首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endogenous endonuclease activity of chromatin in isolated rat liver nuclei in the presence of Mn2+, Mg2+ and Ca2+ + Mg2+ was studied. The existence of a Mn2+-dependent endonuclease activity not coupled with the Ca2+, Mg2+-dependent endonuclease was demonstrated, which was weaker than the former one in isolated cell nuclei but higher than in the preparation of Ca2+, Mg2+-dependent nuclease obtained by gel filtration through Toyopearl HW 60F. The Mn2+-dependent splitting of chromatin predominantly occurs at linker DNA of distal parts of chromatin loops. A split-off of purified DNA was more universal than in the presence of Ca2+, Mg2+-dependent endonuclease; the hydrolysis rate of native and denaturated DNA appeared to be the same.  相似文献   

2.
We examined the fragmentation of DNA treated with N-methyl-N-nitrosourea under conditions in which Ca2+, Mg2+-dependent endonuclease is active. The molecular mass of DNA found in mouse liver slices treated with methylnitrosurea in the presence of Ca2+ plus Mg2+ was 4 X 10(5) Da. Similar results were obtained with a reconstituted system containing partially purified Ca2+, Mg2+-dependent endonuclease and methylnitrosurea-treated DNA. The enzyme extensively cleaved methylnitrosurea-treated DNA, compared with non-treated DNA. The methylnitrosurea-treated nuclear proteins obtained from mouse liver nuclei had no effect on the DNA fragmentation by the enzyme. Using closed-circular DNA treated with methylnitrosurea, the enzyme produced single-strand cuts in the DNA, as was seen in non-treated, closed-circular DNA, however, the rate of hydrolysis was increased. Ca2+, Mg2+-dependent endonuclease thus warrants further investigation, with regard to the precise mechanism of extensive degradation of DNA in cells treated with carcinogenic alkylating agents.  相似文献   

3.
Ca2+- and Mg2+-dependent endonucleases have been implicated in DNA fragmentation during apoptosis. We have demonstrated that particular nucleases of this type are inhibited by poly(ADP-ribosyl)ation and suggested that subsequent cleavage of PARP by caspase-3 might release these nucleases from poly(ADP-ribosyl)ation-induced inhibition. Hence, we purified and partially sequenced such a nuclease isolated from bovine seminal plasma and identified human, rat and mouse homologs of this enzyme. The extent of sequence homology among these nucleases indicates that these four proteins are orthologous members of the family of DNase I-related enzymes. We demonstrate that the activation of the human homolog previously specified as DNAS1L3 can induce Ca2+- and Mg2+-dependent DNA fragmentation in vitro and in vivo. RT-PCR analysis failed to detect DNAS1L3 mRNA in HeLa cells and nuclei isolated from these cells did not exhibit internucleosomal DNA fragmentation when incubated in the presence of Ca2+and Mg2+. However, nuclei isolated from HeLa cells that had been stably transfected with DNAS1L3 cDNA underwent such DNA fragmentation in the presence of both ions. The Ca2+ionophore ionomycin also induced internucleosomal DNA degradation in transfected but not in control HeLa cells. Transverse alternating field electrophoresis revealed that in nuclei from transfected HeLa cells, but not in those from control cells, DNA was cleaved into fragments of >1000 kb in the presence of Mg2+; addition of Ca2+in the presence of Mg2+resulted in processing of the >1000 kb fragments into 50 kb and oligonucleosomal fragments. These results demonstrate that DNAS1L3 is necessary for Ca2+- and Mg2+-dependent cleavage of DNA into both oligonucleosomal and high molecular mass fragments in specific cell types.  相似文献   

4.
Permeabilized mammalian cells and isolated nuclei were used to study various aspects of DNA replication and repair. The present paper describes a progressive fragmentation of parental DNA in human lymphoblastoid cells that were permeabilized with L-alpha-lysophosphatidylcholine or with saponin and incubated at 37 degrees C in a DNA-synthesis mixture. The formation of DNA single-strand breaks (measured by alkaline elution) was linear with the time of incubation and was temperature-dependent. It was prevented by deleting Mg2+ or both Mg2+ and Ca2+ from the incubation mixture, or by the addition of EDTA. It was increased by deleting the components necessary for DNA synthesis, and by substituting Mn2+ for Mg2+ and Ca2+. DNA strand breaks also accumulated in isolated nuclei incubated in a DNA synthesis mixture, but not when Mg2+ was omitted. These results suggest that DNA fragmentation in permeabilized cells and nuclei was due to an activation of (Ca2+ + Mg2+)-dependent endodeoxyribonucleases. The integrity of template DNA needs to be ascertained when the conditions for measuring DNA synthesis in permeabilized cells or in nuclei are formulated.  相似文献   

5.
A (Ca2+, Mg2+)-ATPase activity and a (Ca2+, Mg2+)-dependent phosphorylation from ATP have been found in plasma membrane fragments from squid optical nerves under conditions where contamination by intracellular organelles is unlikely. The properties of this (Ca2+, Mg2+)-ATPase activity are almost identical to those of the ATP-dependent uncoupled Ca2+ efflux observed in dialyzed squid giant axons. This gives further support to the notion that the mechanism responsible for maintaining the low levels of ionized Ca concentration in nerves at rest is not a Na+-Ca2+ exchange system but an ATP-driven uncoupled Ca2+ pump.  相似文献   

6.
An endogenous Ca2+, Mg2+-dependent factor of enzymic nature (apparently an endonuclease) digests a part of chromatin in the rat liver nuclei producing DNA fragments of an uniform size. After 60 min of incubation at 15 degrees C and pH 7.50 in the presence of 5 mM MgCl2 and 2 mM CaCl2 87-93% of the total chromatin becomes soluble. The insoluble chromatin however contains 70-85% of the in vivo newly synthesized RNA. In regenerating liver the proportion of the insoluble residual chromatin increases while the radioactivity of the newly synthesized DNA in this fraction is highest. Residual chromatin can be solubilized by ultrasonic treatment only. The Ca2+, Mg2+-dependent dissolving factor is not present either in brain or in PMN leucocyte nuclei.  相似文献   

7.
Mn2+ and to some degree Fe2+, but not Mg+, Ca2+, ba2+, Sr2+, Co2+, Ni2+, La3+, or Fe3+ were able to serve as effective metal cofactors for sea urchin sperm guanylate cyclase. The apparent Michaelis constant for Mn2+ in the presence of 0.25 mM MnGTP was 0.23 mM. In the presence of a fixed free mn2+ concentration, variation in mngTP resulted in sigmoid velocity-substrate plots and in reciprocal plots that were concave upward. These positive cooperative patterns were observed at both pH 7.0 and 7.8 and in the presence or absence of Triton X-100. When Mn2+ and GTP were equimolar, Ca2+, Ba2+, Sr2+, and Mg2+ increased apparent guanylate cyclase activity. This increase in enzyme activity at least could be accounted for partially by an increase in free Mn2+ concentration caused by the complex formation of GTP with the added metals. However, even at relatively low GTP concentrations and with Mn2+ concentrations in excess of GTP, Ca2+, Sr2+, and Ba2+ significantly increased guanosine 3':5'-monophosphate production. As the total GTP concentration was increased, the degree of stimulation in the presence of Ca2+ decreased, despite maintenance of a fixed total concentration of Ca2+ and a fixed free concentration of Mn2+, suggesting that the concentration of CaGTP and MnGTP were determining factors in the observed response. The concave upward reciprocal plots of velocity against MnGTP concentration were changed to linear plots in the presence of CaGTP or SrGTP. These results suggest that sea urchin sperm guanylate cyclase contains multiple nucleotide binding sites and that stimulation of guanosine 3':5'-monophosphate synthesis by Ca2+, Sr2+, and perhaps other metals may reflect interaction of a metal-GTP complex with enzyme as either an effector or a substrate.  相似文献   

8.
The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport   总被引:2,自引:0,他引:2  
The ATP-dependent uptake of Ca2+ by rat liver microsomal fraction is dependent upon Mg2+. Studies of the Mg2+ requirement of the underlying microsomal Ca2+-ATPase have been hampered by the presence of a large basal Mg2+-ATPase activity. We have examined the effect of various Mg2+ concentrations on Mg2+-ATPase activity, Ca2+ uptake, Ca2+-ATPase activity and microsomal phosphoprotein formation. Both Mg2+-ATPase activity and Ca2+ uptake were markedly stimulated by increasing Mg2+ concentration. However, the Ca2+-ATPase activity, measured concomitantly with Ca2+ uptake, was apparently unaffected by changes in the Mg2+ concentration. In order to examine the apparent paradox of Mg2+ stimulation of Ca2+ uptake but not of Ca2+-ATPase activity, we examined the formation of the Ca2+-ATPase phosphoenzyme intermediate and formation of a Mg2+-dependent phosphoprotein, which we have proposed to be an attribute of the Mg2+-ATPase activity. We found that Ca2+ apparently inhibited formation of the Mg2+-dependent phosphoprotein both in the absence and presence of exogenous Mg2+. This suggests that Ca2+ may inhibit (at least partially) the Mg2+-ATPase activity. However, inclusion of the Ca2+ inhibition of Mg2+-ATPase activity in the calculation of Ca2+-ATPase activity reveals that this effect is insufficient to totally account for the stimulation of Ca2+ uptake by Mg2+. This suggests that Mg2+, in addition to stimulation of Ca2+-ATPase activity, may have a direct stimulatory effect on Ca2+ uptake in an as yet undefined fashion. In an effort to further examine the effect of Mg2+ on the microsomal Ca2+ transport system of rat liver, the interaction of this system with Sr2+ was examined. Sr2+ was sequestered into an A23187-releasable space in an ATP-dependent manner by rat liver microsomal fraction. The uptake of Sr2+ was similar to that of Ca2+ in terms of both rate and extent. A Sr2+-dependent ATPase activity was associated with the Sr2+ uptake. Sr2+ promoted formation of a phosphoprotein which was hydroxylamine-labile and base-labile. This phosphoprotein was indistinguishable from the Ca2+-dependent ATPase phosphoenzyme intermediate. Sr2+ uptake was markedly stimulated by exogenous Mg2+, but the Sr2+-dependent ATPase activity was unaffected by increasing Mg2+ concentrations. Sr2+ uptake and Sr2+-dependent ATPase activity were concomitantly inhibited by sodium vanadate. In contrast to Ca2+, Sr2+ had no effect on Mg2+-dependent phosphoprotein formation. Taken together, these data indicate that Mg2+ stimulated Ca2+ and Sr2+ transport by increasing the Ca2+ (Sr2+)/ATP ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Preincubation of sea urchin sperm guanylate cyclase at 35, 37, 40, or 43 degrees resultedin inactivation. Various metals were able to protect guanylate cyclase against heat inactivation. Estimated binary enzyme-metal dissociation constants for Mn2+, Fe2+, La3+, Ca2+, Ba2+, Mg2+, Co2+, and Ni2+ were 123, 361, 5.5, 692, 984, 335, 79, and 47 muM, respectively. Extrapolated rates of enzyme denaturation in the presence of saturating concentrations of metal divided by the rates of enzyme denaturation in the absence of metal gave values of 0.13, 0.08, minus 0.1, 0.30, 0.59, 0.66, 0.28, and 0.42 for Mn2+, Fe2+, La3+, Ca2+, Ba2+, Mg2+, Co2+, and Ni2+, respectively. GTP, MgGTP, and SrGTP protected the enzyme only slightly against heat inactivation, but CaGTP and MnGTP protected substantially. Neither CaGTP nor MnGTP protected maximally, however, unless the metal concentration exceeded that of GTP. At fixed free Mn2+ or free Ca2+ concentrations, protection curves as a function of MnGTP or CaGTP appeared to be sigmoidal, suggesting multiple nucleotide binding sites. MnATP also protected against heat, but CaATP was virtually ineffective. Sea urchin sperm guanylate cyclase was inactivated by N-ethylmaleimide; CaGTP and MnATP were effective protectants with estimated binary enzyme-Me2+ nucleoside triphosphate dissociation constants of 40 and 170 muM, respectively. MnGTP protected only slightly or not at all against N-ethylmaleimide. These results suggest that: (a) sea urchin sperm guanylate cyclase binds free metal, (b) the binding of free metal is required for protection by nucleotides, and (c) the enzyme contains multiple nucleotide binding sites.  相似文献   

10.
The functional confirmation of availability of Ca2+ transport initially-active systems in the embryo cells of loach Misgurnus fossilis L. has been obtained. Using thapsigargin, the specific inhibitor of endoplasmic reticulum of Ca2+, Mg(2+)-ATPase, this enzyme activity was divided into thapsigargin-sensitive (actually endoplasmic reticulum Ca2+, Mg(2+)-ATPase) and thapsigargin-insensitive (plasma membrane Ca2+, Mg(2+)-ATPase) constituents. The Ca(2+)-independent Mg(2+)-dependent ATPase activity makes above 39.7% of the common Ca2+, Mg(2+)-ATPase activity of embryo loach. The periodic changes of Ca2+, Mg(2+)-ATPase activity (except for the changes of plasma membrane Ca2+, Mg(2+)-ATPase activity) were found out, which coincide with periodic [Ca2+]i oscillations during the synchronous divisions of loach blastomers embryos.  相似文献   

11.
Isolation of Ca2+, Mg2+-dependent nuclease from calf thymus chromatin   总被引:1,自引:0,他引:1  
Ca2+,Mg2+-dependent nuclease was isolated from calf thymus chromatin by stepwise chromatography on DEAE-Sepharose, CM-Sephadex and DNA-Sepharose. The enzyme was purified more than 700-fold. SDS-PAGE electrophoresis revealed one protein band possessing an enzymatic activity. The molecular mass of the nuclease as determined by gel filtration is 25700 Da, that determined by 12% SDS polyacrylamide gel electrophoresis is 28,000 Da. In the presence of various ions the enzyme activity decreases in the following order: (Ca2+ + Mn2+) greater than (Ca2+ + Mg2+) greater than Mn2+; the pH optimum is at 8.0. In media with Mg2+, Ca2+, Co2+ and Zn2+ the nuclease is inactive. Some other properties of the enzyme are described.  相似文献   

12.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

13.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell.  相似文献   

14.
The molecular mechanism of activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats was studied. Thymocyte nuclei of control and irradiated rats were pre-incubated with NAD under conditions favourable for poly ADP-ribosylation. Pre-incubation results in a decrease in the rate of autolytic DNA digestion by Ca2+/Mg2+-dependent endonuclease of 6-7- and 2-3-fold for control and irradiated animals, respectively. The activity of Ca2+/Mg2+-nuclease extracted from the nuclei pre-incubated with NAD is also considerably decreased. The presence of nicotinamide and thymidine in the preincubation medium prevents the suppression of Ca2+/Mg2+-nuclease activity. In the experiments performed with isolated nuclei and permeabilized thymocytes the synthesis of poly(ADP-ribose) does not significantly change within 1 h after irradiation at a dose of 10 Gy, whereas 2 and 3 h after the exposure it decreases by 35-40 and 45-55 per cent, respectively. The activity of poly(ADP-ribose) glycohydrolase in this period is similar to that in the controls. The average size of the de novo synthesized chains of poly(ADP-ribose) increases from 11 to 17 ADP-ribose units by the second hour after irradiation. Inhibition of poly(ADP-ribose) polymerase in the postirradiation period preceded the internucleosomal fragmentation of chromatin. The results suggest that activation of Ca2+/Mg2+-nuclease in irradiated thymocytes is accounted for by the disturbance of its poly ADP-ribosylation.  相似文献   

15.
The ability of bovine pancreatic DNAase to hydrolyse the synthetic substrate p-nitrophenyl phenylphosphonate (NPPP) is intrinsic and is not due to the contamination of the DNAase preparation by nonspecific phosphodiesterases because the activities of DNA and NPPP hydrolysis are co-eluted from a DEAE-cellulose column with use of the Ca2+-affinity elution method and because the two activities are decreased simultaneously when the purified enzyme is treated with Cu2+/iodoacetate, an active-site-labelling agent for DNAase. NPPP hydrolysis is facilitated by the metal ion-DNAase. At relatively high Na+ concentrations, where the metal ion-DNA interaction is weak, DNA hydrolysis is also facilitated by the metal ion-DNAase. With NPPP as substrate the Michaelis constants are Km 3.7 mM for Mn2+ and Km 49 mM for Mg2+ in 0.2 M-Tris/HCl buffer, pH 7.2. Ca2+ competes with Mn2+, with Ki 64 mM. Free Cu2+ ions non-competitively inhibit DNAase-catalysed DNA or NPPP hydrolysis in the presence of Mn2+ or Mg2+ and the inhibition is not relieved by Ca2+. The affinity of Cu2+ for free DNAase is higher than that for Mn2+-DNAase. Mn2+ is not bound to DNAase via a simple ionic interaction, as Mn2+ remains bound in the presence of relatively high Na+ concentrations and induces a near-u.v. difference absorption spectrum. The kinetics of NPPP hydrolysis catalysed by Mn2+-DNAase are sigmoidal. From the Hill equation, h = 2.0 is obtained, suggesting that more than two NPPP molecules are bound per molecule of DNAase with a certain amount of co-operativity. Because DNAase in solution is a monomer with a single catalytic site, the multiple NPPP molecules on a single protein molecule are probably in one location, resulting in a co-operative interaction that may resemble that in the stacked base-pairs of double-helical DNA.  相似文献   

16.
Ca2+,Mg2+-dependent DNAse from sea urchin embryos is specific to the secondary structure of substrates irrespective of the nature of activating cations. The enzyme does not split synthetic single-stranded oligo and polynucleotides, such as d(pTpTpTpCpC), d(pGpGpTpTpT). d(pApApTpTpC), d(pGpApApTpTpC), d(pA)5-poly(dT), d(pApApTpTpC)-poly(dT), poly(dA) and poly (dT) and hydrolyses the double-stranded substrates poly d(AT), poly (dA) . poly (dT) and highly polymerized DNA. Native double-stranded DNA from salmon and phage T7 is split by the enzyme at a higher rate than that of denaturated DNA of salmon and single-stranded DNA of phage M13. The high rate of poly(dA) . poly(dT) and poly d(AT) hydrolysis and the stability of poly(dG) . poly(dC) to the effect of the enzyme suggest a certain specificity of the enzyme to the nature of nitrogenous bases at the hydrolyzed phosphodiester bond of the substrate.  相似文献   

17.
Highly purified pig myocardium sarcolemma vesicles possess the Ca2+,Mg2+-ATPase activity (4.1 mumol Pi/mg protein/hour) and induce the ATP-dependent accumulation of 45Ca2+ (6.0 nmol/mg protein/min). This reaction is not stimulated by oxalate; Ca2+ are released from the vesicles by saponin and Na+ treatment, which suggests that Ca2+ transport against the concentration gradient is induced by myocardium sarcolemma vesicles and not by sarcoplasmic reticulum fragments. The phorbol ester possessing a biological activity of a growth-promoting factor and activating membrane-bound protein kinase C stimulates the Ca2+,Mg2+-ATPase activity and the ATP-dependent accumulation of Ca2+, whereas its counterpart devoid of biological activity does not influence Ca2+ transport. Polymixin B, a specific inhibitor of protein kinase C, prevents the activating effect of phorbol esters on Ca2+ accumulation inside the vesicles. It is suggested that the ATP-dependent transport of Ca2+ in myocardium sarcolemma is controlled by Ca2+-phospholipid-dependent phosphorylation catalyzed by protein kinase C.  相似文献   

18.
Various reports have demonstrated that the sphingolipids sphingosine and sphingosine-1-phosphate are able to induce Ca2+ release from intracellular stores in a similar way to second messengers. Here, we have used the sea urchin egg homogenate, a model system for the study of intracellular Ca2+ release mechanisms, to investigate the effect of these sphingolipids. While ceramide and sphingosine-1-phosphate did not display the ability to release Ca2+, sphingosine stimulated transient Ca2+ release from thapsigargin-sensitive intracellular stores. This release was inhibited by ryanodine receptor blockers (high concentrations of ryanodine, Mg2+, and procaine) but not by pre-treatment of homogenates with cADPR, 8-bromo-cADPR or blockers of other intracellular Ca2+ channels. However, sphingosine rendered the ryanodine receptor refractory to cADPR. We propose that, in the sea urchin egg, sphingosine is able to activate the ryanodine receptor via a mechanism distinct from that used by cADPR.  相似文献   

19.
Comparison of catalytic properties of a Mn2(+)-dependent and a Ca2+, Mg2+ dependent endonucleases of rat liver cell nuclei was carried out. The Mn2(+)-dependent endonuclease has Mr 31 kDa by SDS-PAAG-electrophoresis; pH optimum 5.5; calcium-magnesium synergism less than 3 in rat liver DNA, RF M13 DNA and phage M13 DNA. The rate of hydrolysis of single strand and double strand circular DNA was the same. The Mn2(+)-dependent endonuclease split DNA by double hit manner, and didn't change the manner in the presence of different divalent cations. Ca2+, Mg2(+)-dependent endonuclease has pH optimum 6.5; calcium-magnesium synergism up to 40 in rat liver DNA and 175 in RF M13 DNA. The rate of hydrolysis of single strand DNA was higher than double-strand DNA.  相似文献   

20.
Inhibition of red cell Ca2+-ATPase by vanadate   总被引:3,自引:0,他引:3  
1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate. 3. Among the ligands tests, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K 1/2 for vanadate was 1.5 microM and inhibition was nearly complete at saturating vanadate concentrations. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号