首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims Ovary abortion can occur in maize(Zea mays) if water deficits lower the water potential (w) sufficientlyto inhibit photosynthesis around the time of pollination. Theabortion decreases kernel number. The present work exploredthe activity of ovary acid invertases and their genes, togetherwith other genes for sucrose-processing enzymes, when this kindof abortion occurred. Cytological evidence suggested that senescencemay have been initiated after 2 or 3 d of low w, and the expressionof some likely senescence genes was also determined. • Methods Ovary abortion was assessed at kernel maturity.Acid invertase activities were localized in vivo and in situ.Time courses for mRNA abundance were measured with real timePCR. Sucrose was fed to the stems to vary the sugar flux. • Key Results Many kernels developed in controls but mostaborted when w became low. Ovary invertase was active in controlsbut severely inhibited at low w for cell wall-bound forms invivo and soluble forms in situ. All ovary genes for sucroseprocessing enzymes were rapidly down-regulated at low w exceptfor a gene for invertase inhibitor peptide that appeared tobe constitutively expressed. Some ovary genes for senescencewere subsequently up-regulated (RIP2 and PLD1). In some genes,these regulatory changes were reversed by feeding sucrose tothe stems. Abortion was partially prevented by feeding sucrose. • Conclusions A general response to low w in maize ovarieswas an early down-regulation of genes for sucrose processingenzymes followed by up-regulation of some genes involved insenescence. Because some of these genes were sucrose responsive,the partial prevention of abortion with sucrose feeding mayhave been caused in part by the differential sugar-responsivenessof these genes. The late up-regulation of senescence genes mayhave caused the irreversibility of abortion.  相似文献   

2.

Background and Aims

Water limitations can inhibit photosynthesis and change gene expression in ways that diminish or prevent reproductive development in plants. Sucrose fed to the plants can reverse the effects. To test whether the reversal acts generally by replacing the losses from photosynthesis, sucrose was fed to the stems of shaded maize plants (Zea mays) during reproductive development.

Methods

Shading was adjusted to mimic the inhibition of photosynthesis around the time of pollination in water-limited plants. Glucose and starch were imaged and quantified in the female florets. Sucrose was infused into the stems to vary the sugar flux to the ovaries.

Key Results

Ovaries normally grew rapidly and contained large amounts of glucose and starch, with a glucose gradient favouring glucose movement into the developing ovary. Shade inhibited photosynthesis and diminished ovary and kernel size, weight, and glucose and starch contents compared with controls. The glucose gradient became small. Sucrose fed to the stem reversed these losses, and kernels were as large as the controls.

Conclusions

Despite similar inhibition of photosynthesis, the depletion of ovary glucose and starch was not as severe in shade as during a comparable water deficit. Ovary abortion prevalent during water deficits did not occur in the shade. It is suggested that this difference may have been caused by more translocation in shade than during the water deficit, which prevented low sugar contents necessary to trigger an up-regulation of senescence genes known to be involved in abortion. Nevertheless, sucrose feeding reversed kernel size losses and it is concluded that feeding acted generally to replace diminished photosynthetic activity.  相似文献   

3.
The association of enzyme activities in developing kernels with specific storage product accumulation at maturity was analyzed in different parts of Zea mays inbred OH43 kernels. Maize kernels were harvested at 20 and 55 days post-pollination and dissected into basal region, pericarp, embryo, lower endosperm, middle endosperm and upper endosperm. Mature (55 days pos(-pollination) kernel parts were analyzed for starch, total protein, zein and oil content. Immature (20 days post-pollination) kernel parts were assayed for activities of 15 enzymes of sugar and amino acid metabolism. Statistical analyses of the data suggested that glucokinase (EC 2.7.1.2) fructokinase (EC 2.7.1.4) and phosphofructokinase (EC 2.7.1.1 11) activities were primarily associated with oil accumulation, whereas ADP'-glueose pyrophosphorylasc (EC 2.7.7.27) and sucrose synthase (EC 2.4.1.13) activities were associated with starch accumulation. The results suggest that oil biosynthesis utilizes inveitase-mediated sucrose degradation in a pathway not requiring pyrophosphatc. whereas starch biosynthesis utilizes a sucrose synthase-mediated pathway of sucrose degradation in a pathway requiring pyrophosphatc. Additional groups of enzyme activities were associated with each oilier but not with any specific storage product and appeared to be associated with general metabolic activity.  相似文献   

4.
Abstract During incubation of maize scutellum slices in fructose, there was an efflux of sucrose. Efflux was constant for at least 4 h at fructose concentrations of 70 or 100 mol m?3. Efflux was increased by EDTA, and decreased by Ca2+. Efflux was independent of pH after EDTA treatment, but increased from untreated slices when the pH was lowered from 7 to 4. Uranyl ion and PCMBS (p-chloro-mercuribenzenesulfonic acid) abolished sucrose uptake, but were only weak inhibitors of sucrose efflux. These results are consistent with efflux occurring by simple diffusion through aqueous pores, but they do not rule out facilitated diffusion. Rates of sucrose export from the scutellum to the root shoot axis were estimated from measurements of axis respiration and dry weight gain. Sucrose efflux from scutellum slices was only 14-22% of the export rate. Sucrose efflux from the whole scutellum was only 3-4% of the export rate. It is concluded that the observed efflux is from leaky cells and does not represent sucrose on the way to the phloem along a path that includes the apoplast. These results support the idea that the path for sucrose from parenchyma cell to sieve tube in the maize scutellum is entirely symplastic.  相似文献   

5.
The time course of the modifications induced by a mild water stress has been examined for photosynthesis and several traits of carbohydrate metabolism in adult leaves of two inbred maize lines of North American and European origins, respectively. An early response was a sharp increase of the acid soluble invertase activity in adult leaves, 3–4 d after initiation of water shortage. Accordingly, correlated accumulations of fructose, glucose and to a lesser extent sucrose were observed. In the most responsive genotype, invertase activity finally reached a value > 3 times larger than the control value. By contrast, sucrose phosphate synthase activity, measured either under saturating or limiting substrate conditions, was progressively reduced by 20–40% on the 5th day and by 50–80% on the 7th day, depending on the genotype. Leaf photosynthetic rate was affected at approximately the same time as carbohydrate metabolism and stomatal conductance. Leaf water status, as measured by relative water content, declined afterwards. For all the observed responses, the two genotypes behaved very differently.  相似文献   

6.
Glutamine synthetase (GS, EC 6.3.1.2) activity in homogenates of the maize ( Zea mays L. hybrid A619 X W64A) kernel pedicel-placento-chalazal (PPCh), endosperm regions was characterized in order to optimize assay (hydroxylamine-dependent γ-glutamyl hydroxymate formation) conditions for quantitating maize kernel GS in crude extracts. The GS activities of all three tissue extracts exhibited optima at pH 7.0 with ATP:Mg2+ of 1:1.6. Assays of kernel tissue GS activity required relatively high concentrations of substrates to achieve saturation compared to GS from other plant tissue sources, a point which has not been considered in previous reports of maize kernel GS activity. When measured under optimal assay conditions. PPCh-GS increased to a peak of 51 nmol γ-glutamyl hydroxymate kernel−1 min−1 at 25 days after pollination and then declined throughout the remainder of kernel development. Embryo GS activity increased steadily throughout development to a maximum of 24 nmol γ-glutamyl hydroxymate embryo−1 min−1 by 50 days after pollination. In contrast, endosperm GS activity, which was 25 nmol γ-glutamyl hydroxymate endosperm−1 min−1 at 25 days after pollination, exhibited no discernable pattern of change during kernel development. These findings are discussed with respect to the possible roles PPCh, endosperm and embryo GS play in kernel development.  相似文献   

7.
Maize endosperm is dependent on source tissues to supply the energy and carbon required for development. This supply varies during the course of each day and also throughout development. The impact of these variations on the metabolism of developing endosperm was examined by determining the energy status of the endosperm throughout the course of a day. The adenylate energy charge decreased as the tissue matured, and exhibited a distinct diurnal pattern, reaching a minimum in the afternoon, when the flux of photosynthate is the highest. The minimum value observed was similar to the adenylate energy charge in tissues under mild stress. As the endosperm matured, the adenylate energy charge decreased steadily. The levels of the polysaccharide precursors ADP‐glucose and UDP‐glucose did not reflect the daily fluctuations in adenylate energy charge, but did exhibit similar long‐term behaviour in the latter half of development, decreasing steadily after 21 d after pollination. Similarities in the metabolic patterns of adenylate and uridylate nucleotide levels are discussed in terms of the analogous roles of these compounds in starch and cellulose biosynthesis, respectively. These data provide insight into the metabolic rhythms occurring during endosperm development, and provide a framework for efforts directed toward metabolic engineering.  相似文献   

8.
The sink demand was increased on a source maize leaf ( Zea mays L. cv. F7F2) by darkening all the leaves except the fourth, which was maintained under the prevailing irradiance conditions. The parameters of carbon metabolism were measured precisely during the first hours, and then daily during one week. The ambient photosynthetic activity and the maximum photosynthetic capacity were not altered by the treatment but the soluble carbohydrate and starch contents diminished, while ADP-glucose pyrophosphorylase (EC 2.7.7.27) activity increased. The carbon export rate, evaluated by the rate of disappearance of radioactivity after a 1-min 14CO2 pulse, was faster than in control leaves. A compartmental analysis of the time course of 14C export further indicated that the sucrose pool providing the export flux was largely increased by the dark treatment. The darkened leaf 5, taken as an example of the darkened sources, was completely depleted of its carbohydrate content after one day in the dark and remained devoid of carbohydrates during the following week.  相似文献   

9.

Background and Aims

Floral development depends on photosynthetic products delivered by the phloem. Previous work suggested the path to the flower involved either the apoplast or the symplast. The objective of the present work was to determine the path and its mechanism of operation.

Methods

Maize (Zea mays) plants were grown until pollination. For simplicity, florets were harvested before fertilization to ensure that all tissues were of maternal origin. Because sucrose from phloem is hydrolysed to glucose on its way to the floret, the tissues were imaged and analysed for glucose using an enzyme-based assay. Also, carboxyfluorescein diacetate was fed to the stems and similarly imaged and analysed.

Key Results

The images of live sections revealed that phloem contents were released to the pedicel apoplast below the nucellus of the florets. Glucose or carboxyfluorescein were detected and could be washed out. For carboxyfluorescein, the plasma membranes of the phloem parenchyma appeared to control the release. After release, the nucellus absorbed apoplast glucose selectively, rejecting carboxyfluorescein.

Conclusions

Despite the absence of an embryo, the apoplast below the nucellus was a depot for phloem contents, and the strictly symplast path is rejected. Because glucose and carboxyfluorescein were released non-selectively, the path to the floret resembled the one later when an embryo is present. The non-selective release indicates that turgor at phloem termini cannot balance the full osmotic potential of the phloem contents and would create a downward pressure gradient driving bulk flow toward the sink. Such a gradient was previously measured by Fisher and Cash-Clark in wheat. At the same time, selective absorption from the apoplast by the nucellar membranes would support full turgor in this tissue, isolating the embryo sac from the maternal plant. The isolation should continue later when an embryo develops.  相似文献   

10.
Under water stress conditions, induced by mannitol solutions (0 to 0.66 M ) applied to the apical 12 mm of intact roots of Zea mays L. (cv. LG 11), a growth inhibition, a decrease in the osmotic potential of the cell sap and a significant accumulation of abscisic acid (ABA) were observed. When the roots were placed in a humid atmosphere after the stress, the growth rate increased again, even if elongation had been totally inhibited. Under a stress corresponding to an osmotic potential of -1.09 MPa in the solution, growth was totally inhibited, which means that the root cell turgor pressure was reduced to the yield threshold. These conditions led to the largest accumulation of ABA. The effect of water stress on the level of ABA was studied for three parts of the root. The greatest increase in ABA (about 10 fold) was obtained in the growth zone and this increase was apparently independent of the hydrolysis of the conjugated form. With a mannitol treatment of 1 h equivalent to a stress level of -1.39 MPa, a 4-fold increase in ABA efflux into the medium was obtained. These results suggest that there are interactions between water stress, root growth, osmotic potential and the ABA level. The growth under conditions of stress and the role of endogenous ABA in the control of plant metabolism, specially in the growth zone, are discussed.  相似文献   

11.
12.
Water diffusion in maize roots (Zea mays L., cv. Donskaya 1) was investigated with a pulsed gradient NMR using mercuric chloride as an inhibitor of water channels in cell membranes. A novel operation program was applied that allowed selective evaluation of fractional amounts of water transported through various pathways—the apoplastic, symplasmic, and transmembrane routes. The blockage of water channels with HgCl2 reduced the rates of water diffusion by a factor of 1.5–2. This effect was reversible and was removed by the addition of -mercaptoethanol. The coefficient of water diffusion changed with time elapsed after the HgCl2 treatment. The effect of water stress on the rates of water diffusion was similar to that of HgCl2. Remarkably, the water-stressed roots of maize seedlings were insensitive to the inhibitor of water channels. The results are interpreted in terms of redistribution of water flows among various routes in plant tissues. Water stress and mercuric chloride treatments decelerate the transmembrane water transport and promote water flow along the apoplastic pathway. These responses might arise from the reversible regulation of water movement along various transport pathways.  相似文献   

13.
NMR-spin echo method was used for comparative study of radial water diffusion in various zones of maize (Zea mays L., cv. Donskaya 1) primary root. Coefficients of water diffusion varied strongly along the root length; the pattern of variations depended on the period during which the diffusion of water molecules was traced. Water diffusion transport in various root zones was unevently sensitive to mercury chloride, an aquaporin inhibitor. The discovered variations in the mobility of water molecules were assigned to morphological and functional features of cells and tissues in the root zones examined; they were interpreted in terms of variable contribution and redistribution of water flows along several transport pathways. The decrease in diffusional water flows could be caused by cell wall modifications (deposition of suberin) that emerge in the endoderm regions distant from the root apex and diminish the contribution of apoplastic transport.  相似文献   

14.
15.
The long delayed maturation of the late metaxylem of maize ( Zea mays ) roots imposes a high-resistance barrier between the immature apices and the negative water potential of the leaves. These apices (20+ cm) bear strongly adhering soil sheaths to within 0.5 to 2 cm of the distal end. It was hypothesized that the sheathed immature apices should show less response to transpiration stress than bare regions. Measurements were made of the relative water content (RWC) of the sheathed and bare zones of the axile roots, both at different ages of the plant, and early and late in the day's transpiration. Sheathed roots maintained a steady RWC of about 83% irrespective of age or transpiration. Bare roots had RWCs of about 63% in the morning, but this fell to 55% in the afternoon. The first-order branches on the bare roots in the morning had still lower values of RWC, near 50%. Plots of RWC against water potential were indistinguishable for the three root types. It is concluded that the immature apices are indeed relatively isolated from the fluctuating tensions in the stem xylem, and that these tensions reduce the water content of bare roots and their branches to low values.  相似文献   

16.
Root-cap mucilage from aerial nodal roots of maize has been found to have water potential values of −11 MPa or lower when air dried. The value approaches 0 MPa within 2 min of hydration in distilled water. In this time the expanding gel absorbs only about 0.3% of the water content of fully expanded mucilage. It is concluded that the root-cap mucilage per se has almost no capacity to retain water in the rhizosphere. Any function that it may play in the slowing of root desiccation would be indirect. For example, mucilage might decrease pore size between and within soil aggregates by pulling the particles together in a cycle of nocturnal efflux of water from the root surface, and diumal dyring during transpiration.  相似文献   

17.
Abstract. The effect of water-stress on photosynthetic carbon metabolism in spinach ( Spinacia oleracea L.) has been studied in experiments in which water-stress was induced rapidly by floating leaf discs on sorbitol solutions or wilting detached leaves, and in experiments in which water-stress was allowed to develop gradually in whole plants as the soil dried out. In both short- and long-term water stress, the rate of photosynthesis in saturating CO2 did not decrease until leaf water potential decreased below -1.0 MPa. However, at smaller water deficits there was already an inhibition of starch synthesis, while sucrose synthesis remained constant or increased. This change in partitioning was accompanied by an increase in activation of sucrose-phosphate synthase (revealed as an increase in activity assayed in the presence of low hexose-phosphate and inorganic phosphate, while the activity assayed with saturating hexosephosphates remained unaltered). Water-stressed leaves had a two- to three-fold higher sucrose content at the end of the night, and contained less starch than non-stressed leaves. When leaves were held in the dark, sucrose was mobilized initially, while starch was not mobilized until the sucrose had decreased to a low level; in water-stressed leaves, starch mobilization commenced at a two-fold higher sucrose content. It is concluded that water-stressed leaves maintain higher sucrose and lower starch levels than non-stressed leaves. This response is found in rapid and long-term stress, and represents an inherent response to water deficits.  相似文献   

18.
19.
20.
Water deficit severely decreases maize (Zea mays L.) kernel growth; the effect is most pronounced in apical regions of ears. The capacity for accumulation of storage material in endosperms is thought to he partially determined by the extent of cell division and endoreduplication (post-mitotic nuclear DNA synthesis). To gain a better understanding of the regulatory mechanisms involved, we have examined the effect of water deficit on cellular development during the post-fertilization period. Greenhouse-grown maize was subjected to water-limited treatments during rapid cell division [from 1 to 10days after pollination (DAP)] or rapid endoreduplication (9 to 15 DAP). The number of nuclei and the nuclear DNA content were determined with flow cytometry. Water deficit from 1 to 10 DAP substantially decreased the rate of endosperm cell division in apical-region kernels, but had little effect on middle-region endosperms. Rewatcring did not allow cell division to recover in apical-region endosperms. Water deficit from 9 to 15 DAP also decreased cell division in apical-region endosperms. Endoreduplication was not affected by the late treatment in either region of the car, but was inhibited by the early treatment in the apical region. In particular, the proportion of nuclei entering higher DN A-content size classes was reduced. We conclude that cell division is highly responsive to water deficit, whereas endoreduplication is less so. We also conclude that the reduced proportion of nuclei entering higher DNA-content size classes during endoreduplication is indicative of multiple control points in the mitotic and endoreduplication cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号