首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An emerging paradigm in sustainable biotechnique is the use of mutualists to enhance plant growth and secondary metabolism. Our objective was to determine impact of two groups of fungal mutualists on growth and phytochemistry of Echinacea purpurea. Growth, development, and phytochemical concentration were measured in greenhouse-grown 12-week-old plants colonized by arbuscular mycorrhizal fungi (AMF) (Rhizophagus intraradices and Gigaspora margarita) or the endophytic entomopathogen, Beauveria bassiana. In one experiment, all measured growth parameters were increased in mycorrhizal plants. Biomass of AMF-colonized plants was over 13-fold greater than non-mycorrhizal controls receiving the same levels of phosphorous, and over 4-fold greater than non-mycorrhizal controls given additional phosphorous. Endophytic colonization by B. bassiana had minor effects on growth. Colonization by AMF and B. bassiana alone or in combination altered concentrations of phytochemicals (pigments, polyphenolics, alkylamides, and terpenes). Mycorrhizal plants produced up to 4.6-fold higher concentration of polyphenolics. Specific alkylamides increased 1.7 fold in plants colonized only with B. bassiana and up to a 2.4-fold increase in plants colonized by both mutualists. Changes in other phytochemical classes were related to differences in plant size induced by AMF. Phytochemical content (concentration × biomass) was increased up to 30-fold in mycorrhizal plants. Phytochemical relationships to plant biomass were confirmed in a second experiment in which non-mycorrhizal plants were fertilized to produce biomass equivalent to that of mycorrhizal plants. Based on this study, mycorrhizal colonization of E. purpurea enhances phytochemical content; this has major implications for the natural product industries and growers of E. purpurea.  相似文献   

2.
In order to evaluate host plant performance relative to different soil arbuscular mycorrhizal fungal (AMF) communities, Andropogon gerardii seedlings were grown with nine different AMF communities. The communities consisted of 0, 10, or 20 spores of Glomus etunicatum and 0, 10, or 20 spores of Glomus intraradices in all possible combinations. Spores were produced by fungal cultures originating on A. gerardii in a serpentine plant community; seeds of A. gerardii were collected at the same site. The experiment was performed in the greenhouse using a mixture of sterilized serpentine soil and sand to which naturally occurring non-mycorrhizal microbes were added. There was no difference in root AMF colonization rates between single species communities of either G. etunicatum or G. intraradices, but G. intraradices enhanced plant growth and G. etunicatum did not. However, plants grew larger with some combinations of G.␣intraradices plus G. etunicatum than with the same quantity of G. intraradices alone. These results suggest the potential for niche complementarity in the mycorrhizal fungi. That G. etunicatum only increased plant growth in the presence of G. intraradices could be illustrative of why AMF that appear to be parasitic or benign when examined in isolation are maintained within multi-species mycorrhizal communities in nature.  相似文献   

3.
Allium fistulosum harbours a number of desirable agronomical traits for the breeding of onions. However exploitation of A. fistulosum for onion breeding via direct sexual hybridization is problematic. Therefore, we examined if a bridge cross, using A. roylei as a bridging species, might provide an alternative. By means of genomic in situ hybridization (GISH) we showed that each of the three parental genomes can be distinguished from the others in interspecific hybrids, suggesting that these genomes contain sufficiently different repetitive DNA families. We succeeded in carrying out multi-colour GISH to metaphase spreads of a first-generation bridge-cross individual [A. cepa× (A. fistulosum×A. roylei], which is composed of three parental genomes. Recombination between the genomes of A. fistulosum and A. roylei took place to a large extent: 7 recombined chromosomes were observed, and it could be shown that the proximal regions of the recombined A. fistulosum/A. roylei chromosomes belonged to the former, whereas the distal parts belonged to the latter. The high percentage of bound bivalent arms in metaphase I of pollen mother cells of a fertile bridge-cross individual suggests the introgression of A. fistulosum genes, mediated by A. roylei, into the genome of A. cepa. However, the presence of univalents reflects decreased pairing and recombination between the three genomes. Pollen fertility and pollen-tube growth of the first-generation bridge-cross individual seem to be sufficient to produce a second generation bridge-cross (A. cepa×first-generation bridge cross) progeny. Received: 27 May 1997 / Accepted: 30 June 1997  相似文献   

4.
接种AMF对菌根植物和非菌根植物竞争的影响   总被引:4,自引:0,他引:4  
张宇亭  王文华  申鸿  郭涛 《生态学报》2012,32(5):1428-1435
为了研究丛枝菌根真菌(arbuscular mycorrhizal fungus, AMF)对菌根植物与非菌根植物种间竞争的影响,以玉米(菌根植物)和油菜(非菌根植物)作为供试植物,分别进行间作、尼龙网分隔和单作,模拟这两种植物之间不同的竞争状态,接种丛枝菌根真菌Glomus intraradicesGlomus mosseae,比较菌根植物和非菌根植物的生长和磷营养状况,分析AMF侵染对植物种间竞争作用的影响。结果显示,与单作相比,间作模式下玉米的生物量及磷营养状况有所降低,但其菌根依赖性却有所提高。与不接种相比,接种处理显著降低了间作体系油菜根系的磷含量和磷吸收量,但趋于改善菌根植物玉米的磷营养状况。因此,接种AMF可以降低非菌根植物的磷营养状况及生物量,使得菌根植物的相对竞争能力明显提高,说明AMF在维持物种多样性方面有着重要的作用。  相似文献   

5.
Development and heavy metal tolerance of two cultivation lineages of the indigenous isolate of arbuscular mycorrhizal fungus (AMF)Glomus intraradices PH5 were compared in a pot experiment in soil from lead (Pb) smelter waste deposits. One lineage was sub-cultured in original Pb-contaminated soil; the second one was maintained for 13 months in an inert substrate (river sand) without Pb stress. The contribution of these cultivation lineages to the Pb uptake and accumulation by the host plantAgrostis capillaris was investigated. The experiment was conducted in a compartmented system where the lateral compartments withAgrostis seedlings were separated from the central pot containing 4-week olderAgrostis plants by a nylon mesh for allowing out-growing of extraradical mycelium (ERM) from the pot. No differences in mycorrhizal colonization, ERM length and viability were observed between the two lineages ofG. intraradices PH5 in the soil of the isolate origin. However, the ability to support plant growth and Pb uptake differed between the lineages and also between the plants in the central pots and the lateral compartments. The growth of the plants in the central pots was positively affected by AMF inoculation. The plants inoculated with the lineage maintained in original soil showed larger shoot biomass and higher shoot P content as compared to the other inoculation treatments. The shoot Pb concentration of these plants was lower when compared to the plants inoculated with the lineage sub-cultured in the inert substrate. However the concentration did not differ from non-mycorrhizal control or from the reference isolateG. intraradices BEG75 from non-contaminated soil. Also shoot Pb contents were similar for all inoculation treatments. The development ofG. intraradices BEG75 in the contaminated soil was very poor; this isolate was not able to initiate colonization of seedlings in lateral compartments. In lateral compartments, growth of seedlings in contaminated soil was inhibited by theG. intraradices PH5 lineage maintained in the inert substrate. Pb translocation from the seedling roots to shoots was increased for plants inoculated with either lineage as compared to the non-mycorrhizal control; however, the increase for the lineage cultivated in the inert substrate was significantly higher in comparison with that maintained in the original soil. After 13 months of cultivation in a metal free substrate, theG. intraradices isolate from Pb contaminated soil did not lose its tolerance to Pb as regards colonization of plant roots and growth of ERM in the soil of its origin. However, its ability to support plant growth and to prevent Pb translocation from the roots to the shoots was decreased.  相似文献   

6.
Zubek S  Mielcarek S  Turnau K 《Mycorrhiza》2012,22(2):149-156
Hypericum perforatum L. (St. John’s-wort, Hypericaceae) is a valuable medicinal plant species cultivated for pharmaceutical purposes. Although the chemical composition and pharmacological activities of H. perforatum have been well studied, no data are available concerning the influence of arbuscular mycorrhizal fungi (AMF) on this important herb. A laboratory experiment was therefore conducted in order to test three AMF inocula on H. perforatum with a view to show whether AMF could influence plant vitality (biomass and photosynthetic activity) and the production of the most valuable secondary metabolites, namely anthraquinone derivatives (hypericin and pseudohypericin) as well as the prenylated phloroglucinol—hyperforin. The following treatments were prepared: (1) control—sterile soil without AMF inoculation, (2) Rhizophagus intraradices (syn. Glomus intraradices), (3) Funneliformis mosseae (syn. Glomus mosseae), and (4) an AMF Mix which contained: Funneliformis constrictum (syn. Glomus constrictum), Funneliformis geosporum (syn. Glomus geosporum), F. mosseae, and R. intraradices. The application of R. intraradices inoculum resulted in the highest mycorrhizal colonization, whereas the lowest values of mycorrhizal parameters were detected in the AMF Mix. There were no statistically significant differences in H. perforatum shoot mass in any of the treatments. However, we found AMF species specificity in the stimulation of H. perforatum photosynthetic activity and the production of secondary metabolites. Inoculation with the AMF Mix resulted in higher photosynthetic performance index (PItotal) values in comparison to all the other treatments. The plants inoculated with R. intraradices and the AMF Mix were characterized by a higher concentration of hypericin and pseudohypericin in the shoots. However, no differences in the content of these metabolites were detected after the application of F. mosseae. In the case of hyperforin, no significant differences were found between the control plants and those inoculated with any of the AMF applied. The enhanced content of anthraquinone derivatives and, at the same time, better plant vitality suggest that the improved production of these metabolites was a result of the positive effect of the applied AMF strains on H. perforatum. This could be due to improved mineral nutrition or to AMF-induced changes in the phytohormonal balance. Our results are promising from the biotechnological point of view, i.e. the future inoculation of H. perforatum with AMF in order to improve the quality of medicinal plant raw material obtained from cultivation.  相似文献   

7.
Sustainability of soil-plant systems requires, among other things, good development and function of mycorrhizal symbioses. The effects of P and micronutrient levels on development of an arbuscular mycorrhizal fungus (AMF) and uptake of Zn, Cu, Mn and Fe by maize (Zea mays L.) were studied. A pot experiment with maize either inoculated or not with Glomus intraradices was conducted in a sand:soil (3 :1) mix (pH 6.5) in a greenhouse. Our goal was to evaluate the contribution of mycorrhizae to uptake of Cu, Zn, Mn and Fe by maize as influenced by soil P and micronutrient levels. Two levels of P (10 and 40 mg kg−1 soil) and three levels of a micronutrient mixture: 0, 1X and 2X (1X contained, in mg kg−1 soil, 4.2 Fe, 1.2 Mn, 0.24 Zn, 0.06 Cu, 0.78 B and 0.036 Mo), were applied to pots. There were more extraradical hyphae at the low P level than at the high P level when no micronutrients were added to the soil. Root inoculation with mycorrhiza and application of micronutrients increased shoot biomass. Total Zn content in shoots was higher in mycorrhizal than non-mycorrhizal plants grown in soils with low P and low or no micronutrient addition. Total Cu content in shoots was increased by mycorrhizal colonization when no micronutrients were added. Mycorrhizal plants had lower Mn contents than non-mycorrhizal plants only at the highest soil micronutrient level. AMF increased total shoot Fe content when no micronutrients were added, but decreased shoot Fe when plants were grown at the high level of micronutrient addition. The effects of G. intraradices on Zn, Cu, Mn, and Fe uptake varied with micronutrient and P levels added to soil. Accepted: 27 December 1999  相似文献   

8.
 Fungal enzyme activities were quantified in an interaction study between the fungus Glomus intraradices and the pea pathogen Aphanomyces euteiches. Fungal and host enzymes were separated by polyacrylamide gel electrophoresis and the activity of A. euteiches–specific glucose-6-phosphate dehydrogenase (Gd), phosphoglucomutase and peptidase (PEP) enzymes were quantified by densitometry. The activity of A. euteiches–specific enzymes increased until 14 days after inoculation with A. euteiches, and then decreased. The plants preinoculated with G. intraradices showed no symptoms of severe root rot even though the pathogen was present and active in these plants. Thus, plants preinoculated with G. intraradices were more tolerant of infection with A. euteiches than non-mycorrhizal plants. This effect was evident even though the A. euteiches infection levels of mycorrhizal and non-mycorrhizal plants were the same. A. euteiches enzyme activities in the mycorrhizal plants were different to those in non-mycorrhizal plants. The peaks of PEP and Gd enzyme activity of A. euteiches were lower and the development of A. euteiches PEP activity was later in the mycorrhizal plants than in the non-mycorrhizal plants. Accepted: 14 November 1996  相似文献   

9.
Allelochemicals defend plants against herbivore and pathogen attack aboveground and belowground. Whether such plant defenses incur ecological costs by reducing benefits from plant mutualistic symbionts is largely unknown. We explored a potential trade-off between inherent plant chemical defense and belowground mutualism with arbuscular mycorrhizal fungi (AMF) in Plantago lanceolata L., using plant genotypes from lines selected for low and high constitutive levels of the iridoid glycosides (IG) aucubin and catalpol. As selection was based on IG concentrations in leaves, we first examined whether IG concentrations covaried in roots. Root and leaf IG concentrations were strongly positively correlated among genotypes, indicating genetic interdependence of leaf and root defense. We then found that root AMF arbuscule colonization was negatively correlated with root aucubin concentration. This negative correlation was observed both in plants grown with monocultures of Glomus intraradices and in plants colonized from whole-field soil inoculum. Overall, AMF did not affect total biomass of plants; an enhancement of initial shoot biomass was offset by a lower root biomass and reduced regrowth after defoliation. Although the precise effects of AMF on plant biomass varied among genotypes, plants with high IG levels and low AMF arbuscule colonization in roots did not produce less biomass than plants with low IG and high AMF arbuscule colonization. Therefore, although an apparent trade-off was observed between high root chemical defense and AMF arbuscule colonization, this did not negatively affect the growth responses of the plants to AMF. Interestingly, AMF induced an increase in root aucubin concentration in the high root IG genotype of P. lanceolata. We conclude that AMF does not necessarily stimulate plant growth, that direct plant defense by secondary metabolites does not necessarily reduce potential benefits from AMF, and that AMF can enhance concentrations of root chemical defenses, but that these responses are plant genotype-dependent.  相似文献   

10.
张宇亭  朱敏  线岩相洼  申鸿  赵建  郭涛 《生态学报》2012,32(22):7091-7101
在温室盆栽条件下,分别模拟单作、间作和尼龙网分隔种植,比较接种丛枝菌根(arbuscular mycorrhizal, AM)真菌Glomus intraradicesGlomus mosseae对菌根植物玉米和非菌根植物油菜生长和磷吸收状况的影响,并分析土壤中各无机磷组分的变化。结果发现,接种AM真菌可以促进土壤中难溶性磷(Ca10-P和O-P)向有效态磷转化,并显著降低总无机磷含量 (P<0.05),显著提高菌根植物玉米的生物量和磷吸收量(P<0.05),特别是在间作体系中使玉米的磷营养竞争比率显著提高了45.0%-104.1% (P<0.05),显著降低了油菜的生物量和磷吸收量(P<0.05),从而增强了了菌根植物的竞争优势,降低了非菌根植物与菌根植物的共存能力。揭示了石灰性土壤中AM真菌对植物物种多样性的影响,有助于更加全面地理解AM真菌在农业生态系统中的作用。  相似文献   

11.
不同强度盐胁迫下AM真菌对羊草生长的影响   总被引:3,自引:0,他引:3  
张义飞  王平  毕琪  张忠辉  杨允菲 《生态学报》2016,36(17):5467-5476
不同浓度NaCl盐处理下,AM真菌对羊草(Leymus chinensis)的侵染能力和对植物生长的影响,从植物形态和离子含量角度探讨了AM真菌提高羊草耐盐性的作用机理。结果表明,在高盐胁迫下,AM真菌显著降低了盐胁迫效应,提高了羊草生物量,菌根效应明显。菌根化羊草的根茎比显著增加,并且N、P浓度较高,Na~+和Cl~-离子浓度较低,表明AM真菌即促进羊草对营养元素的吸收,又减少了离子毒害。菌根化羊草的Ca~(2+)和K~+离子浓度,以及P/Na~+和K~+/Na~+比高于非菌根化羊草,表明AM真菌可通过调节渗透势以避免或减缓盐胁迫造成的生理缺水。随着盐胁迫的增加,菌根化羊草对磷的依赖性逐渐转换为对钾的依赖性。研究结果有助于揭示AM真菌提高植物耐盐能力的作用机理,并对应用菌根技术修复盐化草地具有理论指导意义。  相似文献   

12.
A study was conducted with the vine rootstock Richter 110 (Vitis berlandieri Planch. x Vitis rupestris L.) in order to assess whether the colonisation by the arbuscular mycorrhizal fungus (AMF) Glomus intraradices (BEG 72) can delay the disease development in plants inoculated with the root-rot fungus Armillaria mellea (Vahl:Fr) Kummer, and to elucidate if the levels of polyamines (PAs) are modified in response to G. intraradices, A. mellea or by the dual infection. Four treatments were considered: control and G. intraradices-inoculated plants infected or not with A. mellea. Plant growth, mycorrhizal colonisation and disease development were monitored throughout the experiment. High performance liquid chromatography (HPLC) in combination with fluorescence spectrophotometry was used to separate and quantify free root and leaf polyamines. The slower development of pathogenic symptoms and the higher plant biomass of mycorrhizal plants inoculated with A. mellea indicate an increase of tolerance due to the AMF inoculation. The variations in free PA levels detected at the beginning of the pathogenic infection suggest that PAs may have a potential role in the signalling mechanisms of the tolerance of mycorrhizal plants against A. mellea.  相似文献   

13.
A study was performed to determine the effect of the systemin polypeptide on the bio-protective effect of arbuscular mycorrhizal fungi (AMF) in tomato plants infected with Alternaria solani, Phytophthora infestans or P. parasitica. Before infection, tomato plants were colonized with two different AMF, Glomus fasciculatum or G. clarum. In addition, a group of inoculated plants was treated with systemin, just after emergence. The exogenous application of systemin marginally suppressed the resistance against A. solani leaf blight observed in G. fasciculatum mycorrhizal plants but significantly enhanced it in plants colonized with G. clarum. Systemin induced resistance to P. parasitica in leaves of G. fasciculatum mycorrhizal plants, in which AMF colonization alone was shown to have no protective effect. Conversely, none of the treatments led to resistance to root or stem rots caused by P. infestans or P. parasitica. The above effects did not correlate with changes in the activity levels of β-1,3-glucanase (BG), chitinase (CHI), peroxidase (PRX), and phenylalanine ammonium lyase (PAL) in leaves of infected plants. However, they corroborated previous reports showing that colonization by AMF can lead to a systemic resistance response against A. solani. Systemic resistance to A. solani was similarly observed in non-mycorrhizal systemin-treated plants, which, in contrast, showed increased susceptibility to P. infestans and P. parasitica. The results indicated that the pattern of systemic disease resistance conferred by mycorrhizal colonization was dependent on the AMF employed and could be altered by the exogenous application of systemin, by means of a still undefined mechanism.  相似文献   

14.
The influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Rhizophagus intraradices, on plant growth, leaf water status, chlorophyll concentration, photosynthesis, nutrient concentration, and fractal dimension (FD) characteristics of black locust (Robinia pseudoacacia L.) seedlings was studied in pot culture under well-watered, moderate drought stress, and severe drought stress treatments. Mycorrhizal seedlings had higher dry biomass, leaf relative water content (RWC), and water use efficiency (WUE) compared with non-mycorrhizal seedlings. Under all treatments, AMF colonization notably enhanced net photosynthetic rate, stomatal conductance, and transpiration rate, but decreased intercellular CO2 concentration. Leaf chlorophyll a and total chlorophyll concentrations were higher in AM seedlings than those in non-AM seedlings although there was no significant difference between AMF species. AMF colonization improved leaf C, N, and P concentrations, but decreased C:N, C:P, and N:P ratios. Mycorrhizal seedlings had a larger FD value than non-mycorrhizal seedlings. The FD value was positively and significantly correlated to the plant growth parameters, photosynthesis, RWC, WUE, and nutrient concentration but negatively correlated to leaf/stem ratio, C:N and C:P ratios, and intercellular CO2 concentration. We conclude that AMF lead to an improvement of growth performance of black locust seedlings under all growth conditions, including drought stress via improving leaf water status, chlorophyll concentration, photosynthesis, and nutrient uptake. Moreover, FD technology proved to be a powerful non-destructive method to characterize the effect of AMF on the physiology of host plants during drought stress.  相似文献   

15.
干旱胁迫条件下AMF促进小马鞍羊蹄甲幼苗生长的机理研究   总被引:1,自引:0,他引:1  
张亚敏  马克明  李芳兰  曲来叶 《生态学报》2016,36(11):3329-3337
采用温室水分控制试验,在干旱胁迫条件下,定量化研究优势丛枝菌根真菌(AMF)影响优势乡土植物小马鞍羊蹄甲(Bauhinia faberi var.microphylla)幼苗生长的机理,主要通过研究干旱胁迫条件下摩西球囊霉菌(Funneliformis mosseae)与小马鞍羊蹄甲的共生关系,阐明AMF在植物生长初期的作用。结果表明,干旱胁迫条件下,摩西球囊霉菌能够很好地侵染幼苗,侵染率高达89%—97%,并且不受水分条件影响。接种的幼苗最大光合速率、水分利用效率随着干旱胁迫程度从重度到轻度(水分从低到高)逐渐增大,相反地,叶片脯氨酸含量逐渐减小。接种显著地促进幼苗株高、叶片数、叶面积、根长、根面积等生长指标,提高幼苗各部分生物量、地上地下磷(P)含量。当含水量为60%田间持水量时,AMF促进小马鞍羊蹄甲幼苗吸收P的效果最好。接种还显著影响幼苗的生物量分配,在重度干旱胁迫时影响P分配,水分条件也显著影响幼苗的生物量分配。此外,接种和水分的交互作用对叶生物量、总生物量、生长指标以及地上部氮(N)总量影响显著。结果表明干旱胁迫条件下菌根效应显著,并在干旱条件下显著促进了小马鞍羊蹄甲幼苗的生长,这为进一步干旱河谷植被恢复提供了理论依据。  相似文献   

16.
Liu  A.  Hamel  C.  Hamilton  R. I.  Smith  D. L. 《Plant and Soil》2000,221(2):157-166
A study was conducted to evaluate the effect of N and P supply levels on mycorrhizal formation and nutrient uptake in corn hybrids with different architectures and to determine arbuscular mycorrhizal fungal (AMF) development in relation to shoot N/P ratio and shoot:root ratio. Corn pot cultures with a pasteurized medium of two parts sand and one part sandy loam soil were grown in the greenhouse. Marigold plants inoculated or not with Glomus intraradices Schenck & Smith were used to establish an AMF hyphal network in the designated soil pots. Corn hybrids were seeded after removal of the marigold plant. Mycorrhizal colonization of corn hybrids and the quantity of extraradical hyphae produced in soil were greatest at the lowest P level and at the intermediate N level. Root colonization was correlated with shoot N/P ratio only at the intermediate N level. The shoot concentrations of P, Mg, Zn and Cu were significantly higher in mycorrhizal plants than in non-mycorrhizal plants. The corn phenotype with the highest shoot:root ratio had the highest root colonization. The corn hybrid with a leafy normal stature architecture had a greater mycorrhizal colonization than that of other two corn hybrids. This experiment showed that N level in soil influenced shoot N/P ratio, root colonization and extraradical hyphal production, which in turn influenced uptake of other nutrients. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
18.
We studied the role of modification in root exudation induced by colonization with Glomus intraradices and Glomus mosseae in the growth of Phytophthora nicotianae in tomato roots. Plants were grown in a compartmentalized plant growth system and were either inoculated with the AM fungi or received exudates from mycorrhizal plants, with the corresponding controls. Three weeks after planting, the plants were inoculated or not with P. nicotianae growing from an adjacent compartment. At harvest, P. nicotianae biomass was significantly reduced in roots colonized with G. intraradices or G. mosseae in comparison to non-colonized roots. Conversely, pathogen biomass was similar in non-colonized roots supplied with exudates collected from mycorrhizal or non-mycorrhizal roots, or with water. We cannot rule out that a mycorrhiza-mediated modification in root exudation may take place, but our results did not support that a change in pathogen chemotactic responses to host root exudates may be involved in the inhibition of P. nicotianae.  相似文献   

19.
The objective of this work was to study the influence of three Glomus species—Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, Glomus intraradices (Schenck and Smith) and Glomus deserticola (Trappe, Bloss, and Menge)—on the development of Verticillium-induced wilt in Capsicum annuum cv. Piquillo. Results showed that the effectiveness of arbuscular mycorrhizal fungi (AMF) as biocontrol agents varied among different Glomus species. In pepper colonized by G. intraradices the severity of the disease was even higher than that observed in non-mycorrhizal plants in terms of plant growth and pepper yield. On the other hand, the high effectiveness exhibited by G. mosseae in improving plant growth and the early beginning of the reproductive stage in these plants was not associated with great plant protection and high pepper yield in diseased plants. Only plants associated with G. deserticola had greater yield than non-mycorrhizal ones despite the lower P fertilization applied to the mycorrhizal treatment and this fact was observed in both healthy and diseased plants. It is suggested that the higher specific phosphorus uptake in Verticillium-inoculated plants associated with G. deserticola could contribute to diminish the deleterious effect of pathogen on yield. On the other hand, the possible influence of endogenous phenolics in roots on the tolerance or resistance of pepper against wilt induced by Verticillium dahliae remains unclear.  相似文献   

20.

Background and aims

We studied, through exudates employment, the effect of Epichloë (endophytic fungi), both independently and in association with Bromus auleticus (grass), on arbuscular mycorrhizal fungi (AMF) colonization, host and neighbouring plants biomass production and soil changes.

Methods

Through in vitro and greenhouse experiments, Epichloë endophytes effect on AMF development was evaluated. In vitro studies of exudates effect on Gigaspora rosea and Rhizophagus intraradices were performed using root or endophyte exudates. A 6-month greenhouse experiment was conducted to determine Bromus auleticus endophytic status effect and endophyte exudates role in biomass production, neighbouring plants mycorrhizal colonization and soil properties.

Results

Endophyte exudates and E+ plant root exudates promoted in vitro AMF development in the pre-infective stage of G. rosea and in carrot root culture mycelium of R. intraradices in a dose-response relationship, while control media and E- plants exudates had no effect. R. intraradices colonization and plant growth was clearly increased by endophytes and their exudates.

Conclusions

This is the first work evidencing the direct effect of Epichloë endophytes and infected plants root exudates on AMF extramatrical development. While higher levels of AMF colonization were observed in E+ plants, no clear effect was detected in neighbouring plants colonization, plant biomass or soil properties.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号