首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hbd (hemoglobin deficit) mutation affects iron trafficking in murine reticulocytes. It is due to a deletion that eliminates exon 8 of Sec15l1, the homolog of a gene that encodes an exocyst component in yeast. We tested the hypothesis that the mutation causes defective slow or rapid receptor recycling by measuring endocytosis and exocytosis of transferrin by hbd reticulocytes. Endocytosis and initial iron incorporation were relatively unaffected, but exocytosis was unexpectedly slowed. These data indicate that rapid transferrin recycling is defective after pSec15l1 has mutated.  相似文献   

2.
SEC15 function is required at a late stage of the yeast secretory pathway. Duplication of the gene encoding the ras-like, GTP-binding protein, Sec4, can suppress the partial loss of function resulting from the sec15-l mutation, but cannot suppress disruption of sec15. Analysis of the SEC15 gene predicts a hydrophilic protein product of 105 kD. Anti-Sec15 antibody recognizes a protein of 116-kD apparent molecular mass which is associated with a microsomal fraction of yeast in a strongly pH dependent fashion. Overproduction of Sec15 protein interferes with the secretory pathway, resulting in the formation of a cluster of secretory vesicles, and a patch of Sec15 protein revealed by immunofluorescence. The sec4-8 and sec2-4l mutations, but not mutations in other SEC genes, prevent formation of the Sec15 protein patch. We propose that Sec15 protein responds to the function of the Sec4 protein to control vesicular traffic.  相似文献   

3.
The SEC17 gene of Saccharomyces cerevisiae is required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus. Here we report that the product of the SEC17 gene has the exact biochemical properties expected for a yeast homologue of the mammalian transport factor, alpha-SNAP. The DNA sequence of SEC17 codes for a protein of predicted molecular mass of 33 kDa. Immunoblotting indicates that Sec17p fractionates as a peripheral membrane protein and is mostly soluble when overexpressed, suggesting the presence of a saturable membrane receptor for Sec17p. Sec17p was purified from yeast cytosol using a SNAP-dependent in vitro mammalian Golgi transport assay. Kinetic analysis using this assay shows Sec17p acts temporally close to the fusion of transport vesicles with the medial Golgi compartment. In yeast extracts, Sec17p binds to Sec18p with a 1:1 stoichiometry. The interaction between Sec17p and Sec18p requires an activity provided by yeast membranes, and this putative membrane receptor activity is not extracted by high salt treatment of membranes.  相似文献   

4.
SEC16 is required for transport vesicle budding from the ER in Saccharomyces cerevisiae, and encodes a large hydrophilic protein found on the ER membrane and as part of the coat of transport vesicles. In a screen to find functionally related genes, we isolated SED4 as a dosage- dependent suppressor of temperature-sensitive SEC16 mutations. Sed4p is an integral ER membrane protein whose cytosolic domain binds to the COOH-terminal domain of Sec16p as shown by two-hybrid assay and coprecipitation. The interaction between Sed4p and Sec16p probably occurs before budding is complete, because Sed4p is not found in budded vesicles. Deletion of SED4 decreases the rate of ER to Golgi transport, and exacerbates mutations defective in vesicle formation, but not those that affect later steps in the secretory pathway. Thus, Sed4p is important, but not necessary, for vesicle formation at the ER. Sec12p, a close homologue of Sed4p, also acts early in the assembly of transport vesicles. However, SEC12 performs a different function than SED4 since Sec12p does not bind Sec16p, and genetic tests show that SEC12 and SED4 are not functionally interchangeable. The importance of Sed4p for vesicle formation is underlined by the isolation of a phenotypically silent mutation, sar1-5, that produces a strong ER to Golgi transport defect when combined with sed4 mutations. Extensive genetic interactions between SAR1, SED4, and SEC16 show close functional links between these proteins and imply that they might function together as a multisubunit complex on the ER membrane.  相似文献   

5.
SEC23B is one of two vertebrate paralogs of SEC23, a key component of the coat protein complex II vesicles. Complete deficiency of SEC23B in mice leads to perinatal death caused by massive degeneration of professional secretory tissues. However, functions of SEC23B in postnatal mice and outside professional secretory tissues are unclear. In this study, we generated a Sec23b KO mouse and a knockin (KI) mouse with the E109K mutation, the most common human mutation in congenital dyserythropoietic anemia type II patients. We found that E109K mutation led to decreases in SEC23B levels and protein mislocalization. However, Sec23bki/ki mice showed no obvious abnormalities. Sec23b hemizygosity (Sec23bki/ko) was partially lethal, with only half of expected hemizygous mice surviving past weaning. Surviving Sec23bki/ko mice exhibited exocrine insufficiency, increased endoplasmic reticulum stress and apoptosis in the pancreas, and phenotypes consistent with chronic pancreatitis. Sec23bki/ko mice had mild to moderate anemia without other typical congenital dyserythropoietic anemia type II features, likely resulting from exocrine insufficiency. Moreover, Sec23bki/ko mice exhibited severe growth restriction accompanied by growth hormone (GH) insensitivity, reminiscent of Laron syndrome. Growth restriction is not associated with hepatocyte-specific Sec23b deletion, suggesting a nonliver origin of this phenotype. We propose that inflammation associated with chronic pancreatic deficiency may explain GH insensitivity in Sec23bki/ko mice. Our results reveal a genotype–phenotype correlation in SEC23B deficiency and indicate that pancreatic acinar is most sensitive to SEC23B deficiency in adult mice. The Sec23bki/ko mice provide a novel model of chronic pancreatitis and growth retardation with GH insensitivity.  相似文献   

6.
7.
8.
The Sec23p/Sec24p complex functions as a component of the COPII coat in vesicle transport from the endoplasmic reticulum. Here we characterize Saccharomyces cerevisiae SEC24, which encodes a protein of 926 amino acids (YIL109C), and a close homologue, ISS1 (YNL049C), which is 55% identical to SEC24. SEC24 is essential for vesicular transport in vivo because depletion of Sec24p is lethal, causing exaggeration of the endoplasmic reticulum and a block in the maturation of carboxypeptidase Y. Overproduction of Sec24p suppressed the temperature sensitivity of sec23-2, and overproduction of both Sec24p and Sec23p suppressed the temperature sensitivity of sec16-2. SEC24 gene disruption could be complemented by overexpression of ISS1, indicating functional redundancy between the two homologous proteins. Deletion of ISS1 had no significant effect on growth or secretion; however, iss1Delta mutants were found to be synthetically lethal with mutations in the v-SNARE genes SEC22 and BET1. Moreover, overexpression of ISS1 could suppress mutations in SEC22. These genetic interactions suggest that Iss1p may be specialized for the packaging or the function of COPII v-SNAREs. Iss1p tagged with His(6) at its C terminus copurified with Sec23p. Pure Sec23p/Iss1p could replace Sec23p/Sec24p in the packaging of a soluble cargo molecule (alpha-factor) and v-SNAREs (Sec22p and Bet1p) into COPII vesicles. Abundant proteins in the purified vesicles produced with Sec23p/Iss1p were indistinguishable from those in the regular COPII vesicles produced with Sec23p/Sec24p.  相似文献   

9.
The COPII coat is required for vesicle budding from the endoplasmic reticulum (ER), and consists of two heterodimeric subcomplexes, Sec23p/Sec24p, Sec13p/Sec31p, and a small GTPase, Sar1p. We characterized a yeast mutant, anu1 (abnormal nuclear morphology) exhibiting proliferated ER as well as abnormal nuclear morphology at the restrictive temperature. Based on the finding that ANU1 is identical to SEC24, we confirmed a temperature-sensitive protein transport from the ER to the Golgi in anu1-1/sec24-20 cells. Overexpression of SFB2, a SEC24 homologue with 56% identity, partially suppressed not only the mutant phenotype of sec24-20 cells but also rescued the SEC24-disrupted cells. Moreover, the yeast two-hybrid assay revealed that Sfb2p, similarly to Sec24p, interacted with Sec23p. In SEC24-disrupted cells rescued by overexpression of SFB2, some cargo proteins were still retained in the ER, while most of the protein transport was restored. Together, these findings strongly suggest that Sfb2p functions as the component of COPII coats in place of Sec24p, and raise the possibility that each member of the SEC24 family of proteins participates directly and/or indirectly in cargo-recognition events with its own cargo specificity at forming ER-derived vesicles.  相似文献   

10.
A temperature-sensitive mutant, sec34-2, is defective in the late stages of endoplasmic reticulum (ER)-to-Golgi transport. A high-copy suppressor screen that uses the sec34-2 mutant has resulted in the identification of the SEC34 structural gene and a novel gene called GRP1. GRP1 encodes a previously unidentified hydrophilic yeast protein related to the mammalian Golgi protein golgin-160. Although GRP1 is not essential for growth, the grp1Delta mutation displays synthetic lethal interactions with several mutations that result in ER accumulation and a block in the late stages of ER-to-Golgi transport, but not with those that block the budding of vesicles from the ER. Our findings suggest that Grp1p may facilitate membrane traffic indirectly, possibly by maintaining Golgi function. In an effort to identify genes whose products physically interact with Sec34p, we also tested the ability of overexpressed SEC34 to suppress known secretory mutations that block vesicular traffic between the ER and the Golgi. This screen revealed that SEC34 specifically suppresses sec35-1. SEC34 encodes a hydrophilic protein of approximately 100 kDa. Like Sec35p, which has been implicated in the tethering of ER-derived vesicles to the Golgi, Sec34p is predominantly soluble. Sec34p and Sec35p stably associate with each other to form a multiprotein complex of approximately 480 kDa. These data indicate that Sec34p acts in conjunction with Sec35p to mediate a common step in vesicular traffic.  相似文献   

11.
D R TerBush  T Maurice  D Roth    P Novick 《The EMBO journal》1996,15(23):6483-6494
In the yeast Saccharomyces cerevisiae, the products of at least 15 genes are involved specifically in vesicular transport from the Golgi apparatus to the plasma membrane. Previously, we have shown that three of these genes, SEC6, SEC8 and SEC15, encode components of a multisubunit complex which localizes to the tip of the bud, the predominant site of exocytosis in S. cerevisiae. Mutations in three more of these genes, SEC3, SEC5 and SEC10, were found to disrupt the subunit integrity of the Sec6-Sec8-Sec15 complex, indicating that these genes may encode some of the remaining components of this complex. To examine this possibility, we cloned and sequenced the SEC5 and SEC10 genes, disrupted them, and either epitope tagged them (Sec5p) or prepared polyclonal antisera (Sec10p) to them for co-immunoprecipitation studies. Concurrently, we biochemically purified the remaining unidentified polypeptides of the Sec6-Sec8-Sec15 complex for peptide microsequencing. The genes encoding these components were identified by comparison of predicted amino acid sequences with those obtained from peptide microsequencing of the purified complex components. In addition to Sec6p, Sec8p and Sec15p, the complex contains the proteins encoded by SEC3, SEC5, SEC10 and a novel gene, EXO70. Since these seven proteins function together in a complex required for exocytosis, and not other intracellular trafficking steps, we have named it the Exocyst.  相似文献   

12.
Temperature-sensitive mutations in the SEC16 gene of Saccharomyces cerevisiae block budding of transport vesicles from the ER. SEC16 was cloned by complementation of the sec16-1 mutation and encodes a 240-kD protein located in the insoluble, particulate component of cell lysates. Sec16p is released from this particulate fraction by high salt, but not by nonionic detergents or urea. Some Sec16p is localized to the ER by immunofluorescence microscopy. Membrane-associated Sec16p is incorporated into transport vesicles derived from the ER that are formed in an in vitro vesicle budding reaction. Sec16p binds to Sec23p, a COPII vesicle coat protein, as shown by the two-hybrid interaction assay and affinity studies in cell extracts. These findings indicate that Sec16p associates with Sec23p as part of the transport vesicle coat structure. Genetic analysis of SEC16 identifies three functionally distinguishable domains. One domain is defined by the five temperature- sensitive mutations clustered in the middle of SEC16. Each of these mutations can be complemented by the central domain of SEC16 expressed alone. The stoichiometry of Sec16p is critical for secretory function since overexpression of Sec16p causes a lethal secretion defect. This lethal function maps to the NH2-terminus of the protein, defining a second functional domain. A separate function for the COOH-terminal domain of Sec16p is shown by its ability to bind Sec23p. Together, these results suggest that Sec16p engages in multiple protein-protein interactions both on the ER membrane and as part of the coat of a completed vesicle.  相似文献   

13.
The SEC20 gene of Saccharomyces cerevisiae encodes a 50 kDa type II integral membrane glycoprotein that is required for endoplasmic reticulum (ER) to Golgi transport. Here, we have used a genetic screen, based on the lethal effect of overexpressing the cytoplasmic domain of Sec20p, to identify a novel cytosolic factor that interacts with SEC20. This factor is an 80 kDa cytoplasmic protein encoded by the TIP1 (SEC twenty interacting protein) gene. Coimmunoprecipitation and immunofluorescence using Tip1p and Sec20p or its cytoplasmic domain showed that the two proteins physically interact to form a stable complex. Like SEC20, TIP1 is required for ER to Golgi transport and depletion of Tip1p results in accumulation of an extensive network of ER plus small transport vesicles. We therefore propose that Sec20p and Tip1p act together as a functional unit in the ER to Golgi transport step.  相似文献   

14.
The SEC20 gene product (Sec20p) is required for endoplasmic reticulum (ER) to Golgi transport in the yeast secretory pathway. We have cloned the SEC20 gene by complementation of the temperature sensitive phenotype of a sec20-1 strain. The DNA sequence predicts a 44 kDa protein with a single membrane-spanning region; Sec20p has an apparent molecular weight of 50 kDa and behaves as an integral membrane protein with carbohydrate modifications that appear to be O-linked. A striking feature of this protein is its C-terminal sequence, which consists of the tetrapeptide HDEL. This signal is known to be required for the retrieval of soluble ER proteins from early Golgi compartments, but has not previously been observed on a membrane protein. The HDEL sequence of Sec20p is not essential for viability but helps to maintain intracellular levels of the protein. Depletion of Sec20p from cells results in the accumulation of an extensive network of ER and clusters of small vesicles. We suggest a possible role for the SEC20 product in the targeting of transport vesicles to the Golgi apparatus.  相似文献   

15.
COPII-coated vesicles mediate the transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi. SEC24 is the COPII component primarily responsible for recruitment of protein cargoes into nascent vesicles. There are four Sec24 paralogs in mammals, with mice deficient in SEC24A, -B, and -D exhibiting a wide range of phenotypes. We now report the characterization of mice with deficiency in the fourth Sec24 paralog, SEC24C. Although mice haploinsufficient for Sec24c exhibit no apparent abnormalities, homozygous deficiency results in embryonic lethality at approximately embryonic day 7. Tissue-specific deletion of Sec24c in hepatocytes, pancreatic cells, smooth muscle cells, and intestinal epithelial cells results in phenotypically normal mice. Thus, SEC24C is required in early mammalian development but is dispensable in a number of tissues, likely as a result of compensation by other Sec24 paralogs. The embryonic lethality resulting from loss of SEC24C occurs considerably later than the lethality previously observed in SEC24D deficiency; it is clearly distinct from the restricted neural tube phenotype of Sec24b null embryos and the mild hypocholesterolemic phenotype of adult Sec24a null mice. Taken together, these results demonstrate that the four Sec24 paralogs have developed unique functions over the course of vertebrate evolution.  相似文献   

16.
Members of the Rab protein family play essential roles in vesicle fusion during protein secretion and represent highly conserved GTP binding proteins. The Saccharomyces cerevisiae Sec4p and Ypt1p, promoting vesicle fusion at the plasma membrane and in ER-Golgi transport, respectively, are among the best characterised yeast members. We have here cloned the Pichia pastoris SEC4 homologue using a S. cerevisiae SEC4 probe. In addition we isolated a crosshybridising clone encoding another Rab-/Ypt-like protein. The deduced full-length PpSec4p comprises 204 amino acid residues with an over all identity of 64% to the Sec4p from S. cerevisiae and 72% to the Candida albicans Sec4p. The YPT-like gene encodes a 216 amino acid residue protein showing highest similarity to the S. cerevisiae Ypt10p and Ypt53p. Both PpSec4p and the Ypt-like protein carry a -Cys-Cys C-terminus, indicating that these proteins are targets for geranyl-geranylation by a type II prenyltransferase.  相似文献   

17.
The Saccharomyces cerevisiae SEC65 gene encodes a 32 kDa subunit of yeast signal recognition particle that is homologous to human SRP19. Sequence comparisons suggest that the yeast protein comprises three distinct domains. The central domain (residues 98–171) exhibits substantial sequence similarity to the 144 residue SRP19. In contrast, the N-terminal and C-terminal domains (residues 1–97 and 172–273 respectively) share no similarity to SRP19, with the exception of a cluster of positively charged residues at the extreme C-terminus of both proteins. Here, we report the cloning of a Sec65p homologue from the yeast Candida albicans that shares the same extended domain structure as its S. cerevisiae counterpart. This conservation of sequence is reflected at the functional level, as the C. albicans gene can complement the conditional lethal sec65-1 mutation in S. cerevisiae . In order to examine the role of the N- and C- terminal domains in Sec65p function, we have engineered truncation mutants of S. cerevisiae SEC65 and tested these for complementing activity in vivo and for SRP integrity in vitro . These studies indicate that a minimal Sec65p comprising residues 76–209, which includes the entire central SRP19-like domain, is sufficient for SRP function in yeast.  相似文献   

18.
The Saccharomyces cerevisiae proteins Sec34p and Sec35p are components of a large cytosolic complex involved in protein transport through the secretory pathway. Characterization of a new secretion mutant led us to identify SEC36, which encodes a new component of this complex. Sec36p binds to Sec34p and Sec35p, and mutation of SEC36 disrupts the complex, as determined by gel filtration. Missense mutations of SEC36 are lethal with mutations in COPI subunits, indicating a functional connection between the Sec34p/sec35p complex and the COPI vesicle coat. Affinity purification of proteins that bind to Sec35p-myc allowed identification of two additional proteins in the complex. We call these two conserved proteins Sec37p and Sec38p. Disruption of either SEC37 or SEC38 affects the size of the complex that contains Sec34p and Sec35p. We also examined COD4, COD5, and DOR1, three genes recently reported to encode proteins that bind to Sec35p. Each of the eight genes that encode components of the Sec34p/sec35p complex was tested for its contribution to cell growth, protein transport, and the integrity of the complex. These tests indicate two general types of subunits: Sec34p, Sec35p, Sec36p, and Sec38p seem to form the essential core of a complex to which Sec37p, Cod4p, Cod5p, and Dor1p seem to be peripherally attached.  相似文献   

19.
A cell-free protein transport reaction has been used to monitor the purification of a functional form of the Sec23 protein, a SEC gene product required for the formation or stability of protein transport vesicles that bud from the endoplasmic reticulum (ER). Previously, we reported that Sec23p is an 84-kDa peripheral membrane protein that is released from a sedimentable fraction by vigorous mechanical agitation of yeast cells and is required for ER to Golgi transport assayed in vitro. We have purified soluble Sec23p by complementation of an in vitro ER to Golgi transport reaction reconstituted with components from sec23 mutant cells. Sec23p overproduced in yeast exists in two forms: a monomeric species and a species that behaves as a 250- to 300-kDa complex that contains Sec23p and a distinct 105-kDa polypeptide (p105). Sec23p purified from cells containing one SEC23 gene exists solely in the large multimeric form. A stable association between Sec23p and p105 is confirmed by cofractionation of the two proteins throughout the purification. p105 is a novel yeast protein involved in ER to Golgi transport. Like Sec23p, it is required for vesicle budding from the ER because p105 antiserum completely inhibits transport vesicle formation in vitro.  相似文献   

20.
SEC12, a gene that is required for secretory, membrane, and vacuolar proteins to be transported from the endoplasmic reticulum to the Golgi apparatus, has been cloned from a genomic library by complementation of a sec12 ts mutation. Genetic analysis has shown that the cloned gene integrates at the SEC12 locus and that a null mutation at the locus is lethal. The DNA sequence predicts a protein of 471 amino acids containing a hydrophobic stretch of 19 amino acids near the COOH terminus. To characterize the gene product (Sec12p) in detail, a lacZ-SEC12 gene fusion has been constructed and a polyclonal antibody raised against the hybrid protein. The antibody recognizes Sec12p as a approximately 70-kD protein that sediments in a mixed membrane fraction that includes endoplasmic reticulum. Sec12p is not removed from the membrane fraction by treatment at high pH and high salt and is not degraded by exogenous protease unless detergent is present. Glycosylation of Sec12p during biogenesis is indicated by an electrophoretic mobility shift of the protein that is influenced by tunicamycin and by imposition of an independent secretory pathway block. We suggest that Sec12p is an integral membrane glycoprotein with a prominent domain that faces the cytoplasm where it functions to promote protein transport to the Golgi apparatus. In the process of transport, Sec12p itself may migrate to the Golgi apparatus and function in subsequent transport events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号