首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natriuretic peptides are cyclic vasoactive peptide hormones with great diagnostic and therapeutic relevance. The main catabolic pathway postulated for natriuretic peptides is the degradation by neutral endopeptidase (NEP). However, B-type natriuretic peptide has been found to be resistant to NEP. Here, we compared the degradation of various mature, truncated, and recombinant natriuretic peptides by NEP. The degradation was clearly dependent on the length of the N- or C-terminus as well as on distinct sequence differences within the essential loop structure of the natriuretic peptides. Based on these findings, we developed a model for the interaction of NEP and natriuretic peptides that enables new insights into the mode of action and prediction of substrates of NEP, a peptidase that plays a key role in crucial (patho-) physiological processes.  相似文献   

2.
Involvement of neutral endopeptidase in neoplastic progression   总被引:5,自引:0,他引:5  
Neutral endopeptidase 24.11 (NEP) is a 90-110 kDa cell surface cell surface peptidase that is normally expressed by numerous tissues, including prostate, kidney, intestine, endometrium, adrenal glands and lung. This enzyme cleaves peptide bonds on the amino side of hydrophobic amino acids and inactivates a variety of physiologically active peptides, including atrial natriuretic factor, substance P, bradykinin, oxytocin, Leu- and Met-enkephalins, neurotensin, bombesin, endothelin-1, and bombesin-like peptides. NEP reduces the local concentration of peptide available for receptor binding and signal transduction. Loss or decreases in NEP expression have been reported in a variety of malignancies. Reduced NEP may promote peptide-mediated proliferation by allowing accumulation of higher peptide concentrations at the cell surface, and facilitate the development or progression of neoplasia. We have used prostate cancer as model in which to study the involvement of NEP in malignancy. Using a variety of experimental approaches, including recombinant NEP, cell lines expressing wild-type and mutant NEP protein, and cell lines expressing NEP protein with a mutated cytoplasmic domain, we have examined the effects of NEP on cell migration and cell survival. We have shown that the effects of NEP are mediated by its ability to catalytically inactivate substrates such as bombesin and endothelin-1, but also through direct protein-protein interaction with other protein such as Lyn kinase [which associates with the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) resulting in NEP-Lyn-PI3-K protein complex], ezrin/radixin/moesin (ERM) proteins, and the PTEN tumor suppressor protein. We review the mechanisms of NEP's tumor suppressive action and how NEP loss contributes to tumor progression.  相似文献   

3.
Recent reports presented contradictory results regarding the catabolism of mature atrial (ANP) and brain (BNP) natriuretic peptides in circulation. Especially the role of neutral endopeptidase (NEP) in BNP degradation was conversely discussed. Our present in vitro-studies characterize the NEP-dependent metabolism of ANP and BNP in different tissues via HPLC-analysis using NEP-deficient mice and specific NEP inhibitors. Our results show a strong tissue-dependent degradation pattern of both peptides, which are not only due to the different NEP activities in these tissues. Whereas NEP rapidly degraded ANP, it had no influence in BNP-metabolism. Additional experiments with purified NEP confirmed this result. Moreover, we describe a degradation of ANP and BNP in NEP-deficient- and NEP-inhibited membranes. Consequently, we postulate the existence of at least one further natriuretic peptide (NP) degrading enzyme, which has not been characterized yet. Thus, the commonly accepted model of the natriuretic peptide system with NEP as the central degrading peptidase has to be partly revised. Moreover, the NEP-independent BNP degradation provides an effective means for achieving a beneficial BNP increase in cardiovascular pathology by inhibiting the assumed novel NP-degrading peptidase(s).  相似文献   

4.
Members of the neprilysin family of neutral endopeptidases (M13) are typically membrane-bound enzymes known to be involved in the extra-cellular metabolism of signalling peptides and have important roles during mammalian embryogenesis. In this study we show that membranes prepared from embryos of Drosophila melanogaster possess neprilysin-like activity that is inhibited by phosphoramidon and thiorphan, both inhibitors of mammalian neprilysin. Unexpectedly, we also found strong neprilysin-like neutral endopeptidase activity in a soluble embryo fraction, which we identify as NEP2 by Western blot and immunoprecipitation experiments using NEP2 specific antibodies. NEP2 is a soluble secreted member of the neprilysin family that has been shown previously to be expressed in larval and adult Malpighian tubules and in the testes of adult males. In situ hybridization studies reveal expression at stage 10-11 in a pattern similar to that previously described for stellate cell progenitors of the caudal visceral mesoderm. In later stages of embryogenesis, some of these cells appear to migrate into the growing Malpighian tubule. Recombinant NEP2 protein is N-glycosylated and displays optimum endopeptidase activity at neutral pH, consistent with a role as an extracellular peptidase. The recombinant enzyme hydrolyses Drosophila tachykinin peptides (DTK) at peptide bonds N-terminal to hydrophobic residues. DTK2, like Locusta tachykinin-1, was cleaved at the penultimate peptide bond (Gly(7)-Leu(8)), whereas the other Drosophila peptides were cleaved centrally at Xxx-Phe bonds. However, the rates of hydrolysis of the latter substrates were much slower than the hydrolysis rates of DTK2 and Locusta tachykinin-1, suggesting that the interaction of the bulky side-chain of phenylalanine at the S'(1) sub-site is less favorable for peptide bond hydrolysis. The secretion of NEP2 from tissues during embryogenesis suggests a possible developmental role for this endopeptidase in peptide signalling in D. melanogaster.  相似文献   

5.
Tachykinin-related peptides (TRP) are widely distributed in the CNS of insects, where they are likely to function as transmitters/modulators. Metabolic inactivation by membrane ecto-peptidases is one mechanism by which peptide signalling is terminated in the CNS. Using locustatachykinin-1 (LomTK-1, GPSGFYGVRamide) as a substrate and several selective peptidase inhibitors, we have compared the types of membrane associated peptidases present in the CNS of four insects, Locusta migratoria, Leucophaea maderae, Drosophila melanogaster and Lacanobia oleracea. A neprilysin (NEP)-like activity cleaving the G-F peptide bond was the major LomTK-1-degrading peptidase detected in locust brain membranes. NEP activity was also found in Leucophaea brain membranes, but the major peptidase was an angiotensin converting enzyme (ACE), cleaving the G-V peptide bond. Drosophila adult head and larval neuronal membranes cleaved the G-F and G-V peptide bonds. Phosphoramidon inhibited both these cleavages, but with markedly different potencies, indicating the presence in the fly brain of two NEP-like enzymes with different substrate and inhibitor specificity. In Drosophila, membrane ACE did not make a significant contribution to the cleavage of the G-V bond. In contrast, ACE was an important membrane peptidase in Lacanobia brain, whereas very little neuronal NEP could be detected. A dipeptidyl peptidase IV (DPP IV) that removed the GP dipeptide from the N-terminus of LomTK-1 was also found in Lacanobia neuronal membranes. This peptidase was a minor contributor to LomTK-1 metabolism by neuronal membranes from all four insect species. In Lacanobia, LomTK-1 was also a substrate for a deamidase that converted LomTK-1 to the free acid form. However, the deamidase was not an integral membrane protein and could be a lysosomal contaminant. It appears that insects from different orders can have different complements of neuropeptide-degrading enzymes. NEP, ACE and the deamidase are likely to be more efficient than the common DPP IV activity at terminating neuropeptide signalling since they cleave close to the C-terminus of the tachykinin, a region essential for maintaining biological activity.  相似文献   

6.
Neprilysin (NEP), a thermolysin-like zinc metalloendopeptidase, plays an important role in turning off peptide signalling events at the cell surface. It is involved in the metabolism of a number of regulatory peptides of the mammalian nervous, cardiovascular, inflammatory and immune systems. Examples include enkephalins, tachykinins, natriuretic and chemotactic peptides. NEP is an integral plasma membrane ectopeptidase of the M13 family of zinc peptidases. Other related mammalian NEP-like enzymes include the endothelin-converting enzymes (ECE-1 and ECE-2), KELL and PEX. A number of novel mammalian homologues of NEP have also recently been described. NEP family members are potential therapeutic targets, for example in cardiovascular and inflammatory disorders, and potent and selective inhibitors such as phosphoramidon have contributed to understanding enzyme function. Inhibitor design should be facilitated by the recent three-dimensional structural solution of the NEP-phosphoramidon complex. For several of the family members, however, a well-defined physiological function or substrate is lacking. Knowledge of the complete genomes of Caenorhabditis elegans and Drosophila melanogaster allows the full complement of NEP-like activities to be analysed in a single organism. These model organisms also provide convenient systems for examining cell-specific expression, developmental and functional roles of this peptidase family, and reveal the power of functional genomics.  相似文献   

7.
Calcitonin gene-related peptide (CGRP) and substance P (SP) are released from sensory nerves upon exposure to irritating stimuli. Neutral endopeptidase (NEP), a membrane-bound peptidase, cleaves many peptides including SP, thereby limiting their biological actions. Recombinant NEP cleaved CGRP1 approximately 88-fold less rapidly than it cleaved SP. The slow cleavage by NEP of CGRP compared to SP suggests that this enzyme is likely to have weaker physiologic effects on CGRP than have been demonstrated for SP.  相似文献   

8.
The neutral endopeptidase 24.11 (NEP) also called 'enkephalinase' thanks to its inactivation of enkephalins in the brain, was also recently shown to be involved in the degradation of the circulating atrial natriuretic peptide (ANP). Inhibitors of NEP are therefore under clinical trials as new analgesics or antidiarrheal agents, protecting centrally or peripherally released opioid peptides and as novel antidiuretics and anti-hypertensives in prolonging the renal and vascular actions of NEP. It was therefore important from a clinical point of view to investigate the distribution in peripheral tissue of a systemically administered NEP blocker. Different concentrations of the radiolabelled inhibitor [3H]HACBO-Gly have been intravenously injected in rat and the distribution studied using whole-body sections at different times by 'ex vivo' and 'in vitro' autoradiography to investigate differences in tissue accessibility of NEP to a circulating inhibitor. In vivo [3H]HACBO-Gly binding was fully prevented by an excess of unlabelled inhibitor and disappeared rapidly mainly through renal elimination. NEP labelling was prominent in kidney, liver, lung, fat deposits in the neck region, the flat bones of the skull, the mandibula, the vertebrae, the long bones of the limbs, articular cartilages and synoviae. A lower labelling was found in the intestine, the glomeruli and the submaxillary glands. [3H]HACBO-Gly binds also to a limited number of peripheral tissues in which the presence of NEP was yet unknown (bones, parts of adipose tissues. Some tissues, not labelled in vivo, exhibited various degrees of labelling under in vitro conditions (the brain, some portions of the gut, the testes, the prostate). Interestingly, few lobules of the submaxillary glands were much more densely labelled suggesting the possible occurrence of NEP heterogeneity. Except for the brain, the physiological function of NEP in various tissues remains largely unknown, but this ectoenzyme is likely involved in inactivation of regulatory peptides such as: ANP (partially in the kidney), SP in the lung and possibly somatostatin and ANP in bone, ANP in adipose tissue, enkephalin in testes, immune peptidic factors in bone marrow. A part of NEP in bone marrow corresponds probably to the common acute lymphoblastic antigen, CALLA, densely expressed on pre-B cells. Finally, it is important to notice that several tissues containing important concentrations of NEP (brain, testes, prostate, eye, gut, brush border) are inaccessible to the i.v. injected inhibitor thanks to the presence of functional barriers.  相似文献   

9.
In bacteria and chloroplasts, the Tat (twin arginine translocation) system is capable of translocating folded passenger proteins across the cytoplasmic and thylakoidal membranes, respectively. Transport depends on signal peptides that are characterized by a twin pair of arginine residues. The signal peptides are generally removed after transport by specific processing peptidases, namely the leader peptidase and the thylakoidal processing peptidase. To gain insight into the prerequisites for such signal peptide removal, we mutagenized the vicinity of thylakoidal processing peptidase cleavage sites in several thylakoidal Tat substrates. Analysis of these mutants in thylakoid transport experiments showed that the amino acid composition of both the C-terminal segment of the signal peptide and the N-terminal part of the mature protein plays an important role in the maturation process. Efficient removal of the signal peptide requires the presence of charged or polar residues within at least one of those regions, whereas increased hydrophobicity impairs the process. The relative extent of this effect varies to some degree depending on the nature of the precursor protein. Unprocessed transport intermediates with fully translocated passenger proteins are found in membrane complexes of high molecular mass, which presumably represent Tat complexes, as well as free in the lipid bilayer. This seems to indicate that the Tat substrates can be laterally released from the complexes prior to processing and that membrane transport and terminal processing of Tat substrates are independent processes.  相似文献   

10.
Neutral endopeptidase (NEP) plays a key role in the metabolic inactivation of various bioactive peptides such as atrial natriuretic peptide (ANP), endothelins, and enkephalins. Furthermore, NEP is known to work as elastase in skin fibroblast. Therefore, effective inhibitors of NEP offer significant therapeutic interest as antihypertensives, analgesics, and skin anti-aging agents. Recently, the X-ray crystal structure of human NEP complexed with phosphoramidon has been reported and provided insights into the active site specificity of NEP. Here, we designed new inhibitors by using in silico molecular modeling and synthesized them by short steps. Expectedly, we found highly effective inhibitors with sub-nanomolar levels of IC(50) values. These results indicate that our structure-based molecular designing program is useful for obtaining novel NEP inhibitors. Furthermore, these inhibitors may be attractive leads for the generation of new pharmaceuticals for NEP-related diseases.  相似文献   

11.
We have investigated the role of zinc peptidases in metabolism of the amyloid precursor protein (APP) and the effects of hypoxia. Two peptidase families have been studied: the neprilysin (NEP) family which includes, in the brain: NEP, endothelin converting enzyme (ECE) and secreted endopeptidase (SEP). Reactive oxygen species can regulate enzyme activity via modulation of the zinc ion at the active site. Both NEP and ECE can prevent accumulation of amyloid beta peptide by hydrolyzing the peptide. As acute and chronic hypoxia can modulate APP processing, we have investigated the effects of hypoxia in cell culture on the expression and activity of NEP, ECE and SEP. In parallel, we have monitored the expression of another zinc peptidase, alpha-secretase, that mediates the nonamyloidogenic processing of APP. Overall, zinc peptidases appear neuroprotective and modulation of these activities in pathological states could lead to neurodegeneration.
Acknowledgements:  This work was supported by the UK MRC, The Royal Society, INTAS, The Biochemical Society.  相似文献   

12.
R Mentlein 《FEBS letters》1988,234(2):251-256
The proteases involved in the maturation of regulatory peptides like those of broader specificity normally fail to cleave peptide bonds linked to the cyclic amino acid proline. This generates several mature peptides with N-terminal X-Pro-sequences. However, in certain non-mammalian tissues repetitive pre-sequences of this type are removed by specialized dipeptidyl (amino)peptidases during maturation. In mammals, proline-specific proteases are not involved in the biosynthesis of regulatory peptides, but due to their unique specificity they could play an important role in the degradation of them. Evidence exists that dipeptidyl (amino)peptidase IV at the cell surface of endothelial cells sequesters circulating peptide hormones which are then susceptible to broader aminopeptidase attack. The cleavage of several neuropeptides by prolyl endopeptidase has been demonstrated in vitro, but its role in the brain is questionable since the precise localization of the protease is not clarified.  相似文献   

13.
The intracellular peptidases dipeptidyl peptidase (DPP) 8 and DPP9 are involved in multiple cellular pathways including antigen maturation, cellular homeostasis, energy metabolism, and cell viability. Previously we showed that the small ubiquitin-like protein modifier SUMO1 interacts with an armlike structure in DPP9, leading to allosteric activation of the peptidase. Here we demonstrate that the E67-interacting loop (EIL) peptide, which corresponds to the interaction surface of SUMO1 with DPP9, acts as a noncompetitive inhibitor of DPP9. Moreover, by analyzing the sensitivity of DPP9 arm mutants to the EIL peptide, we mapped specific residues in the arm that are important for inhibition by the EIL, suggesting that the peptide acts as an allosteric inhibitor of DPP9. By modifying the EIL peptide, we constructed peptide variants with more than a 1,000-fold selectivity toward DPP8 (147 nm) and DPP9 (170 nm) over DPPIV (200 μm). Furthermore, application of these peptides to cells leads to a clear inhibition of cellular prolyl peptidase activity. Importantly, in line with previous publications, inhibition of DPP9 with these novel allosteric peptide inhibitors leads to an increase in EGF-mediated phosphorylation of Akt. This work highlights the potential use of peptides that mimic interaction surfaces for modulating enzyme activity.  相似文献   

14.
Summary Membrane proteases that are detectable by cytochemical means are the classified exopeptidases, aminopeptidases A and M (or N), -glutamyl transpeptidase (which also acts as transferase), dipeptidyl peptidase IV and the endopeptidase, enteropeptidase (also known as enterokinase). Not yet classified are the possible expeptidase, tripeptidyl peptidase and endopeptidases I (Ala-endopeptidase) and II (Arg-endopeptidase). All these membrane proteases can be investigated with either chromogenic or fluorogenic procedures using synthetic peptide substrates. The most useful substrates are 4-methoxy-2-naphthylamine amino acids and peptides for cytochemical localizations at the light and electron microscope levels, for cytophotometric quantification and the study of membrane protease isoenzymes after analytical isoelectric focusing. Amino acid or peptide derivatives of naphthylamine AS can be recommended for light microscopical localization and cytofluorometric quantification, and 7-amino-4-methylcoumarin and 7-amino-4-trifluoromethylcoumarin amino acids and peptides for the development of enzyme bands after isoelectric focusing. Cytochemistry reveals the heterogeneity in the distribution and species differences of membrane proteases in adult cells, tissues and organs and during development. It also reveals some common localizations, such as in small intestinal enterocytes and proximal tubule cells. The species and organ differences are substantiated and extended considerably by isoelectric focusing in combination with methods for the cytochemical detection of proteases. In addition, continuous cytophotometry or cytofluorometry (section and cultured cell biochemistry) allows the kinetic characteristics, initial reaction rates and maximum activities of all membrane proteases to be determined.The physiological functions of the endopeptidases and exopeptidases are still a matter of debate. However, from cytochemical inhibition studies with natural peptide substrates, e.g. peptide hormones, there is increasing evidence that the proteases detected with synthetic peptides play a decisive role in many physiological circumstances, e.g. in endocrine regulation mechanisms or the regulation of blood pressure. In this respect, capillary endothelium-linked surface membrane proteases may be especially important.  相似文献   

15.
This report summarizes the recent rapid development of research on neutral endopeptidase 24.11 (enkephalinase; NEP) and on two other metalloenzymes, meprin and endopeptidase 24.15. NEP cleaves a variety of active peptides, including enkephalins, at the amino side of hydrophobic amino acids. The cDNA for human, rat, and rabbit NEP has been cloned and the deduced protein sequences revealed a high degree of homology (93-94%). Site-directed mutagenesis proved that an active site glutamic acid is involved in catalysis and two active site histidines are responsible for binding the zinc cofactor. Although NEP was originally discovered in the kidney, it is widely distributed in the body including specific structures in the central nervous system, lung, male genital tract, and intestine and in neutrophils, fibroblasts, and epithelial cells. In tissues and cells NEP is bound to plasma membrane through a hydrophobic membrane-spanning domain near the NH2 terminus, but it is present in soluble form in urine and blood. In addition to enkephalins, NEP cleaves kinins, chemotactic peptide, atrial natriuretic factor (ANF), and substance P in vivo. NEP in the lung is a major inactivator of substance P, which constricts the airway smooth muscles. Because of the possible involvement of NEP in the metabolism of opioid peptides and the cardiac hormone ANF, orally active inhibitors have been synthesized. Compounds that inhibit both aminopeptidase and NEP were reported to prolong the analgesic effects of enkephalins. Other inhibitors given per os prolonged the renal effects of exogenous ANF. A newly synthesized specific inhibitor of NEP was also active in animal experiments as an analgesic. Studies on the structure and function of NEP should lead to further development of therapeutically applicable inhibitors.  相似文献   

16.
Neuropeptides such as substance P are implicated in inflammation mediated by sensory nerves (neurogenic inflammation), but the roles in disease of these peptides and the peptidases that degrade them are not understood. It is well established that inflammation is a prominent feature of several airway diseases, including viral infections, asthma, bronchitis, and cystic fibrosis. These diseases are characterized by cough, airway edema, and abnormal secretory and bronchoconstrictor responses, all of which can be elicited by substance P. The effects of substance P and other peptides that may be involved in inflammation are decreased by endogenous neutral endopeptidase (NEP; also called enkephalinase, EC 3.4.24.11), which is a peptidase that degrades substance P and other peptides. In the present study, we report that rats with histories of infections caused by common respiratory tract pathogens (parainfluenza virus type 1, rat corona-virus, and Mycoplasma pulmonis) not only have greater susceptibility to neurogenic inflammatory responses than do pathogen-free rats but also have a lower activity of NEP in the trachea. This reduction in NEP activity may cause the increased susceptibility to neurogenic inflammation by allowing higher concentrations of substance P to reach tachykinin receptors in the trachea. Thus decreased NEP activity may exacerbate some of the pathological responses in animals with respiratory tract infections.  相似文献   

17.
Neutral endopeptidase (NEP) is a 90‐ to 110‐kDa cell‐surface peptidase that is normally expressed by numerous tissues but whose expression is lost or reduced in a variety of malignancies. The anti‐tumorigenic function of NEP is mediated not only by its catalytic activity but also through direct protein–protein interactions of its cytosolic region with several binding partners, including Lyn kinase, PTEN, and ezrin/radixin/moesin (ERM) proteins. We have previously shown that mutation of the K19K20K21 basic cluster in NEPs' cytosolic region to residues QNI disrupts binding to the ERM proteins. Here we show that the ERM‐related protein merlin (NF2) does not bind NEP or its cytosolic region. Using experimental data, threading, and sequence analysis, we predicted the involvement of moesin residues E159Q160 in binding to the NEP cytosolic domain. Mutation of these residues to NL (to mimic the corresponding N159L160 residues in the nonbinder merlin) disrupted moesin binding to NEP. Mutation of residues N159L160Y161K162M163 in merlin to the corresponding moesin residues resulted in NEP binding to merlin. This engineered NEP peptide–merlin interaction was diminished by the QNI mutation in NEP, supporting the role of the NEP basic cluster in binding. We thus identified the region of interaction between NEP and moesin, and engineered merlin into a NEP‐binding protein. These data form the basis for further exploration of the details of NEP‐ERM binding and function.  相似文献   

18.
Keane FM  Nadvi NA  Yao TW  Gorrell MD 《The FEBS journal》2011,278(8):1316-1332
Fibroblast activation protein-α (FAP) is a cell surface-expressed and soluble enzyme of the prolyl oligopeptidase family, which includes dipeptidyl peptidase 4 (DPP4). FAP is not generally expressed in normal adult tissues, but is found at high levels in activated myofibroblasts and hepatic stellate cells in fibrosis and in stromal fibroblasts of epithelial tumours. FAP possesses a rare catalytic activity, hydrolysis of the post-proline bond two or more residues from the N-terminus of target substrates. α(2)-antiplasmin is an important physiological substrate of FAP endopeptidase activity. This study reports the first natural substrates of FAP dipeptidyl peptidase activity. Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY were the most efficiently hydrolysed substrates and the first hormone substrates of FAP to be identified. In addition, FAP slowly hydrolysed other hormone peptides, such as the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, which are efficient DPP4 substrates. FAP showed negligible or no hydrolysis of eight chemokines that are readily hydrolysed by DPP4. This novel identification of FAP substrates furthers our understanding of this unique protease by indicating potential roles in cardiac function and neurobiology.  相似文献   

19.
Lantibiotic and non-lantibiotic bacteriocins are synthesized as precursor peptides containing N-terminal extensions (leader peptides) which are cleaved off during maturation. Most non-lantibiotics and also some lantibiotics have leader peptides of the so- called double-glycine type. These leader peptides share consensus sequences and also a common processing site with two conserved glycine residues In positions -1 and 2. The double-glycine-type leader peptides are unrelated to the N-terminal signal sequences which direct proteins across the cytoplasmic membrane via the sec pathway. Their processing sites are also different from typical signal peptidase cleavage sites, suggesting that a different processing enzyme is involved. Peptide bacteriocins are exported across the cytoplasmic membrane by a dedicated ATP-binding cassette (ABC) transporter. Here we show that the ABC transporter is the maturation protease and that its proteolytic domain resides in the N-terminal part of the protein. This result demonstrates that the ABC transporter has a dual function: (i) removal of the leader peptide from its substrate, and (ii) translocation of its substrate across the cytoplasmic membrane. This represents a novel strategy for secretion of bacterial proteins.  相似文献   

20.
A protein destined for export from the cell cytoplasm is synthesized as a preprotein with an amino-terminal signal peptide. In Escherichia coli, typically signal peptides that guide preproteins into the SecYEG protein conduction channel are subsequently removed by signal peptidase I. To understand the mechanism of this critical step, we have assessed the conformation of the signal peptide when bound to signal peptidase by solution nuclear magnetic resonance. We employed a soluble form of signal peptidase, which laks the two transmembrane domains (SPase I Δ2-75), and the E. coli alkaline phosphatase signal peptide. Using a transferred NOE approach, we found clear evidence of a weak peptide-enzyme complex formation. The peptide adopts a U-turn shape originating from the proline residues within the primary sequence that is stabilized by its interaction with the peptidase and leaves key residues of the cleavage region exposed for proteolysis. In dodecylphosphocholine (DPC) micelles the signal peptide also adopts a U-turn shape comparable with that observed in association with the enzyme. In both environments this conformation is stabilized by the signal peptide phenylalanine side chain-interaction with enzyme or lipid mimetic. Moreover, in the presence of DPC, the N-terminal core region residues of the peptide adopt a helical motif and based on PRE (paramagnetic relaxation enhancement) experiments are shown to be buried within the membrane. Taken together, this is consistent with proteolysis of the preprotein occurring while the signal peptide remains in the bilayer and the enzyme active site functioning at the membrane surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号