首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial porin (2 ng/ml) being added to the rat liver mitoplasts considerably stimulates the respiration in the third and uncoupled states. As the same effect was observed previously with the addition of outer membrane fraction to the mitoplast suspension, it is concluded that mitochondrial porin participates in regulation of the mitochondria respiration and, probably, is the natural activator of the ADP/ATP carrier function.  相似文献   

2.
Several mutants of yeast lacking the porin gene have been found stable and viable on glucose or glycerol media. Ethanol-supported respiration of porin-free mutant and wild cells appeared equally coupled in vivo being similarly depressed by inhibitors of ADP/ATP translocase or of ATP synthase and stimulated by the uncoupler FCCP. The absence of porin in isolated mutant mitochondria hardly impaired the electron flux but increased the requirement for Mg2+ (or Ca2+) and for ADP and carboxyatractylate concentrations necessary to drive effectively state 3 - state 4 and state 4 - state 3 transitions, respectively. The existence of another porin species, possibly controlled by bivalent cations, is postulated.  相似文献   

3.
It is known that an addition of FeSO4 in the presence of ascorbic acid to cells or mitochondria can injure energy coupling and some other functions in mitochondria. The present study demonstrates that decrease in ascorbate concentration from 4 to 0.2 mM in the presence of the same low concentrations of FeSO4 accelerates the nonspecific pore opening, while cyclosporin A prevents and under some conditions reverses the pore opening. Hydrophobic cations SkQ1 and MitoQ (structural analogs of plastoquinone and coenzyme Q(10), respectively) delay pore opening, SkQ1 being more efficient. It is known that an increase in matrix ADP concentration delays pore opening, while an addition of carboxyatractylate to mitochondria accelerates the beginning of pore opening. Preliminary addition of SkQ1 into a mitochondrial suspension increased the effect of ADP and decreased the effect of carboxyatractylate. These results suggest that under the conditions used SkQ1 protects mitochondria from oxidative damage as an antioxidant when added at extremely low concentrations.  相似文献   

4.
Hexokinase-binding protein and mitochondrial porin were isolated from rat liver mitochondria by different procedures. It was found that the hexokinase-binding protein made lipid vesicles permeable to ADP and formed asymmetric pores in lipid bilayer membranes identical to those obtained from the mitochondrial porin. On the other hand, the mitochondrial porin confers the ability to bind hexokinase. In addition, evidence is presented that both hexokinase-binding protein and mitochondrial porin bind glycerol kinase.  相似文献   

5.
Effects of cold exposure in vivo and treatment with laurate, carboxyatractylate, atractylate, nucleotides, and BSA in vitro on potato tuber mitochondria have been studied. Cold exposure of tubers for 48-96 h resulted in some uncoupling that could be reversed completely by BSA and partially by ADP, ATP, UDP, carboxyatractylate, and atractylate. UDP was less effective than ADP and ATP, and atractylate was less effective than carboxyatractylate. The recoupling effects of nucleotides were absent when the nucleotides were added after carboxyatractylate. GDP, UDP, and CDP did not recouple mitochondria from either the control or the cold-exposed tubers. This indicates that the cold-induced fatty acid-mediated uncoupling in potato tuber mitochondria is partially due to the operation of the ATP/ADP antiporter. As to the plant uncoupling protein, its contribution to the uncoupling in tuber is negligible or, under the conditions used, somehow desensitized to nucleotides.  相似文献   

6.
Effects of cold exposure in vivo and treatment with laurate, carboxyatractylate, atractylate, nucleotides, and BSA in vitro on potato tuber mitochondria have been studied. Cold exposure of tubers for 48-96 h resulted in some uncoupling that could be reversed completely by BSA and partially by ADP, ATP, UDP, carboxyatractylate, and atractylate. UDP was less effective than ADP and ATP, and atractylate was less effective than carboxyatractylate. The recoupling effects of nucleotides were absent when the nucleotides were added after carboxyatractylate. GDP, UDP, and CDP did not recouple mitochondria from either the control or the cold-exposed tubers. This indicates that the cold-induced fatty acid-mediated uncoupling in potato tuber mitochondria is partially due to the operation of the ATP/ADP antiporter. As to the plant uncoupling protein, its contribution to the uncoupling in tuber is negligible or, under the conditions used, somehow desensitized to nucleotides.  相似文献   

7.
The state of mitochondrial creatine kinase (CKmi-mi) in intact dog heart mitochondria and mitoplasts and the mechanism of its functional coupling with the oxidative phosphorylation system have been reinvestigated under different osmotic conditions and ionic compositions of the medium. It has been established that in a medium which mimics the cardiac cell cytoplasma, dissociation of CKmi-mi from the membrane of mitoplasts increases when the mitoplasts are swollen due to hypoosmotic treatment. It was shown by EPR that hypoosmotic treatment results in the enhancement of the mobility of phospholipids in the membrane bilayer. It has been also shown that when CKmi-mi is detached from the inner membrane in intact mitochondria in isotonic KCl solution, the effects of the coupling between CKmi-mi and oxidative phosphorylation via ATP/ADP translocase disappear in spite of the presence of CKmi-mi in the intermembrane space and intactness of the outer mitochondrial membrane. Therefore, this coupling cannot be explained by the "compartmented coupling" mechanism or "dynamic adenine nucleotide compartmentation" in the intermembrane space due to diffusion limitation for adenine nucleotides through the outer mitochondrial membrane, as has been supposed by several authors (F.N. Gellerich et al. (1987) Biochim. Biophys. Acta 890, 117-126; S.P.J. Brooks and C.H. Suelter (1987) Arch. Biochem. Biophys. 253, 122-132). The data obtained show that the displacement of the enzyme from the membrane results in significantly increased sensitivity of the coupled processes of aerobic phosphocreatine synthesis to inhibition by the product, phosphocreatine. Thus, all results show that under physiological osmotic and ionic conditions CKmi-mi remains firmly attached to the inner mitochondrial membrane and effectively coupled with ATP/ADP translocase due to intimate dynamic interaction between those proteins.  相似文献   

8.
Adenine nucleotide uptake was found to be lower in mitochondria from hepatoma 7777, 7800, and 9618A than in the host livers. Moreover, in the fast-growing hepatoma 7777 the sensitivity of the adenine nucleotide translocase to inhibition by carboxyatractylate and bongkrekic acid was considerably decreased. Purification of the ADP/ATP carrier from hepatoma 7777 mitochondria and its reconstitution into an artificial liposome system reversed the abnormal kinetics in that the adenine nucleotide uptake and response to inhibitors were identical in proteoliposome preparations from host liver and tumor mitochondria. Analysis of the lipids of the hepatoma inner mitochondrial membrane indicated considerable differences from normal in the levels of phospholipids and cholesterol. Most striking was the increase in cholesterol and sphingomyelin of the hepatoma 7777 inner membrane. An artificial liposome system containing cholesterol in addition to the standard phospholipids could produce alterations in kinetics of the purified ADP/ATP carrier from heart mitochondria similar to those seen in the hepatoma 7777. In general, these results support the suggestion that alterations in the lipid environment of the inner mitochondrial membrane rather than intrinsic changes in the carrier protein itself produce the aberrant observations of adenine nucleotide translocase activity in hepatoma mitochondria.  相似文献   

9.
Palmitate-induced uncoupling, which involves ADP/ATP and aspartate/glutamate antiporters, has been studied in liver mitochondria of old rats (22-26 months) under conditions of lipid peroxidation and inhibition of oxidative stress by antioxidants--thiourea, Trolox, and ionol. It has been shown that in liver mitochondria of old rats in the absence of antioxidants and under conditions of overproduction of conjugated dienes, the protonophoric uncoupling activity of palmitate is not suppressed by either carboxyatractylate or aspartate used separately. However, the combination of carboxyatractylate and aspartate decreased uncoupling activity of palmitate by 81%. In this case, palmitate-induced uncoupling is limited by a stage insensitive to both carboxyatractylate and aspartate. In the presence of antioxidants, the palmitate-induced protonophoric uncoupling activity is suppressed by either carboxyatractylate or aspartate used separately. Under these conditions, palmitate-induced uncoupling is limited by a stage sensitive to carboxyatractylate (ADP/ATP antiporter) or aspartate (aspartate/glutamate antiporter). In the absence of antioxidants, the uncoupling activity of palmitate is not suppressed by ADP either in the absence or in the presence of aspartate. However, in the presence of thiourea, Trolox, or ionol ADP decreased the uncoupling activity of palmitate by 38%. It is concluded that in liver mitochondria of old rats the development of oxidative stress in the presence of physiological substrates of ADP/ATP and aspartate/glutamate antiporters (ADP and aspartate) results in an increase of the protonophoric uncoupling activity of palmitate.  相似文献   

10.
The effects of cyclosporin A, carboxyatractylate, and glutamate on the protonophoric uncoupling activity of laurate in liver mitochondria have been studied. It was found that 5 μM cyclosporin A partly inhibits laurate-stimulated mitochondrial respiration, which is suggestive of its recoupling effect, i.e., the ability to suppress the protonophoric activity of this fatty acid. Under these conditions, cyclosporin A has no effect on the ability of carboxyatractylate and glutamate to inhibit the uncoupling effect of laurate. In their turn, these compounds do not influence the recoupling activity of cyclosporin A. The recoupling effects of cyclosporin A, carboxyatractylate, and glutamate are additive: acting simultaneously, they fully suppress the uncoupling activity of laurate. It is concluded that the protonophoric uncoupling activity of fatty acids in liver mitochondria is mediated not only by ADP/ATP and aspartate/glutamate antiporters, but also by a system that is sensitive to cyclosporin A, but is not related with cyclophilin D.  相似文献   

11.
We have previously provided evidence that diffusion of metabolites across the porin pores of mitochondrial outer membrane is hindered. A functional consequence of this diffusion limitation is the dynamic compartmentation of ADP in the intermembrane space. These earlier studies were done on isolated mitochondria suspended in isotonic media without macromolecules, in which intermembrane space of mitochondria is enlarged. The present study was undertaken to assess the diffusion limitation of outer membrane in the presence of 10% (w/v) dextran M20, in order to mimic the action of cytosolic macromolecules on mitochondria. Under these conditions, mitochondria have a more native, condensed configuration.Flux-dependent concentration gradients of ADP were estimated by measuring the ADP diffusion fluxes across the porin pores of isolated rat heart mitochondria incubated together with pyruvate kinase (PK), both of which compete for ADP regenerated by mitochondrial creatine kinase (mtCK) within the intermembrane space or by yeast hexokinase (HK) extramitochondrially. From diffusion fluxes and bulk phase concentrations of ADP, its concentrations in the intermembrane space were calculated using Fick's law of diffusion. Flux-dependent gradients up to 23 microM ADP (for a diffusion rate of J(Dif)=1.9 micromol ADP/min/mg mitochondrial protein) were observed. These gradients are about twice those estimated in the absence of dextran and in the same order of magnitude as the cytosolic ADP concentration (30 microM), but they are negligibly low for cytosolic ATP (5 mM). Therefore, it is concluded that the dynamic ADP compartmentation is of biological importance for intact heart cells.If mtCK generates ADP within the intermembrane space, the local ADP concentration can be clearly higher than in the cytosol resulting in higher extramitochondrial phosphorylation potentials. In this way, mtCK contributes to ensure optimal kinetic conditions for ATP-splitting reactions in the extramitochondrial compartment.  相似文献   

12.
The ADP/ATP translocator was selectively labeled with the triplet probe eosin-5-maleimide (EMA) after pretreatment with N-ethylmaleimide in beef heart mitochondria, as reported previously for submitochondrial particles (Müller, M., Krebs, J. J. R., Cherry, R. J., and Kawato, S. (1982) J. Biol. Chem. 257, 1117-1120). The EMA binding was completely inhibited by carboxyatractylate. 0.7-1.1 molecules of EMA conjugated with 1 molecule of the dimeric translocator with Mr approximately 65,000. The EMA binding decreased [14C]ADP uptake by about approximately 25%. The EMA-labeled translocator bongkrekate complex was purified and reconstituted in liposomes by removing Triton X-100 with Amberlite XAD-2. The liposomes were composed of phosphatidylcholine/phosphatidylethanolamine/cardiolipin and the lipid to protein ratio by weight was (L/P) = 60. Rotational diffusion of the ADP/ATP translocator around the membrane normal was measured in reconstituted proteoliposomes and in the mitochondrial inner membranes by observing the flash-induced absorption anisotropy, r(t), of EMA. In proteoliposomes with L/P = 60, the translocator was rotating with an approximate average rotational relaxation time of phi congruent to 246 microseconds and a normalized time-independent anisotrophy [r3/rr(0)]min congruent to 0.55. In intact mitochondria, values of phi congruent to 405 microseconds and r3/rr(0) congruent to 0.79 were obtained. The higher value of r3/rr(0) in mitochondria compared with proteoliposomes indicates the co-existence of rotating and immobile translocator (phi greater than 20 ms) in the inner mitochondrial membrane. Based on the assumption that all the translocator is rotating in the lipid-rich proteoliposomes, the population of the mobile translocator at 20 degrees C was calculated to be approximately 47%. By removing the outer membrane, the mobile population was increased to approximately 70% in mitoplasts, while approximately 53% of the translocator was rotating in submitochondrial particles. The above results indicate a significant difference in protein-protein interactions of the ADP/ATP translocator in the different types of inner membranes of mitochondria. The immobile population of the translocator could be due to nonspecific protein aggregates caused by the very high concentration of proteins in the inner membrane of mitochondria (L/P approximately 0.4).  相似文献   

13.
14.
Previously, the role of residues in the ADP/ATP carrier (AAC) from Saccharomyces cerevisiae has been studied by mutagenesis, but the dependence of mitochondrial biogenesis on functional AAC impedes segregation of the mutational effects on transport and biogenesis. Unlike other mitochondrial carriers, expression of the AAC from yeast or mammalians in Escherichia coli encountered difficulties because of disparate codon usage. Here we introduce the AAC from Neurospora crassa in E. coli, where it is accumulated in inclusion bodies and establish the reconstitution conditions. AAC expressed with heat shock vector gave higher activity than with pET-3a. Transport activity was absolutely dependent on cardiolipin. The 10 single mutations of intrahelical positive residues and of the matrix repeat (+X+) motif resulted in lower activity, except of R245A. R143A had decreased sensitivity toward carboxyatractylate. The ATP-linked exchange is generally more affected than ADP exchange. This reflects a charge network that propagates positive charge defects to ATP(4-) more strongly than to ADP(3-) transport. Comparison to the homologous mutants of yeast AAC2 permits attribution of the roles of these residues more to ADP/ATP transport or to AAC import into mitochondria.  相似文献   

15.
The stoichiometry and dissociation constant for the binding of homogeneous chicken heart mitochondrial creatine kinase (MiMi-CK) to mitoplasts was examined under a variety of conditions. Salts and substrates release MiMi-CK from mitoplasts in a manner that suggests an ionic interaction. The binding of MiMi-CK to mitoplasts is competitively inhibited by Adriamycin, suggesting that they compete for the same binding site. Fluorescence measurements also show that Adriamycin binds to MiMi-CK so that the effect of Adriamycin on the binding of MiMi-CK to mitoplasts is not simple. Titrating mitoplasts with homogeneous MiMi-CK at different pH values shows a pH-dependent equilibrium involving a group(s) on either the membrane or the enzyme with a pKa = 6. Extrapolating these titrations to infinite MiMi-CK concentration gives 14.6 IU bound/nmol cytochrome aa3 corresponding to 1.12 mol MiMi-CK/mol cytochrome aa3. Chicken heart mitochondria contain, after isolation, 2.86 +/- 0.42 IU/nmol cytochrome aa3. Titrating respiring mitoplasts with carboxyatractyloside gives at saturation 3.3 mol ADP/ATP translocase/mol cytochrome aa3. Therefore, chicken heart mitoplasts can maximally bind about 1 mol of MiMi-CK per 3 mol translocase; in normal chicken heart mitochondria about 1 mol of MiMi-CK is present per 13 mol translocase.  相似文献   

16.
Leak of protons into the mitochondrial matrix during substrate oxidation partially uncouples electron transport from phosphorylation of ADP, but the functions and source of basal and inducible proton leak in vivo remain controversial. In the present study we describe an endogenous activation of proton conductance in mitochondria isolated from rat and mouse skeletal muscle following addition of respiratory substrate. This endogenous activation increased with time, required a high membrane potential and was diminished by high concentrations of serum albumin. Inhibition of this endogenous activation by GDP [classically considered specific for UCPs (uncoupling proteins)], carboxyatractylate and bongkrekate (considered specific for the adenine nucleotide translocase) was examined in skeletal muscle mitochondria from wild-type and Ucp3-knockout mice. Proton conductance through endogenously activated UCP3 was calculated as the difference in leak between mitochondria from wild-type and Ucp3-knockout mice, and was found to be inhibited by carboxyatractylate and bongkrekate, but not GDP. Proton conductance in mitochondria from Ucp3-knockout mice was strongly inhibited by carboxyatractylate, bongkrekate and partially by GDP. We conclude the following: (i) at high protonmotive force, an endogenously generated activator stimulates proton conductance catalysed partly by UCP3 and partly by the adenine nucleotide translocase; (ii) GDP is not a specific inhibitor of UCP3, but also inhibits proton translocation by the adenine nucleotide translocase; and (iii) the inhibition of UCP3 by carboxyatractylate and bongkrekate is likely to be indirect, acting through the adenine nucleotide translocase.  相似文献   

17.
Intact mitochondria, obtained from Euglena gracilis Klebs var. bacillaris Cori mutant W10BSmL, which lacks plastids, and purified on Percoll density gradients, form adenosine 3'-phosphate 5'-phosphosulphate from sulphate. The optimal conditions include addition of 17 mM-Tricine/KOH, pH 7.6, 18 mM-MgCl2, 250 mM-sucrose, 5.66 mM-sodium ADP (or 0.94 mM-sodium ATP), 1 mM-K2SO4, carrier-free 35SO4(2-) (32.1 microCi) and 1.0 mg of mitochondrial protein in a total volume of 2.65 ml and incubation at 30 degrees C. Experiments with the inhibitor of adenylate kinase P1, P5-di(adenosine 5'-)pentaphosphate indicate that ATP is the preferred substrate for sulphate activation; ADP is utilized by conversion into ATP via adenylate kinase. ATP sulphurylase, adenylylsulphate kinase (APS kinase) and inorganic pyrophosphatase constitute the sulphate-activating system; ADP sulphurylase is undetectable. Fractionation of Euglena mitochondria with digitonin and centrifugation allowed the separation of outer-membrane vesicles and mitoplasts as judged by electron microscopy and selected enzymic markers. The detergent-labile association of the sulphate-activating system with the mitoplasts (similar to that of adenylate kinase), the fact that most of the adenosine 3'-phosphate 5'-phosphosulphate formed by intact mitochondria is found in the surrounding medium, and the ease with which nucleotide substrates reach the activating system in intact organelles, suggest that the enzymes of sulphate activation are located on the outer surface of the mitochondrial inner membrane.  相似文献   

18.
The spin-label 2,2,5,5-tetramethyl-1-oxy-3-pyrroline-3-carboxylic acid was attached to the inhibitor carboxyatractylate of the mitochondrial ADP/ATP carrier. Being closely linked to the inhibitor, the spin-label should reflect the mobility of the carboxyatractylate. When bound to the carrier in mitochondria, spin-labeled carboxyatractylate reveals a most unusual hyperfine splitting of 72 G. A second spectral component with a hyperfine splitting of 62 G is also mainly due to carrier-bound inhibitor. A similar spectrum with somewhat reduced hyperfine splitting was observed with the detergent-solubilized protein, whereas reincorporation into phospholipid membranes yielded almost the same spectra as in mitochondria. The carrier-bound spin-label is concluded to be highly immobilized. The less immobilized spectral component is discussed in terms of strongly anisotropic label motion. In addition, the unusual splitting is interpreted to indicate the highly polar environment of the nitroxide. The interpretations are supported by the temperature dependence, which indicates a reversible progressive spin-label mobilization up to 50 degrees C. Membrane-impermeable reducing agents showed that the spin-label is easily accessible from the aqueous phase.  相似文献   

19.
The effect of intact diphtheria toxin and of its fragment A on protein synthesis in mouse liver mitoplasts (digitonin-treated mitochondria) was studied. Fragment A inhibited protein synthesis in intact mitoplasts to the same extent as the uncoupler, carbonylcyanidep-trifluoromethoxyphenylhydrazone, but similar effects were not observed in lyzed mitoplasts. Intact diphtheria toxin was without effect in either case.Fragment A strongly stimulated mitochondrial ATPase activity. At concentrations which efficiently inhibited mitochondrial protein synthesis and stimulated ATPase activity, fragment A had no effect on the intramitochondrial concentration of nicotin-amide adenine dinucleotides. Moreover, it did not catalyze ADP ribosylation of mitochondrial proteins. The results indicate that the effects observed did not involve the NAD+-glycohydrolase activity of fragment A.[125I]-Labelled fragment A was bound to mitoplasts to about the same extent as the labelled intact diphtheria toxin.The present results suggest that fragment A of diphtheria toxin is capable of inhibiting the energy coupling in mitoplasts, thereby inhibiting protein synthesis. The detailed mechanism of the uncoupling and its possible physiological significance remains to be elucidated  相似文献   

20.
Carboxyatractylate inhibits the uncoupling effect of free fatty acids   总被引:2,自引:0,他引:2  
The ATP/ADP-antiporter inhibitors and ADP decrease the palmitate-induced stimulation of the mitochondrial respiration in the controlled state. The degree of inhibition decreases in the order: carboxyatractylate greater than bongkrekic acid, palmitoyl-CoA, ADP greater than atractylate. GDP is ineffective. The inhibiting concentration of carboxyatractylate coincides with this arresting the state 3 respiration. Carboxyatractylate inhibition decreases when the palmitate concentration increases. Stimulation of controlled respiration by FCCP or gramicidin D at any concentration of these uncouplers is carboxyatractylate-resistant, whereas that by low concentrations of DNP is partially suppressed by carboxyatractylate. These data together with observations that palmitate does not increase H+ conductance in bilayer phospholipid membranes and in cytochrome oxidase-asolectin proteoliposomes indicate that the ATP/ADP-antiporter is somehow involved in the uncoupling by low concentrations of fatty acids (or DNP), whereas that by FCCP and gramicidin D is due to their effect on the phospholipid bilayer. It is suggested that the antiporter facilitates translocation of palmitate anion across the mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号