首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inositol 1,4,5-trisphosphate (InsP3) releases Ca2+ from the non-mitochondrial Ca2+ store site of various types of cells. To study the mechanisms of the Ca2+ release from the store site, the effect of InsP3 on the passive Ca2+ release and influx, and the active Ca2+ uptake in the presence of oxalate, was examined using saponin-treated guinea pig peritoneal macrophages. InsP3 stimulated the passive Ca2+ release and influx. Although InsP3 slightly inhibited the active Ca2+ uptake in the presence of oxalate, it seems unlikely that the Ca2+ release by this agent is caused by the inhibition of the Ca2+ uptake, because the addition of apyrase or hexokinase (which removes ATP within 30 s, so that no more Ca2+ can be accumulated) or vanadate (which inhibits the Ca2+ uptake) resulted in very slow release of Ca2+. These results suggest that the Ca2+ permeability of the Ca2+ store membrane is increased by InsP3. InsP3 did not cause an increase in the Ca2+ permeability of phospholipid vesicles (liposomes), indicating that this agent may bring about Ca2+ release by a specific effect on the physiologically relevant Ca2+ channels or carriers in the non-mitochondrial Ca2+ store site. The passive Ca2+ release by InsP3 was enhanced by ATP and an unhydrolyzable ATP analogue, 5'-adenylyimidodiphosphate, but not by ADP or AMP. The passive Ca2+ release by InsP3 was observed even at 0 degree C.  相似文献   

2.
The isolated activation segment of pig procarboxypeptidase A binds two Tb3+ ions in a strong and specific way. In contrast, the binding of Ca2+, Cd2+ and Mg2+ is weak. The binding of Tb3+ increases the resistance of the isolated activation segment against proteolysis and competes for the binding of the carbocyanine dye Stains-All. This dye forms complexes with the activation segment showing spectral properties similar to those observed with EF-hand structures. The presented results support a previous hypothesis on the existence of two regions in the activation segment of pancreatic procarboxypeptidases structurally related to Ca2+-binding domains of the EF-hand protein family.  相似文献   

3.
1. The Ca2+/calmodulin (CaM) independent activity of inositol 1,4,5-trisphosphate (InsP3) 3-kinase in macrophages could be separated from the dependent activity by serial column chromatography, gel filtration, Orange A and DEAE-5PW. 2. An InsP3 analog which has an aminobenzoyl group on the 2nd carbon of the inositol ring inhibited the conversion of [3H]InsP3 to [3H]InsP4 (inositol 1,3,4,5-tetrakisphosphate) in a dose-dependent manner. The concentration required for half-maximal inhibition (IC50) with the Ca2+/CaM independent enzyme activity was also dependent on the free Ca2+ concentration, as with the dependent activity. 3. These results suggest that a conformational change in the enzyme occurs in response to a change in free Ca2+ concentration, and thus the potency to recognize the InsP3 analog would change, even when the Ca2+/CaM independent enzyme activity was used.  相似文献   

4.
An explanation of the complex effects of hormones on intracellular Ca2+ requires that the intracellular actions of Ins(1,4,5)P3 and the relationships between intracellular Ca2+ stores are fully understood. We have examined the kinetics of 45Ca2+ efflux from pre-loaded intracellular stores after stimulation with Ins(1,4,5)P3 or the stable phosphorothioate analogue, Ins(1,4,5)P3[S]3, by simultaneous addition of one of them with glucose/hexokinase to rapidly deplete the medium of ATP. Under these conditions, a maximal concentration of either Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 evoked rapid efflux of about half of the accumulated 45Ca2+, and thereafter the efflux was the same as occurred under control conditions. Submaximal concentrations of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 caused a smaller rapid initial efflux of 45Ca2+, after which the efflux was similar whatever the concentration of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 present. The failure of submaximal concentrations of Ins(1,4,5)P3 and Ins(1,4,5)P3[S]3 to mobilize fully the Ins(1,4,5)P3-sensitive Ca2+ stores despite prolonged incubation was not due either to inactivation of Ins(1,4,5)P3 or to desensitization of the Ins(1,4,5)P3 receptor. The results suggest that the size of the Ins(1,4,5)P3 sensitive Ca2+ stores depends upon the concentration of Ins(1,4,5)P3.  相似文献   

5.
Stimuli which enhance secretion from parathyroid cells such as low extracellular Ca2+ or Mg2+ are associated with a decrease in the cytosolic Ca2+ concentration as measured by quin2. Current evidence suggests that increased production of inositol 1,4,5-triphosphate (IP3) releases Ca2+ from cellular stores thus increasing cytosolic Ca2+. We used saponin-permeabilized dispersed bovine parathyroid cells to study the effect of IP3 on intracellular Ca2+. IP3 released Ca2+ from these cells in a dose-dependent manner; half-maximal response occurred with 0.3 microM IP3 and maximal response with 1.2 microM IP3. Permeabilized cells incubated in the presence of the mitochondrial inhibitor antimycin A released a similar amount of Ca2+ suggesting that IP3 releases Ca2+ from a non-mitochondrial pool. These results suggest that IP3 regulates cytosolic Ca2+ in this system and may function as a second messenger controlling hormone secretion.  相似文献   

6.
The inositol trisphosphate liberated on stimulation of guinea-pig hepatocytes, pancreatic acinar cells and dimethyl sulphoxide-differentiated human myelomonocytic HL-60 leukaemia cells is composed of two isomers, the 1,4,5-trisphosphate and the 1,3,4-trisphosphate. Inositol 1,4,5-trisphosphate was released rapidly, with no measurable latency on hormone stimulation, and, consistent with its proposed role as an intracellular messenger for Ca2+ mobilization, there was good temporal correlation between its formation and Ca2+-mediated events in these tissues. There was a definite latency before an increase in the formation of inositol 1,3,4-trisphosphate could be detected. In all of these tissues, however, it formed a substantial proportion of the total inositol trisphosphate by 1 min of stimulation. In guinea-pig hepatocytes, where inositol trisphosphate increases for at least 30 min after hormone application, inositol 1,3,4-trisphosphate made up about 90% of the total inositol trisphosphate by 5-10 min. In pancreatic acinar cells, pretreatment with 20 mM-Li+ caused an increase in hormone-induced inositol trisphosphate accumulation. This increase was accounted for by a rise in inositol 1,3,4-trisphosphate; inositol 1,4,5-trisphosphate was unaffected. This finding is consistent with the observation that Li+ has no effect on Ca2+-mediated responses in these cells. The role, if any, of inositol 1,3,4-trisphosphate in cellular function is unknown.  相似文献   

7.
Stimulation of various cell surface receptors leads to the production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) through phospholipase C (PLC) activation, and the IP3 and DAG in turn trigger Ca2+ release through IP3 receptors and protein kinase C activation, respectively. The amount of IP(3) produced is particularly critical to determining the spatio-temporally coordinated Ca(2+)-signaling patterns. In this paper, we report a novel signal cross-talk between DAG and the IP3-mediated Ca(2+)-signaling pathway. We found that a DAG derivative, 1-oleoyl-2-acyl-sn-glycerol (OAG), induces Ca2+ oscillation in various types of cells independently of protein kinase C activity and extracellular Ca2+. The OAG-induced Ca2+ oscillation was completely abolished by depletion of Ca2+ stores or inhibition of PLC and IP3 receptors, indicating that OAG stimulates IP3 production through PLC activation and thereby induces IP3-induced Ca2+ release. Furthermore, intracellular accumulation of endogenous DAG by a DAG-lipase inhibitor greatly increased the number of cells responding to agonist stimulation at low doses. These results suggest a novel physiological function of DAG, i.e. amplification of Ca2+ signaling by enhancing IP3 production via its positive feedback effect on PLC activity.  相似文献   

8.
The effect of inositol-1,4,5-trisphosphate on Ca2+ release from microsomes isolated from dark-grown zucchini (Cucurbita pepo L.) hypocotyls was studied. Up to 30% of the Ca2+ taken up by the microsomes in the presence of 2mM ATP, was released by mumolar concentrations of inositol-1,4, 5-trisphosphate. This release was very rapid (less than 0.5 min) and was followed by a slower re-uptake of Ca2+. The microsomal levels of Ca2+ previously attained were not re-established within 5 min. External concentration of free Ca2+ was maintained in the 10(-8)M region during the release. This is the first time that inositol-1,4,5-trisphosphate has been shown to have a regulatory effect on Ca2+ in plant membrane fractions. Phosphoinositides may be important in signal transduction in plant cells, by altering the cytoplasmic Ca2+ activity, a function already known in animal cells.  相似文献   

9.
The requirement of Ca2+ for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) or the accumulation of inositol 1,4,5-trisphosphate (InsP3) in macrophages stimulated with fMet-Leu-Phe was examined using [32P]Pi or [3H]inositol-labeled cells. The dependence on Ca2+ of inositol-trisphosphate phosphatase was also examined. The application of 1 X 10(-8) M fMet-Leu-Phe caused a rapid decrease in the amount of PtdInsP2 to 70% of the control within 10 s, and the decrease was reverted to the control level by prolonged incubation. The decrease in the amount of PtdInsP2 accompanied the accumulation of phosphatidic acid and of InsP3, indicating that the loss of PtdInsP2 is due to phosphodiesteric breakdown. The dose-dependence of fMet-Leu-Phe or its analog on the hydrolysis of PtdInsP2 was much the same as that of the increase in intracellular free Ca2+ concentration in macrophages. The loss of PtdInsP2 as induced by fMet-Leu-Phe was similarly observed in macrophages treated with ionophore A23187 in the absence of external Ca2+ for 10 min. InsP3 was degraded by the particulate or cytosol fraction prepared from macrophages, and the activity of inositol-trisphosphate phosphatase in the particulate fraction was higher than that in the cytosol fraction. The enzyme in the cytosol fraction required Mg2+ for activity, and was activated by free Ca2+ concentrations ranging from 10(-7) to 10(-6) M in the presence of 1 mM MgCl2.  相似文献   

10.
Huh YH  Huh SK  Chu SY  Kweon HS  Yoo SH 《Biochemistry》2006,45(5):1362-1373
The inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are widely localized in both the heterochromatin and euchromatin regions. We found recently the presence of nucleoplasmic complexes that are composed of phospholipids, IP(3)R/Ca(2+) channels, and Ca(2+) storage protein chromogranin B (CGB). Close examination and 3D image reconstruction of these complexes revealed numerous vesicular structures with an average diameter of approximately 50 nm that are primarily interspersed between the heterochromatins. IP(3) rapidly released Ca(2+) from these structures, but other inositol phosphates, inositol 1,4-bisphosphate, inositol 1,3,4-trisphosphate, and inositol 1,3,4,5-tetrakisphosphate, failed to release Ca(2+). Addition of heparin or IP(3)R antibody blocked the IP(3)-induced Ca(2+) releases, indicating the release of Ca(2+) through the IP(3)R/Ca(2+) channels. Given the presence of the IP(3)R/Ca(2+) channels and Ca(2+) storage protein CGB in these vesicular structures, we postulate that these vesicles are the IP(3)-sensitive nucleoplasmic Ca(2+) stores. Abundance of the vesicular Ca(2+) stores between the heterochromatins appeared to imply critical roles these vesicular Ca(2+) stores play in controlling the Ca(2+) concentrations of the chromosomes.  相似文献   

11.
The inositol 1,4,5-trisphosphate receptor/channel (IP3R) is a major regulator of intracellular Ca2+ signaling, and liberates Ca2+ ions from the endoplasmic reticulum in response to binding at cytosolic sites for both IP3 and Ca2+. Although the steady-state gating properties of the IP3R have been extensively studied and modeled under conditions of fixed [IP3] and [Ca2+], little is known about how Ca2+ flux through a channel may modulate the gating of that same channel by feedback onto activating and inhibitory Ca2+ binding sites. We thus simulated the dynamics of Ca2+ self-feedback on monomeric and tetrameric IP3R models. A major conclusion is that self-activation depends crucially on stationary cytosolic Ca2+ buffers that slow the collapse of the local [Ca2+] microdomain after closure. This promotes burst-like reopenings by the rebinding of Ca2+ to the activating site; whereas inhibitory actions are substantially independent of stationary buffers but are strongly dependent on the location of the inhibitory Ca2+ binding site on the IP3R in relation to the channel pore.  相似文献   

12.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.  相似文献   

13.
The inositol 1,4,5-trisphosphate (InsP3) receptor was purified from bovine cerebellum and reconstituted in liposomes composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (1:1) successfully.No effect of Ca2+ concentration on [3H]-InsP3 binding to unreconstituted InsP3 receptor could be observed either at 4℃ or at 25℃,whereas the effect of [Ca2+] on reconstituted InsP3 receptor depended on the temperature.The Ca2+ concentration outside the proteolipsome ([Ca2+]o) had no detectable effect on InsP3 binding to InsP3 receptor at 4℃.In contrast,with increase of [Ca2+]o from 0 to 100 nmol/L at 25℃,the InsP3 binding activity increased gradually.Then the InsP3 binding activity was decreased drastically at higher [Ca2+]o and inhibited entirely at 50 mol/L [Ca2+]o.Conformational studies on intrinsic fluorescence of the reconstituted InsP3 receptor and its quenching by KI and HB indicated that the global conformation of reconstituted InsP3 receptor could not be affected by [Ca2+]o at 4℃.While at 25℃,the effects of 10 m mol/L [Ca2+]o on global,membrane and cytoplasmic conformation of the reconstituted InsP3 receptor were different significantly from that of 100 nmol/L [Ca2+]o.  相似文献   

14.
The possibility that chronic activation of the phosphoinositide-mediated signaling pathway modifies the Ca(2+)-mobilizing action of inositol 1,4,5-trisphosphate (InsP3) was examined. SH-SY5Y human neuroblastoma cells were exposed to carbachol, permeabilized electrically, loaded with 45Ca2+, and 45Ca2+ mobilization in response to exogenous InsP3 was assessed. In control permeabilized cells, InsP3 released 65 +/- 2% of sequestered 45Ca2+ (EC50 = 0.32 +/- 0.05 microM). Pre-treatment with carbachol reduced both maximal InsP3-induced 45Ca2+ release (to 34 +/- 3%, with half-maximal and maximal inhibition at approximately 3 and 6 h, respectively) and the potency of InsP3 (EC50 = 0.92 +/- 0.13 microM). This inhibitory effect of carbachol was half-maximal at approximately 5 microM, was mediated by muscarinic receptors, and was reversible following withdrawal of agonist. Pretreatment with phorbol 12,13-dibutyrate did not alter the maximal effect of InsP3 but doubled its EC50. Evidence suggesting that the inhibitory effects of carbachol pretreatment resulted from altered Ca2+ homeostasis was not forthcoming; both 45Ca2+ uptake and release induced by ionomycin and thapsigargin were identical in control and pretreated permeabilized cells, as were the characteristics of reuptake of released Ca2+. In contrast, carbachol pretreatment, without altering the affinity of InsP3 (Kd = 64 +/- 7 nM), reduced the density of [32P]InsP3-binding sites from 2.0 +/- 0.1 to 1.0 +/- 0.1 pmol/mg protein with a time course essentially identical to that for the reduction in responsiveness to InsP3. This effect was not mimicked by pretreatment of cells with phorbol 12,13-dibutyrate. These data indicate that chronic activation of phosphoinositide hydrolysis can reduce the abundance of InsP3 receptors and that this causes a reduction in size of the InsP3-sensitive Ca2+ store. This modification, possibly in conjunction with a protein kinase C-mediated event, appears to account for the carbachol-induced suppression of InsP3 action. As intracellular InsP3 mass remained elevated above basal for at least 24 h after addition of carbachol, suppression of the Ca(2+)-mobilizing activity of InsP3 represents an important adaptive response to cell stimulation that can limit the extent to which intracellular Ca2+ is mobilized.  相似文献   

15.
The inositol 1,4,5-trisphosphate (InsP3) receptor was purified from bovine cerebellum and reconstituted in liposomes composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (1:1) successfully. No effect of Ca2+ concentration on [3H]-InsP3 binding to unreconstituted InsP3 receptor could be observed either at 4°C or at 25°C, whereas the effect of [Ca2+] on reconstituted InsP3 receptor depended on the temperature. The Ca2+ concentration outside the proteolipsome ([Ca2+]o) had no detectable effect on InsP3 binding to InsP3 receptor at 4°C. In contrast, with increase of [Ca2+]o from 0 to 100 nmol/L at 25°C, the InsP3 binding activity increased gradually. Then the InsP3 binding activity was decreased drastically at higher [Ca2+]o and inhibited entirely at 50 μmol/L [Ca2+]o. Conformational studies on intrinsic fluorescence of the reconstituted InsP3 receptor and its quenching by KI and HB indicated that the global conformation of reconstituted InsP3 receptor could not be affected by [Ca2+]o at 4°C. While at 25°C, the effects of 10 μmol/L [Ca2+]o on global, membrane and cytoplasmic conformation of the reconstituted InsP3 receptor were different significantly from that of 100 nmol/L [Ca2+]o.  相似文献   

16.
The release of Ca2+ induced by inositol 1,4,5-trisphosphate (InsP3) in the presence of GTP was examined by using saponin-permeabilized macrophages. The origin and the amount of mobilized Ca2+ in intact macrophages stimulated with chemotactic peptide were also examined to assess the physiological significance of GTP and InsP3 on Ca2+-releasing activities. The total amount of Ca2+ released by 20 microM-A23187 from the unstimulated intact macrophages was 1.4 nmol/4 x 10(6) cells, and the mitochondrial uncoupler did not cause an efflux of Ca2+ from the cells. The Ca2+ accumulation by the non-mitochondrial pool(s) was inhibited by the presence of GTP, and the total amount of releasable Ca2+ (1.4 nmol/4 x 10(6) cells) was comparable with that accumulated by the non-mitochondrial pool(s) in the presence of GTP at a free Ca2+ concentration of 0.14 microM. The mobilized and subsequently effluxed Ca2+ in cells stimulated with chemotactic peptide was estimated to be 0.3 nmol/4 x 10(6) cells. Much the same amounts were released by about the half-maximal dose of InsP3 from the non-mitochondrial pool(s) of saponin-treated macrophages that had accumulated Ca2+ at a free concentration of 0.14 microM in the presence of GTP. These results suggest that the Ca2+-releasing activity induced by GTP may play a role in the long-term regulation of Ca2+ content in the non-mitochondrial pool(s) of macrophages, and that released by InsP3 can explain, quantitatively, the chemotactic-peptide-induced mobilization of Ca2+.  相似文献   

17.
Luminal Ca2+ controls the sensitivity of the intracellular Ca2+ stores to inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Ins(1,4,5)P3-induced Ca2+ release is also controlled by cytosolic Ca2+; low concentrations of Ca2+ stimulate the release. The aim of this work was to investigate whether luminal Ca2+ would affect the stimulation of the Ins(1,4,5)P3 receptor by cytosolic Ca2+ in permeabilized A7r5 smooth muscle cells. We also report that the Ins(1,4,5)P3 receptor in A7r5 cells is activated by low concentrations of cytosolic Ca2+. Cytoplasmic Ca2+ increases the Ins(1,4,5)P3 sensitivity without affecting the cooperativity. The increase in Ins(1,4,5)P3 sensitivity becomes relatively more pronounced when the Ca2+ content of the stores decreases. This modulatory effect of luminal Ca2+ on the responsiveness to cytosolic Ca2+ is an intrinsic property of the Ins(1,4,5)P3 receptor.  相似文献   

18.
Isolated rat enterocytes were permeabilized by saponin treatment. 45Ca2+ was accumulated by these cells when provided with ATP in a medium containing Ca2+ ligands. The use of oxalate, vanadate and mitochondrial inhibitors indicated that both non-mitochondrial and mitochondrial pools are involved. Kinetic analysis of non-mitochondrial Ca2+ uptake revealed a Km of 0.1 microM Ca2+ and a Vmax of 0.4 nmol Ca2+/mg protein X min for this Ca2+-pumping ATPase activity. Mitochondria started to take up Ca2+ between 0.2 and 0.3 microM free Ca2+ reaching maximal rates around 2 microM. At 1 microM free Ca2+ mitochondria accumulated 20 times more Ca2+ than the non-mitochondrial pool. Inositol 1,4,5-trisphosphate released 40% of the Ca2+ content of the non-mitochondrial pool. Half-maximal release was observed at 0.5 and 1.5 microM IP3 in duodenal and ileal cells respectively. These findings support the possibility that the phosphatidyl inositide metabolism plays a role in regulation of electrolyte transport in enterocytes.  相似文献   

19.
2-Aminoethoxydiphenyl borate (2APB) is a membrane-permeable blocker of the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release in bi-directional Ca2+ -flux conditions. We have now studied the effects of 2APB on the 45Ca2+ uptake into, and on the basal and IP(3)-stimulated unidirectional 45Ca2+ efflux from the non-mitochondrial Ca2+ stores in permeabilized A7r5 smooth-muscle cells. 2APB inhibited the IP3 -induced Ca2+ release, with a half maximal inhibition at 36 microM 2APB, without affecting [3H]IP3 binding to the receptor. This inhibition did not depend on the IP3, ATP or free Ca2+ concentration. The Ca2+ pumps of the non-mitochondrial Ca2+ stores were half-maximally inhibited at 91microM 2APB. Higher concentrations of 2APB increased the non-specific leak of Ca2+ from the stores. We conclude that 2APB can not be considered as a selective blocker of the IP3 -induced Ca2+ release. Our results can explain the various effects of 2APB observed in intact cells.  相似文献   

20.
Huh YH  Kim KD  Yoo SH 《Biochemistry》2007,46(49):14032-14043
The nucleus also contains the inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ channels in the nucleoplasm proper independent of the nuclear envelope or the cytoplasm. The nuclear IP3R/Ca2+ channels were shown to be present in small IP3-dependent nucleoplasmic Ca2+ store vesicles, yet no information is available regarding the IP3 sensitivity of nuclear IP3R/Ca2+ channels. Here, we show that nuclear IP3R/Ca2+ channels are 3-4-fold more sensitive to IP3 than cytoplasmic ones in both neuroendocrine PC12 cells and nonneuroendocrine NIH3T3 cells. Given the presence of phosphoinositides and phospholipase C and the importance of IP3-mediated Ca2+ signaling in the nucleus, the high IP3 sensitivity of nuclear IP3R/Ca2+ channels seemed to reflect the physiological needs of the nucleus to finely control the IP3-dependent Ca2+ concentrations. It was further shown that the IP3R/Ca2+ channels of secretory cells are 7-8-fold more sensitive to IP3 than those of nonsecretory cells. This difference appeared to result from the presence of secretory cell marker protein chromogranins (thus secretory granules) in secretory cells; expression of chromogranins in NIH3T3 cells increased the IP3 sensitivity of both nuclear and cytoplasmic IP3R/Ca2+ channels by approximately 4-6-fold. In contrast, suppression of chromogranin A expression in PC12 cells changed the EC50 of IP3 sensitivity for cytoplasmic IP3R/Ca2+ channels from 17 to 47 nM, whereas suppression of chromogranin B expression changed the EC50 of cytoplasmic IP3R/Ca2+ channels from 17 to 102 nM and the nuclear ones from 4.3 to 35 nM. Given that secretion is the major function of secretory cells and is under a tight control of intracellular Ca2+ concentrations, the high IP3 sensitivity appears to reflect the physiological roles of secretory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号