首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Abstract: Dopamine and dopamine receptor agonists were found to inhibit adenylate cyclase activity dose-de-β ndently in a neuroblastoma × Chinese hamster brain explant hybrid cell line NCB-20. Apomorphine (with an IC50 value of 10 n M ) was the most effective inhibitor, followed by 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydro-naphthaline (ADTN), dopamine, and N -dipropyldopa-mine. The inhibition was potently reversed by sulpiride, butaclamol, and flupenthixol in a stereospecific manner, but was unaffected by yohimbine, except at high concentrations. Clonidine also inhibited adenylate cyclase activity in these cells and this was reversed by the α2-adrenoreceptor antagonist yohimbine, but not by sulpiride. [ d -Ala2, d -Leu5]Enkephalin inhibited adenylate cyclase activity in NCB-20 cells at nanomolar concentrations; this was reversed by naloxone. All three inhibitory neurotransmitters were able to reverse the stimulation of cyclic AMP synthesis by serotonin or prostaglandin E1The dopamine receptor that modulates cyclic AMP synthesis in NCB-20 cells is pharmacologically quite distinct from a high-affinity spiperone binding site identified in these cells, but shows the pharmacologic specificity of the D2 receptor previously described in mammalian brain.  相似文献   

3.
Abstract— Dopamine, norepinephrine, carbamylcholine and PGE1 (prostaglandin E1). increased cyclic AMP concentrations in slices of bovine superior cervical ganglia. PGF was less effective and neither PGE2 nor PGF had any effect. Dopamine and PGE, alone or in combination, did not modify low K m cyclic AMP phosphodiesterase activity. Combinations of dopamine and PGE, showed a marked synergistic effect, increasing ganglionic cyclic AMP to a much greater extent than that observed when the two compounds were tested alone. Norepinephrine (10 μ M) , which increased cyclic AMP as much as 10 μ m -dopamine, showed no synergistic effect when tested in the presence of PGE1 or other PGs. Phentolamine, fluphenazine and triflupromazine blocked the dopamine effect without suppressing its synergism with PGE1 Adenylate cyclase of synaptosomes isolated from the ganglia under a variety of experimental conditions appeared to be as responsive to PGE1 as the slices, but it was poorly stimulated by dopamine and was not synergistically modulated by dopamine in the presence of PGE1
These and other data are interpreted as indicating the presence of both a PGE1-sensitive and a PGE1-modulated dopamine-sensitive adenylate cyclase in the cervical ganglion. These adenylate cyclases are tentatively assigned to pre- and post-synaptic structures respectively.  相似文献   

4.
5.
Abstract: The cholinergic agonist carbachol, epinephrine, and the opiate morphine all inhibit prostaglandin E1 (PGE1)-stimulated adenylate cyclase in homogenates from the neuroblastoma-glioma hybrid NG108-15. Pretreatment of the hybrid with 100 μ M carbachol resulted in the rapid loss (desensitization) of the carbachol inhibition of adenylate cyclase (tM1/2< 3 min). The desensitization of the carbachol inhibition was blocked by 0.1 μ M atropine. Pretreatment with carbachol (1–24 h) did not significantly affect the inhibition of adenylate cyclase by either epinephrine or morphine, nor did it alter the PGE1-stimulated activity, that is, no supersensitization was observed. Cholate extracts of the particulate fraction from either carbachol-desensitized or of control NGlOS-15 were able to reconstitute adenylate cyclase activities of the coupling proteins (G/F)-deficient cyclymphoma cell membranes with equal efficacy. These results suggested that the coupling proteins of the adenylate cyclase were not altered by the carbachol pretreatment and that desensitization occurs at the receptor or at a receptor-associated level. However, the possibility remained that specific domains of the G/F, which interact only with muscarinic receptors, were altered.  相似文献   

6.
Abstract: Rat glioma mouse neuroblastoma hybrid neurotumor cells (NG108-15), synchronized by amino acid deprivation, showed a cell-cycle-dependent peak of activity of a ganglioside N-acetylgalactosaminyl transferase 14-24 h following release from the cell cycle block (S/G2 phase). Maximal expression of two typical lysosomal hydrolases, N-acetyl-β-hexosaminidase and β-galactosidase, occurred between 18 and 21 h following release (S phase), declining to G1 phase levels during the peak of N-acetylgalactosamine (GalNAc) transferase activity. In addition, glycosyltransferase activity in G2 phase cells showed an increase in apparent Vmax (suggesting the presence of more enzyme/mg of cell protein) and apparent binding affinity for uridine diphosphate N-acetylgalactosamine (UDP-GalNAc) (32 versus 14 M) when compared to transferase activity in the G1 phase. However, the opioid peptide enkephalin [D-Ala2, o-Leu5], which inhibits ganglioside GalNAc transferase activity in unsynchronized NG108-15 cultures, was much more inhibitory in whole cells 8 h after release from the cell cycle block (G1 phase) than in cells 20 h after release (G, phase), with 50% inhibition occurring at 2 ± 10-9M and 2 ± 10-7M, respectively. These results suggest that the GalNAc transferase activity is regulated in more than one way during the cell cycle, since both Vmax and Km changes are observed, and that the cyclic AMP-dependent mechanism by which opiates reduce transferase activity is receptor mediated and cell cycle dependent.  相似文献   

7.
Abstract— Morphine has been observed to have only a minor effect on the prostaglandin E1 (PGE1) stimulated adenylate cyclase or the basal cyclase activity in the neuroblastoma N18TG2 calls. However, this ineffectiveness of the opiates was not due to the absence of opiate receptor in this cell line. Contrary to previous observations, neuroblastoma N18TG2 cells possessed a high affinity, stereospecific opiate receptor. When [3H]dihydromorphine and [3H]naloxone binding were determined, a single component receptor with Kdiss= 25-31 n m and with a capacity of 165 fmol/mg protein could be observed. This receptor has similar properties to those observed in the brain homogenates. The naloxone specific binding was dependent on the pH of the incubation medium and maximal binding occurred at pH 7.6. The agonist binding was inhibited by the alkali metal cations and divalent cations, while the antagonist binding was not affected by the cations significantly. There was no observable reversal of the Na+ inhibitory effect on agonist binding by the addition of Mn2+ to the incubation mixtures. Opiate binding to the neuroblastoma N18TG2 cells could be attenuated by pretreating the cells with N -ethylmaleimide or proteolytic enzymes. Of the lipases tested, only phospholipase A2 has an inhibitory effect on the naloxone binding. Fractionation of the cell homogenates with differential centrifugation and purification of the membrane fractions by sucrose gradients suggested the localization of the receptor at the plasma membranes. Thus, the receptor in the neuroblastoma N18TG2 cells closely resembles those observed in the brain homogenates  相似文献   

8.
Abstract: Cholinergic synaptosomes isolated from the electric organ of Torpedo contain membrane-bound adenylate cyclase activity (∼6 pmol/mg proteidmin), which is dependent on the presence of guanine nucleotides. The activity is strongly dependent on temperature and only slightly affected by NaCl. The Torpedo adenylate cyclase is completely inhibited by low levels of free Ca2+ (K0∼ 0.5 μ M ). This effect is not altered by either trifluoperazine or addition of exogenous calmodulin. Ca3+ has no effect on the activation step of the adenylate cyclase by guanyl-5'-yl imidodiphosphate (GppNHp), and Mn2+ abolishes the Ca2+-dependent inhibition of cyclic AMP synthesis. These findings suggest that Ca2+ exerts its effect by direct interaction with a site located on the catalytic subunit. Torpedo synaptosomes contain presynaptic inhibitory muscarinic receptors. The binding of muscarinic agonists to the receptors is modulated (to lower affinity) by GTP. However, muscarinic ligands, examined under a variety of assay conditions, have no effect on adenylate cyclase activity. These results suggest that although both the muscarinic receptor and the adenylate cyclase are coupled to G proteins, they either interact with different G proteins or are situated in different regions of the presynaptic membrane.  相似文献   

9.
Cultured guinea pig epidermal cells and dermal fibroblasts were chosen as model systems to study possible growth inhibition by cyclic AMP (cAMP)-elevating drugs. The rate of DNA synthesis was used to assay growth rate in control cultures and those treated with agents which increase intracellular cAMP, including dibutyryl cAMP, the phosphodiesterase inhibitors papaverine and theophylline and agents which stimulate adenylate cyclase, iso-proterenol and prostaglandin E2 methyl ester. Treatment for 24 h with dibutyryl cAMP (10−4 to 10−2 M) inhibited cell growth by 50 to 95%, whereas butyrate(10−4M) showed essentially no effect. This inhibition could not be attributed to decreased precursor transport or to drug toxicity. Papaverine (10−6 to 10−4 M) and theophylline (10−4 to 10−3 M) also gave dose-dependent growth inhibition as did isoproterenol and prostaglandinE2methyl ester. Radioautographic analysis of grain density after dibutyryl cAMP treatment and 3H-thymidine incorporation indicated no S-phase inhibition. Cyclic AMP-elevating drugs appear to inhibit growth of guinea-pig epidermal cells and dermal flbroblasts by blocking the cell cycle in G−2, M1, or G. −1  相似文献   

10.
Abstract: In anterior pituitary cells or when transfected into host cell lines, the D2 dopamine receptor inhibits adenylyl cyclase and activates potassium channels. The GH-3 pituitary tumor cell line, which lacks functional D2 receptors, responds to epidermal growth factor (EGF) by expressing a D2 receptor that, paradoxically, couples to potassium channel activation but poorly inhibits adenylyl cyclase; this was correlated with a pronounced increase in α subunit of the G protein G13. In this study we have investigated the effects of EGF on the transduction mechanisms of D2 receptors in GH4C1 cells transfected and permanently overexpressing the rat short D2 receptor. Activation of D2 receptors in these cells resulted in both inhibition of adenylyl cyclase and opening of potassium channels and inhibition of prolactin release by both cyclic AMP-dependent and independent mechanisms. Exposure of the transfected GH4C1 cells to EGF caused a dramatic decrease in the coupling efficiency of the D2 receptor to inhibit cyclic AMP-dependent responses, leaving its activity toward potassium channels unchanged. The EGF treatment led to the concomitant increase in the membrane content of G13 protein. These results suggest that the transmembrane signaling specificity of G protein-coupled receptors can be modulated by the relative amounts of different G proteins at the cell membrane.  相似文献   

11.
The effects of inhibition of the synthesis of protein, mRNA or rRNA on the progression of the cell cycle have been analyzed in cultures of Catharanthus roseus in which cells were induced to divide in synchrony by the double phosphate starvation method. The partial inhibition of protein synthesis at the G1 phase by anisoniycio or cycloheximide caused the arrest of cells in the G1 phase or delayed the entry of cells into the S phase. When protein synthesis was partially inhibited at the S phase, cell division occurred to about the same extent as in the control. When asynchronously dividing cells were treated with cycloheximide, cells accumulated in the G1 phase, as shown by flow-cytometric analysis. The partial inhibition of mRNA synthesis by α-amanitin at the G1 phase caused the arrest of cells in the G1 phase, although partial inhibition of mRNA synthesis at the S phase had little effect on cell division. In the case of inhibition of synthesis of rRNA by actinomycin D at the G1 phase, initiation of DNA synthesis was observed, but no subsequent DNA synthesis or the division of cells occurred. However, the addition of actinomycin D during the S phase had no effect on cell division. These results suggest that specific protein(s), required for the progression of the cell cycle, are synthesized in the G1 phase, and that the mRNA(s) that encode these proteins are also synthesized at the G1 phase.  相似文献   

12.
Abstract: Adenosine A1 receptors as well as other components of the adenylate cyclase system have been studied in cultured cerebellar granule cells. No significant changes in adenosine A1 receptor number, assayed by radioligand binding in intact cells, were detected from 2 days in vitro (DIV) until 7 DIV. Nevertheless, a decline in this parameter was detected at 9 DIV. The steady-state levels of α-Gs and α-Gi, detected by immunoblotting, showed similar profiles, increasing from 2 to 5 DIV and decreasing afterward. Forskolin-stimulated adenylate cyclase levels also showed an increase until 5 DIV, decreasing at 7 and 9 DIV. The adenosine A1 receptor analogue cyclopentyladenosine (CPA) was able to inhibit cyclic AMP accumulation at 2, 5, and 7 DIV but failed to do so at 9 DIV. This inhibition was prevented by the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The presence of adenosine deaminase in the culture increased adenosine A1 receptor number during the period studied and induced recovery of the inhibitory effect of CPA, lost after 7 DIV. These data suggest that functional expression of adenosine A1 receptors and the other components of the adenylate cyclase system is subjected to regulation during the maturation of cultured cerebellar granule cells and demonstrates a key role for endogenous adenosine in the process.  相似文献   

13.
Abstract: Chronic etorphine treatment of neuroblastoma × glioma NG108-15 cells results in both an increase in adenylate cyclase activity (upon addition of the opiate antagonist naloxone) as well as an homologous desensitization of the opiate receptor. The continued ability of opiate agonists to regulate adenylate cyclase activity following opiate receptor desensitization can be understood by proposing that the catalytic subunit of adenylate cyclase in NG108-15 cells is under tonic regulation by both guanine nucleotide regulatory (Ni) and stimulatory (Ns) components. Inactivation of Ni by pertussis toxin (PT) treatment resulted in elevated adenylate cyclase activities comparable to those observed in control cells following chronic opiate treatment. This increased enzymatic activity could not be further induced by PT treatment of cells exposed to opiate previously. In addition, procedures that prevented receptor-mediated activation of Ns, i.e., treatment with NaF or desensitization of the stimulatory receptors (prostaglandin E1, adenosine) eliminated the increase in adenylate cyclase activity induced by naloxone following chronic opiate exposure. Hence, the increase in enzymatic activity observed following chronic opiate treatment may be due to a loss in tonic inhibitory regulation of adenylate cyclase mediated through Ni resulting in the unimpeded expression of Ns activity. This tonic inhibition of adenylate cyclase activity is one of the multiple mechanisms by which Ni regulates adenylate cyclase in this cell line.  相似文献   

14.
Abstract: The δ-opioid receptor is known to regulate multiple effectors in various tissues. When expressed in human embryonic kidney 293 cells, the cloned δ-opioid receptor inhibited cyclic AMP (cAMP) accumulation in response to the δ-selective agonist [ d -Pen2, d -Pen5]enkephalin. The inhibitory response of [ d -Pen2, d -Pen5]enkephalin was dependent on the expression of the δ-opioid receptor and exhibited an EC50 of 1 n M . The receptor showed ligand selectivity and a pharmacological profile that is appropriate for the δ-opioid subtype. The inhibition was blocked by the opiate antagonist naloxone or by pretreatment of the cells with pertussis toxin. Cotransfection of the δ-opioid receptor with type II adenylyl cyclase and an activated mutant of αs converted the δ-opioid signal from inhibition to stimulation of cAMP accumulation. It is interesting that when transfected into Ltk fibroblasts, the cloned δ-opioid receptor was able to stimulate the formation of inositol phosphates (EC50 = 8 n M ). This response was sensitive to pertussis toxin. The opioid-mediated formation of inositol phosphates exhibited the same ligand selectivity as seen with the inhibition of cAMP accumulation. The ability of the δ-opioid receptor to couple to G proteins other than Gi was also examined. Cotransfection studies revealed that the δ-opioid receptor can utilize Gz to regulate cAMP accumulation and to stimulate the formation of inositol phosphates.  相似文献   

15.
Abstract: Adenylyl cyclase activity was measured following labelling of the cellular ATP pool with [3H]adenine in intact Rat-1 fibroblasts that had been stably transfected to express the murine δ-opioid receptor (clone D2). Basal [3H]cyclic AMP accumulation was low and was increased substantially by the addition of the diterpene forskolin. The synthetic enkephalin d -Ala2, d -Leu5 enkephalin (DADLE) produced strong inhibition of forskolin-amplified [3H]cyclic AMP production, whereas the δ-opioid ligand ICI174864 augmented forskolin-amplified adenylyl cyclase activity. Naloxone was unable to mimic the effects of ICI174864, and coincubation of the cells with these two ligands attenuated the effect of ICI174864. The EC50 (9.4 ± 0.6 × 10−8 M ) for ICI174864 augmentation of forskolin-stimulated adenylyl cyclase was equal to its estimated K i. Pertussis toxin pretreatment of clone D2 cells prevented both this effect of ICI174864 and the inhibition produced by DADLE. Use of a Cytosensor microphysiometer demonstrated that treatment of clone D2 cells with DADLE increased and that with ICI174864 decreased the basal rate of cellular proton extrusion. By using these two distinct experimental strategies, ICI174864 was shown to function in a manner anticipated for an inverse agonist, demonstrating that such effects can be observed in intact cells and are not restricted to assays performed on membrane preparations.  相似文献   

16.
Abstract. Cellular uptake of [3H]thymidine ([3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 × 10-18 mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10%× min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

17.
Abstract. The initiation of DNA synthesis and further cell cycle progression in cells during and following exposure to extremely hypoxic conditions in either G1 or G2+M has been studied in human NHIK 3025 cells. Populations of cells, synchronized by mitotic selection, were rendered extremely hypoxic (< 4 p.p.m. O2) for up to 24n h. Cell cycle progression was studied from flow cytometric DNA recordings. No accumulation of DNA was found to take place during extreme hypoxia. Cells initially in G1 at the onset of treatment did not enter S during up to 24 h exposure to extreme hypoxia, but started DNA synthesis in a highly synchronous manner within 1.5 to 2.25 h after reoxygenation. The duration of S phase was only slightly affected (increased by ≅10%) by the hypoxic treatment. This suggests that the DNA synthesizing machinery either remains intact during hypoxia or is rapidly restored after reoxygenation. Cells initially in G2 at the onset of hypoxia were able to complete mitosis, but further cell cycle progression was blocked in the subsequent G^ Following reoxygenation, these cells progressed into S phase, but the initiation of DNA synthesis was delayed for a period corresponding to at least the duration of normal G1 and did not appear in a synchronous manner. In fact, cell cycle variability was found to be increased rather than decreased as a result of exposure to hypoxia starting in G2. We interpret these findings as an indication that important steps in the preparation for initiation of DNA synthesis take place before mitosis. Furthermore, the change in cell cycle duration induced by hypoxia commencing in G1 is of a nature other than that induced by hypoxia commencing in other parts of the cell cycle.  相似文献   

18.
Abstract: D1-and D2-dopamine receptors exert important physiological actions on striatal neurons, but the intracellular second messenger pathways activated by these receptors are still incompletely understood. Using primary cultures of rat striatal cells, we have examined the effects of activating D1 or D2 receptors on arachidonic acid (AA) release and cyclic AMP accumulation. In striatal neurons labeled by incubation with [3H]AA, D2-receptor stimulation enhanced release of [3H]AA produced by application of the Ca2+ ionophore A23187 or of the purinergic agonist ATP. By contrast, D1-receptor stimulation inhibited [3H]AA release. This inhibitory effect of D1 receptors was accompanied by stimulation of adenylyl cyclase activity, measured as accumulation of cyclic AMP, and was mimicked by application of the adenylyl cyclase activator forskolin. The results indicate the existence of a novel signaling pathway for D2 and D1 receptors in striatum, potentiation and inhibition, respectively, of Ca2+-evoked AA release.  相似文献   

19.
Abstract: In rat olfactory bulb, muscarinic and opioid receptor agonists stimulate basal adenylyl cyclase activity in a GTP-dependent and pertussis toxin-sensitive manner. However, in the present study, we show that in the same brain area activation of these receptors causes inhibition of adenylyl cyclase activity stimulated by Ca2+ and calmodulin (CaM) and by forskolin (FSK), two direct activators of the catalytic unit of the enzyme. The opioid and muscarinic inhibitions consist of a decrease of the maximal stimulation elicited by either CaM or FSK, without a change in the potency of these agents. [Leu5]Enkephalin and selective δ- and μ-, but not κ-, opioid receptors agonists inhibit the FSK stimulation of adenylyl cyclase activity with the same potencies displayed in stimulating basal enzyme activity. Similarly, the muscarinic inhibition of FSK-stimulated adenylyl cyclase activity shows agonist and antagonist sensitivities similar to those characterizing the muscarinic stimulation of basal enzyme activity. Fluoride stimulation of adenylyl cyclase is not affected by either carbachol or [Leu5]enkephalin. In vivo treatment of olfactory bulb with pertussis toxin prevents both opioid and muscarinic inhibition of Ca2+/CaM- and FSK-stimulated enzyme activities. These results indicate that in rat olfactory bulb δ- and μ-opioid receptors and muscarinic receptors, likely of the M4 subtype, can exert a dual effect on cyclic AMP formation by interacting with pertussis toxin-sensitive GTP-binding protein(s) and possibly by affecting different molecular forms of adenylyl cyclase.  相似文献   

20.
Protein synthesis during photoinduced, synchronous progression of the cell cycle in single-celled protonemata of the fern Adiantum capillus-veneris was studied by tracer techniques. Nuclei of the protonemata were labelled with 3H-thymidine during spore germination so that the amount of 3H incorporated into the TCA-insoluble fraction of the cells could be used as a measure of the cell number in each sample. The rate of the incorporation of 14C-amino acids into TCA-insoluble materials was not significantly varied at different stages of the cell cycle or by treatment with blue light. Extracts of cells labelled with 35S-methionine at various times after the transfer from red light condition (G0) to darkness (G1 to S) were analyzed by two-dimensional gel electrophoresis. At least 3 of about 200 spots showed significant changes in intensity on fluorograms. Spot A (molecular weight 20,000, isoelectric point 6.3) was detectable only in early G1, whereas spot B (molecular weight 19,500, isoelectric point 6.3) was found only in the late G1 and S phases. When the cells were exposed to blue light before the dark incubation, the times of disappearance of spot A and appearance of spot B were advanced depending upon the progression of the cell cycle but not upon the clock time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号