats with coronary ligation-induced CHF and that ANG II in the PVN augments the CSAR evoked by CSAN, which is mediated by the central angiotensin AT1 receptors in rats with CHF.  相似文献   

8.
The interaction between ghrelin and bombesin or amylin administered intraperitoneally on food intake and brain neuronal activity was assessed by Fos-like immunoreactivity (FLI) in nonfasted rats. Ghrelin (13 microg/kg ip) increased food intake compared with the vehicle group when measured at 30 min (g/kg: 3.66 +/- 0.80 vs. 1.68 +/- 0.42, P < 0.0087). Bombesin (8 microg/kg) injected intraperitoneally with ghrelin (13 microg/kg) blocked the orexigenic effect of ghrelin (1.18 +/- 0.41 g/kg, P < 0.0002). Bombesin alone (4 and 8 microg/kg ip) exerted a dose-related nonsignificant reduction of food intake (g/kg: 1.08 +/- 0.44, P > 0.45 and 0.55 +/- 0.34, P > 0.16, respectively). By contrast, ghrelin-induced stimulation of food intake (g/kg: 3.96 +/- 0.56 g/kg vs. vehicle 0.82 +/- 0.59, P < 0.004) was not altered by amylin (1 and 5 microg/kg ip) (g/kg: 4.37 +/- 1.12, P > 0.69, and 3.01 +/- 0.78, respectively, P > 0.37). Ghrelin increased the number of FLI-positive neurons/section in the arcuate nucleus (ARC) compared with vehicle (median: 42 vs. 19, P < 0.008). Bombesin alone (4 and 8 microg/kg ip) did not induce FLI neurons in the paraventricular nucleus of the hypothalamus (PVN) and coadministered with ghrelin did not alter ghrelin-induced FLI in the ARC. However, bombesin (8 microg/kg) with ghrelin significantly increased neuronal activity in the PVN approximately threefold compared with vehicle and approximately 1.5-fold compared with the ghrelin group. Bombesin (8 microg/kg) with ghrelin injected intraperitoneally induced Fos expression in 22.4 +/- 0.8% of CRF-immunoreactive neurons in the PVN. These results suggest that peripheral bombesin, unlike amylin, inhibits peripheral ghrelin induced food intake and enhances activation of CRF neurons in the PVN.  相似文献   

9.
Activation of central 5-hydroxytryptamine-1A (5-HT(1A)) receptors powerfully inhibits stress-evoked cardiovascular responses mediated by the dorsomedial hypothalamus (DMH), as well as responses evoked by direct activation of neurons within the DMH. The hypothalamic paraventricular nucleus (PVN) also has a crucial role in cardiovascular regulation and is believed to regulate heart rate and renal sympathetic activity via pathways that are independent of the DMH. In this study, we determined whether cardiovascular responses evoked from the PVN are also modulated by activation of central 5-HT(1A) receptors. In anesthetized rats, the increases in heart rate and renal sympathetic nerve activity evoked by bicuculline injection into the PVN were greatly reduced (by 54% and 61%, respectively) by intravenous administration of (±)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), an agonist of 5-HT(1A) receptors, but were then completely restored by subsequent administration of WAY-100635, a selective antagonist of 5-HT(1A) receptors. Microinjection of 8-OH-DPAT directly into the PVN did not significantly affect the responses to bicuculline injection into the PVN, nor did systemic administration of WAY-100635 alone. In control experiments, a large renal sympathoexcitatory response was evoked from both the PVN and DMH but not from the intermediate region in between; thus the evoked responses from the PVN were not due to activation of neurons in the DMH. The results indicate that activation of central 5-HT(1A) receptors located outside the PVN powerfully inhibits the tachycardia and renal sympathoexcitation evoked by stimulation of neurons in the PVN.  相似文献   

10.
下丘脑室旁核加压素能神经元参与电针刺激对实验性...   总被引:3,自引:0,他引:3  
龚珊  殷伟平 《生理学报》1992,44(5):434-441
It has been demonstrated in animal model of somatic pain that hypothalamic paraventricular nucleus (PVN) participates in acupuncture analgesia, probably by mediation of vasopressin release. The role of PVN in acupuncture analgesia for experimental visceral pain in rats was further investigated in the present study. Experimental results demonstrated that electroacupuncture could inhibit the writhing response, produced by intraperitoneal injection of antimonium potassium tartrate and this inhibitory effect could be enhanced by electrical stimulation of PVN, but decreased by electrolytical lesion of PVN, intracerebroventricular injection of vasopressin antiserum (14 microliters) or the vasopressin antagonist, d(CH2)5Tyr(Me)-AVP (500 ng/5 microliters). Intraperitoneal administration of the latter drug (10 micrograms/kg), however, was ineffective. The above experimental results suggest that vasopressinergic neurons in PVN also participate in the inhibition of visceral pain by electroacupuncture.  相似文献   

11.
Galanin modulates gastrointestinal motility by inhibiting the release of ACh from enteric neurons. It is, however, not known whether galanin also inhibits neuronal cholinergic transmission postsynaptically and whether galanin also reduces the action of other excitatory neurotransmitters. The aim of the present study was thus to investigate the effect of galanin on the evoked intracellular Ca(2+) concentration ([Ca(2+)](i)) responses in myenteric neurons. Cultured myenteric neurons from small intestine of adult guinea pigs were loaded with the Ca(2+) indicator fluo-3 AM, and the [Ca(2+)](i) responses following the application of different stimuli were quantified by confocal microscopy and expressed as a percentage of the response to high-K(+) solution (75 mM). Trains of electrical pulses (2 s, 10 Hz) were applied to stimulate the neuronal fibers before and after a 30-s superfusion with galanin (10(-6) M). Substance P (SP), 5-HT, 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP), and carbachol were used as direct postsynaptic stimuli (10(-5) M, 30 s) and were applied alone or after galanin perfusion. Galanin significantly reduced the responses induced by electrical fiber stimulation (43 +/- 2 to 35 +/- 3%, P = 0.01), SP (15.4 +/- 1 to 8.0 +/- 0.3%, P < 0.01), and 5-HT (26 +/- 2 to 21.4 +/- 1.5%, P < 0.05). On the contrary, galanin did not affect the responses induced by local application of DMPP and carbachol. We conclude that in cultured myenteric neurons, galanin inhibits the excitatory responses induced by electrical stimulation, SP, and 5-HT. Finally, the inhibitory effect of galanin on electrical stimulation, but not on DMPP- and carbachol-induced responses, suggests that, at least for the cholinergic component, galanin acts at the presynaptic level.  相似文献   

12.
Magnocellular neurons of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) display bursting activity that is synchronized under certain conditions. They receive excitatory synaptic inputs from intrahypothalamic glutamate circuits, some of which are activated by norepinephrine. Ascending noradrenergic afferents and intrahypothalamic glutamate circuits may be responsible for the generation of synchronous bursting among oxytocin neurons and/or asynchronous bursting among vasopressin neurons located in the bilateral supraoptic and paraventricular nuclei. Here, we tested whether magnocellular neurons of the PVN receive excitatory synaptic input from the contralateral PVN and the region of the retrochiasmatic SON (SONrx) via norepinephrine-sensitive internuclear glutamate circuits. Whole cell patch-clamp recordings were performed in PVN magnocellular neurons in coronal hypothalamic slices from male rats, and the ipsilateral SONrx region and contralateral PVN were stimulated using electrical and chemical stimulation. Electrical and glutamate microdrop stimulation of the ipsilateral SONrx region or contralateral PVN elicited excitatory postsynaptic potentials/currents (EPSP/Cs) in PVN magnocellular neurons mediated by glutamate release, revealing internuclear glutamatergic circuits. Microdrop application of norepinephrine also elicited EPSP/Cs, suggesting that these circuits could be activated by activation of noradrenergic receptors. Repetitive electrical stimulation and drop application of norepinephrine, in some cases, elicited bursts of action potentials. Our data reveal glutamatergic synaptic circuits that interconnect the magnocellular nuclei and that can be activated by norepinephrine. These internuclear glutamatergic circuits may provide the functional architecture to support burst generation and/or burst synchronization in hypothalamic magnocellular neurons under conditions of activation.  相似文献   

13.
刺激室旁核及加压素对大鼠胃缺血-再灌注损伤的保护作用   总被引:11,自引:1,他引:10  
Zhang JF  Zhang YM  Yan CD  Zhou XP  Qi YJ 《生理学报》2002,54(2):133-138
采用夹闭大鼠腹腔动脉30min,松开动脉夹血流复灌1h的胃缺血-再灌注损伤(gastric ischemia-reper-fusion injury,GI-RI)模型,观察了电或化学刺激室旁核(paraventricular nucleus,PVN)及外源性加压素(arginine-va-sopression,AVP)对GI-RI的影响,并对PVN的调控通路进行了初步分析。结果表明:电或化学刺激PVN后,GI-RI显著减轻;损毁双侧孤束核(nucleus tractus solitarius,NTS)或一侧NTS内注射AVP-V1受体阻断剂,均能取消电刺激PVN对GI-RI的效应;去除脑垂体后不影响PVN的作用;切断膈下迷走神经或切除腹腔交感神经节,则能加强电刺激PVN对GI-RI的影响;PVN内注射不同剂量的AVP同样能减轻大鼠GI-RI损伤。结果提示:PVN及AVP对大鼠GI-RI具有保护作用;PVN的这种作用可能是因电或化学刺激后,激活了其中的加压素能神经元,经其下行投射纤维释放AVP作用于NTS神经元的VAP-V1受体,并通过迷走和交感神经介导,从而影响GI-RI;而似与PVN-垂体通路关系不大。  相似文献   

14.
The present study sought to determine whether water deprivation increases Fos immunoreactivity, a neuronal marker related to synaptic activation, in sympathetic-regulatory neurons of the hypothalamic paraventricular nucleus (PVN). Fluorogold (4%, 50 nl) and cholera toxin subunit B (0.25%, 20-30 nl) were microinjected into the spinal cord (T1-T3) and rostral ventrolateral medulla (RVLM), respectively. Rats were then deprived of water but not food for 48 h. Water deprivation significantly increased the number of Fos-positive nuclei throughout the dorsal, ventrolateral, and lateral parvocellular divisions of the PVN (water deprived, 215 +/- 23 cells; control, 45 +/- 7 cells, P < 0.01). Moreover, a significantly greater number of Fos-positive nuclei were localized in spinally projecting (11 +/- 3 vs. 2 +/- 1 cells, P < 0.025) and RVLM-projecting (45 +/- 7 vs. 7 +/- 1 cells, P < 0.025) neurons of the PVN in water-deprived vs. control rats, respectively. The majority of these double-labeled neurons was found in the ventrolateral and lateral parvocellular divisions of the ipsilateral PVN. Interestingly, a significantly greater percentage of RVLM-projecting PVN neurons were Fos positive compared with spinally projecting PVN neurons in the ventrolateral (25.8 +/- 0.7 vs. 8.0 +/- 1.5%, respectively, P < 0.01) and lateral (23.4 +/- 2.1 vs. 5.0 +/- 0.9%, respectively, P > 0.01) parvocellular divisions. In addition, we analyzed spinally projecting neurons of the RVLM and found a significantly greater percentage were Fos positive in water-deprived rats than in control rats (26 +/- 3 vs. 3 +/- 1%, respectively; P < 0.001). Collectively, the present findings indicate that water deprivation evokes a distinct cellular response in sympathetic-regulatory neurons of the PVN and RVLM.  相似文献   

15.
In ananesthetized cats, neurons of the nucleus of the tractus solitarius (NTS) and the dorsal motor nucleus of the vagus nerve (DMNV) revealed phasic excitatory responses to separate single vagal and cortical stimuli. Stimulation of the anterior limbic cortex combined with vagal stimulation resulted in inhibitory or excitatory modification of the vagal induced responses of the NTS and DMNV neurons. The data obtained suggest that complete inhibitory effects are related to general cortical mechanisms of control of the functional state of the brain stem visceral neurons. Selective inhibition of the vagal induced responses by limbic cortex stimulation is due to particular cortical mechanisms of the visceral sensory transmission control via the NTS neurons.  相似文献   

16.
The effect of bombesin on the tone and the responses of strips from the lower esophageal sphincter (LES) to field electrical stimulation (FES) (2 Hz, 0.2 ms, supramaximal current intensity, 20 s duration) was studied. Bombesin dose-dependently increased the LES tone. The threshold for this effect was 10(-14) M and was particularly pronounced with a concentration of 10(-8) M. The response reached maximum between the 3rd and the 5th min after application, persisted for 15-20 min, and was followed by a slight time-dependent decrease. Bombesin increased FES-produced relaxation of LES by 39% as compared to the control. The potentiating effect of bombesin on the LES relaxation was also observed after cholinergic and adrenergic receptor blockade. It is concluded that bombesin may modulate the release of cholinergic, adrenergic and noncholinergic, nonadrenergic inhibitory neurotransmitters.  相似文献   

17.
Immunoreactivity of leptin receptor (Ob-R) has been detected in rat dorsal motor nucleus of the vagus (DMNV). Here, we confirmed the presence of Ob-R immunoreactivity on retrograde-labeled parasympathetic preganglionic neurons in the DMNV of neonatal rats. The present study investigated the effects of leptin on DMNV neurons, including parasympathetic preganglionic neurons, by using whole cell patch-clamp recording technique in brain stem slices of neonatal rats. Leptin (30-300 nM) induced membrane depolarization and hyperpolarization, respectively, in 14 and 15 out of 80 DMNV neurons tested. Both leptin-induced inward and outward currents persisted in the presence of TTX, indicating that leptin affected DNMV neurons postsynaptically. The current-voltage (I-V) curve of leptin-induced inward currents is characterized by negative slope conductance and has an average reversal potential of -90 +/- 3 mV. The reversal potential of the leptin-induced inward current was shifted to a more positive potential level in a high-potassium medium. These results indicate that a decrease in potassium conductance is likely the main ionic mechanism underlying the leptin-induced depolarization. On the other hand, the I-V curve of leptin-induced outward currents is characterized by positive slope conductance and has an average reversal potential of -88 +/- 3 mV, suggesting that an increase in potassium conductance may underlie leptin-induced hyperpolarization. Most of the leptin-responsive DMNV neurons were identified as being parasympathetic preganglionic neurons. These results suggest that the DMNV is one of the central target sites of leptin, and leptin can regulate parasympathetic outflow from the DMNV by directly acting on the parasympathetic preganglionic neurons of the DMNV.  相似文献   

18.
19.
Yan HX  Zhang CW  Zheng Y 《生理学报》2004,56(6):665-670
实验选用健康成年SD大鼠,观察电刺激面神经核对前包钦格复合体(pre-—Boetzinger complex,PBC)呼吸神经元(RNs)放电活动的影响,并观察微电泳6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)、荷包牡丹碱(BIC)、士的宁(Stry)和阿托品(Atr)对电刺激面神经核引起的PBCRNs放电变化的拮抗效应,以进一步探讨面神经核是否参与呼吸调节及其可能的神经机制。在12只面运动神经元逆行溃变大鼠同侧PBC内共记录到各类RNs116个,电刺激溃变侧面神经核时,前吸气(Pre-I)神经元(24/26个)和吸气(I)神经元(30/35个)主要表现为兴奋,呼气(E)神经元(20/22个)和吸气-呼气(I-E)跨时相神经元(28/33个)表现为抑制。CNQx可完全或部分拮抗电刺激面神经核对Pre-I(18/24)和I(23/27)神经元的兴奋效应;Stry可拮抗电刺激面神经核对Pre-I(12/18)和I(14/23)神经元的瞬时抑制效应以及对I-E(20/28)和E(9/16)神经元的抑制效应;BIC可拮抗电刺激面神经核对I—E(22/25)和E(9/9)神经元的抑制效应;微电泳Atr对各类RNs的放电变化无明显作用。这些结果表明,面神经核非运动神经元可能通过向PBC的纤维投射,以Glu、GABA和Gly为神经递质或调质,调节PBC RNs的活动,从而参与对呼吸运动的调节。  相似文献   

20.
The present experiment examined whether neurons located in the paraventricular nucleus of the hypothalamus (PVN) respond to intestinal infusions of long-chain fatty acids. Single-unit recordings were made of neurons located in and adjacent to the PVN during jejunal administration of linoleic acid. Jejunal administration of linoleic acid increased single-unit activity of neurons located in the PVN but did not affect activity of neurons located in adjacent tissue outside the PVN. The largest increases in neuronal activity were observed in the anterior PVN (0.9-1.3 mm posterior to bregma) compared with the posterior PVN (1.8-2.1 mm posterior to bregma). Jejunal administration of saline failed to affect activity of neurons located either inside or outside the PVN. When the same neurons were subsequently tested for their response to intravenous administration of 2 microg/kg of CCK-8, excitatory responses were more frequently observed than inhibitory responses, but both types of responses were observed regardless of whether neurons were located inside or outside the PVN. In addition, there was no strong correlation between the magnitude of the neuronal response evoked by jejunal administration of linoleic acid compared with intravenous CCK-8. These data suggest that neurons located in the anterior PVN may play a role in the mediation of suppression of food intake produced by intestinal administration of lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号