首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biology of methanogenic bacteria.   总被引:57,自引:0,他引:57  
  相似文献   

2.
The biology of methanogenic bacteria.   总被引:18,自引:2,他引:16       下载免费PDF全文
  相似文献   

3.
Pattern of organotin inhibition of methanogenic bacteria.   总被引:1,自引:0,他引:1       下载免费PDF全文
Seven organotin compounds and tin chloride were tested for their effects on the methanogenic bacteria Methanococcus thermolithotrophicus, Methanococcus deltae delta LH, and Methanosarcina barkeri 227. The methanogens were strongly inhibited by triethyltin, tripropyltin, and monophenyltin compounds, generally at concentrations below 0.05 mM. Less inhibition by tributyltin and diphenyltin was observed at levels below 0.1 mM, but complete inhibition was observed at a 1 mM concentration. Tin chloride inhibited all methanogens, with nearly complete inhibition at a 1 mM concentration. There was no inhibition by tetra-n-butyltin and triphenyltin compounds even at 2 mM, the highest concentration tested. The 50 and 100% inhibitory concentrations of all compounds were estimated; these values varied with both the compound tested and the bacterium tested. The 50% inhibitory concentration estimate generally decreased (i.e., giving a higher toxicity) as the total surface area of the alkyltin molecules decreased. These results differ considerably from those reported previously for aerobic microorganisms (G. Eng, E. J. Tierney, J. M. Bellama, and F. E. Brinckman, Appl. Organometallic Chem. 2:171-175, 1988), where a clear correlation between increasing total molecular surface area and increasing toxicity was documented with a variety of organisms. Using the same procedures as for the methanogens, we examined the effects of organotin compounds on Escherichia coli growing aerobically or anaerobically. The E. coli inhibition pattern clearly resembled that seen in the data of Eng et al., under both aerobic and anaerobic conditions.  相似文献   

4.
Methanopterin and methanogenic bacteria   总被引:2,自引:0,他引:2  
Methanogenic bacteria comprise a selected group of microorganisms that derive their energy for growth from the hydrogen-dependent reduction of CO2 to methane or the disproportionation of reduced one-carbon compounds and acetate to CO2 and methane. In the reduction and oxidation steps at the formyl, hydroxymethyl and methyl level the one-carbon unit remains bound to the reduced form of methanopterin, a pterin derivative typical of methanogenic bacteria. In addition, the reduced methanopterin, 5,6,7,8-tetrahydromethanopterin, is involved in a number of anabolic reactions. Methanopterin is structurally and functionally the counterpart of folic acid found in other organisms. In this review the occurrence and properties of methanopterin and its derivatives, as well as the biosynthesis and the role in the different catabolic and anabolic reactions are discussed against the background of folic acid biochemistry.  相似文献   

5.
Association of methanogenic bacteria with rumen ciliates.   总被引:11,自引:6,他引:5       下载免费PDF全文
In 11 species of rumen ciliates belonging to nine genera of the family Ophryoscolecidae (order Entodiniomorphida) an ectosymbiosis with methanogenic bacteria was found. The bacteria could be identified as methanogens on the basis of the presence of specific fluorescent coenzymes (F350 and F420). This somatic interaction may reflect a metabolic interaction in which efficient interspecies hydrogen transfer benefits both partners.  相似文献   

6.
[This corrects the article on p. 517 in vol. 41.].  相似文献   

7.
Ether-containing lipids of methanogenic bacteria   总被引:7,自引:0,他引:7  
Acid-hydrolysis of the phospholipid fraction of Methanobacterium thermoautotrophicum, Methanobacterium formicicum and Methanospirillum hungatii demonstrated the presence of two neutral lipid products. Characterization of these lipids resulted in their identification as dialkyl glyceryl ether and diglycerol tetraethers. The ether-linked alkyl chains were identified as the 20- and 40-carbon branched chains for the diether and tetraether, respectively. M. thermoautotrophicum and M. formicicum were also characterized by the presence of acid-stable phospholipid components.  相似文献   

8.
Isolation of methanogenic bacteria from feces of man.   总被引:10,自引:0,他引:10  
  相似文献   

9.
Methanogenic bacteria can be tentatively identified by fluorescence microscopy. This technique was improved by carefully selecting a series of excitation and barrier filters that matched the excitation and emission spectra of some unique coenzymes viz., F420 and F350, in methanogenic bacteria.  相似文献   

10.
Methanogenic bacteria can be tentatively identified by fluorescence microscopy. This technique was improved by carefully selecting a series of excitation and barrier filters that matched the excitation and emission spectra of some unique coenzymes viz., F420 and F350, in methanogenic bacteria.  相似文献   

11.
12.
In total, 73 strains of methanogen isolates from our laboratory and 6 from culture collections were examined for the presence of plasmid DNA. Five strains were found to contain detectable plasmids. Multiple plasmids were found in two isolates, while three strains contained only one plasmid each. A physical map of the plasmid pT3 was constructed by use of six different restriction endonucleases. All sites were aligned with a single BgII site, and the position of the restriction sites was determined by double or sequential digestion of the plasmid DNA.  相似文献   

13.
Abstract A blue fluorescent compound was extracted and purified from cells of Methanobacterium thermoautotrophicum . The compound was identified as 7-methylpterin on the basis of its (physico-) chemical properties and by comparison with 7-methylpterin prepared by organic synthesis. The compound is present in all methanogenic bacteria studied so far and it provides methanogenic bacteria the characteristic blue fluorescence observed upon fluorescence microscopy.  相似文献   

14.
NMR spectroscopy was used to determine the labeling patterns of the ribose moieties of ribonucleosides purified from Methanospirillum hungatei, Methanococcus voltae, Methanobrevibacter smithii, Methanosphaera stadtmanae, Methanosarcina barkeri and Methanobacterium bryantii labeled with 13C-precursors. In most methanogens tested ribose was labeled in a manner consistent with the operation of the oxidative branch of the pentose phosphate pathway. In contrast, transaldolase and transketolase reactions typical of a partial nonoxidative pentose phosphate pathway are hypothesized to explain the different labeling patterns and enrichments of carbon atoms observed in the ribose moiety of Methanococcus voltae. The source of erythrose 4-phosphate needed for the transaldolase reaction proposed in Methanococcus voltae, and for biosynthesis of aromatic amino acids in methanogenic bacteria in general, was assessed. Phenylalanine carbon atom C-7 was labeled by [1-13C]pyruvate in Methanospirillum hungatei, Methanococcus voltae, and Methanococcus jannaschii, the only methanogens which incorporated sufficient label from pyruvate for testing. Reductive carboxylation of a triose precursor (derived from pyruvate) to synthesize erythrose 4-phosphate is consistent with the labeling patterns observed in phenylalanine and ribose.Abbreviation TCA Tricarboxylic acid Issued as NRCC Publication No. 37382  相似文献   

15.
An examination of the methanofurans isolated from a wide range of methanogenic bacteria and from Archaeoglobus fulgidus has revealed at least five chromatographically distinct methanofurans. Bacteria from each major genus of methanogenic bacteria have been found to contain a chemically different methanofuran. The nature of the differences in the methanofurans appears to lie in the modification of the side chain attached to the basic core structure of 4-[N-(gamma-L-glutamyl-gamma-L-glutamyl)-p-(beta-aminoethyl)phenoxyme thy l]-2-(amino-methyl)furan. This was supported by the structural elucidation of the methanofuran isolated from Methanobrevibacter smithii, designated methanofuran-c, which was the same as the originally characterized methanofuran except for a hydroxy group at the 2 position of the 4,5-dicarboxyoctanedioic acid moiety of the molecule.  相似文献   

16.
17.
Methane formation and methane oxidation by methanogenic bacteria.   总被引:25,自引:1,他引:24       下载免费PDF全文
Methanogenic bacteria were found to form and oxidize methane at the same time. As compared to the quantity of methane formed, the amount of methane simultaneously oxidized varied between 0.3 and 0.001%, depending on the strain used. All the nine tested strains of methane producers (Methanobacterium ruminantium, Methanobacterium strain M.o.H., M. formicicum, M. thermoautotrophicum, M. arbophilicum, Methanobacterium strain AZ, Methanosarcina barkeri, Methanospirillum hungatii, and the "acetate organism") reoxidized methane to carbon dioxide. In addition, they assimilated a small part of the methane supplied into cell material. Methanol and acetate also occurred as oxidation products in M. barkeri cultures. Acetate was also formed by the "acetate organism," a methane bacterium unable to use methanogenic substrates other than acetate. Methane was the precursor of the methyl group of the acetate synthesized in the course of methane oxidation. Methane formation and its oxidation were inhibited equally by 2-bromoethanesulfonic acid. Short-term labeling experiments with M. thermoautotrophicum and M. hungatii clearly suggest that the pathway of methane oxidation is not identical with a simple back reaction of the methane formation process.  相似文献   

18.
Methanogenium organophilum, a non-autotrophic methanogen able to use primary and secondary alcohols as hydrogen donors, was grown on ethanol. Per mol of methane formed, 2 mol of ethanol were oxidized to acetate. In crude extract, an NADP+-dependent alcohol dehydrogenase (ADH) with a pH optimum of about 10.0 catalyzed a rapid (5 mol/min·mg protein; 22°C) oxidation of ethanol to acetaldehyde; after prolonged incubation also acetate was detectable. With NAD+ only 2% of the activity was observed. F420 was not reduced. The crude extract also contained F420: NADP+ oxidoreductase (0.45 mol/min·mg protein) that was not active at the pH optimum of ADH. With added acetaldehyde no net reduction of various electron acceptors was measured. However, the acetaldehyde was dismutated to ethanol and acetate by the crude extract. The dismutation was stimulated by NADP+. These findings suggested that not only the dehydrogenation of alcohol but also of aldehyde to acid was coupled to NADP+ reduction. If the reaction was started with acetaldehyde, formed NADPH probably reduced excess aldehyde immediately to ethanol and in this way gave rise to the observed dismutation. Acetate thiokinase activity (0.11 mol/min·mg) but no acetate kinase or phosphotransacetylase activity was observed. It is concluded that during growth on ethanol further oxidation of acetaldehyde does not occur via acetylCoA and acetyl phosphate and hence is not associated with substrate level phosphorylation. The possibility exists that oxidation of both ethanol and acetaldehyde is catalyzed by ADH. Isolation of a Methanobacterium-like strain with ethanol showed that the ability to use primary alcohols also occurs in genera other than Methanogenium.Non-standard abbreviations ADH alcohol dehydrogenase - Ap5ALi3 P1,P5-Di(adenosine-5-)pentaphosphate - DTE dithioerythritol (2,3-dihydroxy-1,4-dithiolbutane) - F420 N-(N-l-lactyl--l-glutamyl)-l-glutamic acid phosphodiester of 7,8-dimethyl-8-hydroxy-5-deazariboflavin-5-phosphate - Mg. Methanogenium - OD578 optical density at 578 nm - PIPES 1,4-piperazine-diethanesulfonic acid - TRICINE N-(2-hydroxy-1,1-bis[hydroxymethyl]methyl)-glycine - Tris 2-amino-2-hydroxy-methylpropane-1,3-diol - U unit (mol substrate/min)  相似文献   

19.
Distribution of polyamines in methanogenic bacteria   总被引:4,自引:1,他引:3       下载免费PDF全文
Members of all four families of methanogenic bacteria were analyzed for polyamine concentrations. High-performance liquid chromatography analysis of dansylated cell extracts revealed typical polyamine patterns for each family. Members of Methanobacteriaceae (family I) were characterized by very low polyamine concentrations; members of Methanococcaceae (family II) were characterized by putrescine and high spermidine concentrations; members of Methanomicrobiaceae (family III) were characterized by the presence of putrescine, spermidine, and sym-homospermidine; and members of Methanosarcinaceae (family IV) contained only high concentrations of sym-homospermidine in addition to putrescine. The highest polyamine concentration was found in Methanosarcina barkeri Jülich, with 0.35% putrescine in the dry cell material. The polyamine distribution found coincides with the dendrogram based on comparative cataloguing of 16S rRNA and offers a new, rapid chemotaxonomic method for characterizing methanogenic bacteria. Variation of the growth substrates (H2-CO2, methanol, acetate, and trimethylamine) for M. barkeri resulted in quantitative but not qualitative differences in polyamine composition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号