首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel epibiotic thiothrix bacterium on a marine amphipod   总被引:1,自引:0,他引:1  
Comparative analysis of the 16S rRNA gene and fluorescent in situ hybridization (FISH) was used to identify epibiotic filamentous bacteria living on the marine amphipod crustacean Urothoe poseidonis. The epibionts belong to the gamma proteobacteria and represent a novel marine phylotype within the genus Thiothrix. FISH and denaturing gradient gel electrophoresis revealed that the Thiothrix filaments are present on the majority of the amphipods examined.  相似文献   

2.
The ultrastructural features of two groups of filamentous sulfur bacteria, Thiothrix spp. and an unnamed organism designated "type 021N," were examined by transmission electron microscopy. Negative staining of whole cells and filaments with uranyl acetate revealed the presence of tufts of fimbriae located at the ends of individual gonidia of Thiothrix sp. strain A1 and "type 021N" strain N7. Holdfast material present at the center of mature rosettes was observed in thin sections stained with ruthenium red. A clearly defined sheath enveloped the trichomes of two of three Thiothrix strains but was absent from "type 021N" filaments. The outer cell wall appeared more complex in "type 021N" strains than in Thiothrix isolates. Bulbs or clusters of irregularly shaped cells, often present in filaments of "type 021N" bacteria, appeared to result from crosswalls which formed at angles oblique to the filament axis. The multicellular nature of these sulfur bacteria was apparent in that only the cytoplasmic membrane and peptidoglycan layer of the cell wall were involved in the septation process. Sulfur inclusions which developed in the presence of sodium thiosulfate were enclosed by a single-layered envelope and located within invaginations of the cytoplasmic membrane.  相似文献   

3.
A technique based on quantitative microautoradiography (QMAR) and fluorescence in situ hybridization (FISH) was developed and evaluated in order to determine the quantitative uptake of specific substrates in probe-defined filamentous bacteria directly in a complex system. The technique, QMAR-FISH, has a resolution of a single cell and is based on an improved fixation protocol and the use of an internal standard of bacteria with known specific radioactivity. The method was used to study the in situ ecophysiology of the filamentous bacteria 'Candidatus Meganema perideroedes' and Thiothrix sp. directly in an activated sludge system. The cellular uptake rate of tritium-labelled substrates revealed an average cell-specific uptake rate of 4.1 yen 10-15 mol of acetate cell-1 h-1 and 3.1 yen 10-15 mol of acetate cell-1 h-1 for the two filamentous species respectively. The two filamentous species had very similar activity in all cells along each filament. Surprisingly, the filaments within both probe-defined populations had threefold variation in activity between the different filaments, demonstrating a large variation in activity level within a single population in a complex system. The substrate affinity (Ks) for uptake of acetate of the cells within the two filamentous bacteria was determined by incubation with variable concentrations of labelled acetate. The Ks values of the 'Candidatus Meganema perideroedes' and the Thiothrix filamentous bacteria were determined to be 1.8 micro M and 2.4 micro M acetate respectively.  相似文献   

4.
A phylogenetic in situ/ex situ analysis of a sulfur mat formed by colorless filamentous sulfur bacteria in a thermal sulfide stream (northern spur of the main Caucasian ridge) was carried out. Nine phylotypes were revealed in the mat. Thiothrix sp. and Sphaerotilus sp. were the dominant phylotypes (66.3% and 26.3%, respectively). The 16S rRNA gene nucleotide sequence of Spahaerotilus sp. phylotype from the clone library was identical to the sequences of the seven Sphaerotilus strains isolated from the same source. A very high degree of similarity of Sphaerotilus strains revealed by ERIC-PCR fingerprints indicated little or no population diversity of this species in the mat. Thiothrix phylotype from the clone library and two Thiothrix strains isolated from the same mat sample differed in one to three nucleotides of 16S rRNA genes; this is an indication of this organism's population variability in the mat. 16S rRNA genes of the strains and clones of Thiothrix sp. exhibited the highest similarity (ca. 99%) with Thiothrix unzii; the strains and clones of Sphaerotilus had 99% similarity with the type species Sphaerotilus natans (the only species of this genus) and therefore can be assigned to this species. The minor seven components belong to the phylotypes from the Proteobacteria (3%), as well as the Chlorobia, Cyanobacteria, Clostridia, and Bacteroidetes phylogenetic groups, each of them constituting not more than 1%. Intracellular accumulation of elemental sulfur by Sphaerotilus similar to other filamentous sulfur bacteria was demonstrated for the first time (both in the population of the sulfur spring and in cultures with sulfide). Although mass growth of Sphaerotilus and Thiothrix is typical of bacterial populations of anthropogenic ecosystems (the activated sludge of treatment facilities), stable communities of these bacteria have not been previously found in the sulfur mats or "threads" of natural sulfide springs.  相似文献   

5.
Seventeen strains of filamentous sulfur bacteria were isolated in axenic culture from activated sludge mixed liquor samples and sulfide-gradient enrichment cultures. Isolation procedures involved plating a concentrated inoculum of washed filaments onto media containing sulfide or thiosulfate. The isolates were identified as Thiothrix spp., Beggiatoa spp., and an organism of uncertain taxonomic status, designated type 021N. All bacteria were gram negative, reduced nitrate, and formed long, multicellular trichomes with internal reserves of sulfur, volutin, and sudanophilic material. Thiothrix spp. formed rosettes and gonidia, and four of six strains were ensheathed. Type 021N organisms utilized glucose, lacked a sheath, and differed from Thiothrix spp. in several aspects of cellular and cultural morphology. Beggiatoa spp. lacked catalase and oxidase, and filaments were motile. Biochemical and physiological characterization of the isolates revealed important distinguishing features between the three groups of bacteria. Strain differences were most evident among the Thiothrix cultures. A comparison of the filamentous sulfur bacteria with freshwater strains of Leucothrix was made also.  相似文献   

6.
Seventeen strains of filamentous sulfur bacteria were isolated in axenic culture from activated sludge mixed liquor samples and sulfide-gradient enrichment cultures. Isolation procedures involved plating a concentrated inoculum of washed filaments onto media containing sulfide or thiosulfate. The isolates were identified as Thiothrix spp., Beggiatoa spp., and an organism of uncertain taxonomic status, designated type 021N. All bacteria were gram negative, reduced nitrate, and formed long, multicellular trichomes with internal reserves of sulfur, volutin, and sudanophilic material. Thiothrix spp. formed rosettes and gonidia, and four of six strains were ensheathed. Type 021N organisms utilized glucose, lacked a sheath, and differed from Thiothrix spp. in several aspects of cellular and cultural morphology. Beggiatoa spp. lacked catalase and oxidase, and filaments were motile. Biochemical and physiological characterization of the isolates revealed important distinguishing features between the three groups of bacteria. Strain differences were most evident among the Thiothrix cultures. A comparison of the filamentous sulfur bacteria with freshwater strains of Leucothrix was made also.  相似文献   

7.
Naturally occurring tufts of the mixotroph Thiothrix nivea blanketed the East Everglades (Dade County, Fla.) Chekika artesian well and runoff areas. The rate of HCO(3) fixation by these Thiothrix tufts was determined to be 14.0 +/- 5.4 nmol of HCO(3) per min per mg of dry weight, which reflected a growth rate of 5.0%/h. The addition of 10 mM glucose, ribose, acetate, or pyruvate or 0.05% Casamino Acids (Difco Laboratories, Detroit, Mich.) did not appear to alter the HCO(3) fixation rate. Whereas 1 mM acetate or 10 mM lactate, ethanol, glycerol, alpha-ketoglutarate, succinate, fumarate, or citrate slightly stimulated HCO(3) fixation, 5 to 10 mM malate inhibited HCO(3) fixation by 90%. Pure Thiothrix cultures isolated from Chekika fixed HCO(3) at rates as high as 29.9 +/- 2.8 nmol of HCO(3) per min per mg of dry weight in the presence of growth medium. Malate did not have a suppressive effect but rather slightly stimulated in vivo HCO(3) fixation.  相似文献   

8.
The in situ physiology of the filamentous sulphur bacterium Thiothrix spp. was investigated in an industrial wastewater treatment plant with severe bulking problems as a result of overgrowth of Thiothrix. Identification and enumeration using fluorescence in situ hybridization (FISH) with species-specific 16S and 23S rRNA probes revealed that 5–10% of the bacteria in the activated sludge were Thiothrix spp. By using a combination of FISH and microautoradiography it was possible to study the in situ physiology of probe-defined Thiothrix filaments under different environmental conditions. The Thiothrix filaments were very versatile and showed incorporation of radiolabelled acetate and/or bicarbonate under heterotrophic, mixotrophic and chemolithoautotrophic conditions. The Thiothrix filaments were active under anaerobic conditions (with or without nitrate) in which intracellular sulphur globules were formed from thiosulphate and acetate was taken up. Thiothrix -specific substrate uptake rates and growth rates in activated sludge samples were determined under different conditions. Doubling times of 6–9 h under mixotrophic conditions and 15–30 h under autotrophic conditions were estimated. The key properties that Thiothrix might be employing to outcompete other microorganisms in activated sludge were probably related to the mixotrophic growth potential with strong stimulation of acetate uptake by thiosulphate, as well as stimulation of bicarbonate incorporation by acetate in the presence of thiosulphate.  相似文献   

9.
Summary This study aimed at isolating filamentous bacteria from full-scale activated sludge processes and studying them in pure culture. Three cultures were isolated using conventional microbiological techniques. The isolates were positively identified as Gordonia amarae, Thiothrix nivea and Type 1863/Acinetobacter spp., using fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. However, a ‘morphological shift’ from filamentous to single-cell form was observed in pure culture. The application of fluorescent in situ hybridization (FISH) showed filamentous bacteria to be much more diverse in their ability to adapt to their changing enviroments. Pure culture studies of filamentous bacteria form the basis for application in full-scale activated sludge plants. It therefore remains important that the taxonomic status of filamentous bacteria be determined.  相似文献   

10.
Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.  相似文献   

11.
Ephemeral blooms of filamentous bacteria are a common phenomenon in the water column of oligo- to mesotrophic lakes. It is assumed that the appearance of such morphotypes is favored by selective predation of bacterivorous protists and that filter-feeding zooplankton plays a major role in suppressing these bacteria. The phylogenetic affiliation of the important bloom-forming filamentous bacteria in freshwaters is presently unknown. Here we report the identification of dominant members of a filamentous bacterial assemblage during a bloom of such morphotypes in a mesotrophic lake. By molecular cloning and fluorescence in situ hybridization with specific oligonucleotide probes, up to 98% of filamentous cells in lake water could be assigned to a clade of almost identical (99% similarity) 16S rRNA gene sequence types, the cosmopolitan freshwater LD2 cluster. For a period of less than 1 week, members of the LD2 clade constituted >40% of the total bacterial biomass, potentially favored by high grazing of planktivorous protists. This is probably the most pronounced case of dominance by a single bacterioplankton species ever observed in natural freshwaters. In enclosures artificially stocked with the metazoan filter feeder Daphnia, bacteria related to the LD2 clade formed a significantly larger fraction of filaments than in enclosures where Daphnia had been removed. However, in the presence of higher numbers of Daphnia individuals, the LD2 bacteria, like other filaments, were eventually eliminated both in enclosures and in the lake. This points at the potential importance of filter-feeding zooplankton in controlling the occurrence and species composition of filamentous bacterial morphotypes in freshwater plankton.  相似文献   

12.
Ephemeral blooms of filamentous bacteria are a common phenomenon in the water column of oligo- to mesotrophic lakes. It is assumed that the appearance of such morphotypes is favored by selective predation of bacterivorous protists and that filter-feeding zooplankton plays a major role in suppressing these bacteria. The phylogenetic affiliation of the important bloom-forming filamentous bacteria in freshwaters is presently unknown. Here we report the identification of dominant members of a filamentous bacterial assemblage during a bloom of such morphotypes in a mesotrophic lake. By molecular cloning and fluorescence in situ hybridization with specific oligonucleotide probes, up to 98% of filamentous cells in lake water could be assigned to a clade of almost identical (99% similarity) 16S rRNA gene sequence types, the cosmopolitan freshwater LD2 cluster. For a period of less than 1 week, members of the LD2 clade constituted >40% of the total bacterial biomass, potentially favored by high grazing of planktivorous protists. This is probably the most pronounced case of dominance by a single bacterioplankton species ever observed in natural freshwaters. In enclosures artificially stocked with the metazoan filter feeder Daphnia, bacteria related to the LD2 clade formed a significantly larger fraction of filaments than in enclosures where Daphnia had been removed. However, in the presence of higher numbers of Daphnia individuals, the LD2 bacteria, like other filaments, were eventually eliminated both in enclosures and in the lake. This points at the potential importance of filter-feeding zooplankton in controlling the occurrence and species composition of filamentous bacterial morphotypes in freshwater plankton.  相似文献   

13.
Functioning of microbial communities in surface sediments of the Haakon Mosby underwater mud volcano (lat. 72 degrees N) and in gas seepage fields of the Vestnesa Ridge was investigated using Mir-1 and Mir-2 deep-sea submersibles during the 40th expedition of the research vessel Academician Mstislav Keldysh. Large areas of sedimentary deposits of the Haakon Mosby mud volcano (HMMV) and pockmarks of the Vestnesa Ridge (VR) are covered with bacterial mats 0.1 to 0.5 cm thick. The microbial community making up bacterial mats of the HMMV was predominated by large filamentous bacteria with filaments measuring up to 100 microns in length and 2 to 8 microns in width. The occurrence of rosettes allowed the observed filamentous bacteria to be referred to the morphologically similar genera Leucothrix or Thiothrix. Three morphological types of filamentous bacteria were identified in bacterial mats covering VR pockmarks. Filaments of type one are morphologically similar with representatives of the genera Thioploca or Desmanthos. Type two filaments had numerous inclusions of sulfur and resembled representatives of the genus Thiothrix. The third morphological type was constituted by single filaments made up of tightly connected disk-like cells and can, apparently, be assigned to the genus Beggiatoa. The rates of methane oxidation (up to 1570 microliters C/(dm3 day)) and sulfate reduction (up to 17 mg S/(dm3 day)) measured in surface sediments of HMMV and VR were close to the maximum rates of these processes observed in badly polluted regions of the northwestern shelf of the Black Sea. High rates of microbiological processes correlated with the high number of bacteria. The rate of methane production in sediments studied was notably lower and ranged from 0.1 to 3.5 microliters CH4/(dm3 day). Large areas of the HMMV caldera were populated by pogonophoras, represented by the two species, Sclerolinum sp. and Oligobrachia sp. The mass development of Sclerolinum sp. in the HMMV caldera was by the activity of aerobic methane-oxidizing bacteria localized inside the cells of these animals. Bacterial cells were also found in the trophosome tissue of Oligobrachia sp., but in cells of these bacteria, we did not observe the membrane structures typical of methanotrophs. The localization pattern of pogonophoras on the surface of reduced sediments suggests that the predominant bacteria in Oligobrachia tissues are sulfur-oxidizing endosymbionts.  相似文献   

14.
Historically, methods used to identify Thiothrix spp. in environmental samples have been inadequate because isolation and identification procedures are time-consuming and often fail to separate Thiothrix spp. from other filamentous microorganisms. We described a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) procedure which was used to identify Thiothrix spp. in wastewater, artesian springs, groundwater, and underwater subterranean samples. The ELISA utilized monoclonal antibody T3511 to a species-specific carbohydrate epitope of Thiothrix spp. No cross-reactions were observed among non-Thiothrix strains consisting of 12 species and nine genera. In field trials, the ELISA identified 100% of 20 biochemically and cytologically confirmed Thiothrix spp.-containing samples with no false positives. Indirect immunofluorescent microscopy utilizing T3511 was effective for wastewater samples but not for those from natural spring water because of background fluorescence in the latter. In addition, electron micrographs of Thiothrix spp. labeled with T3511-biotin-anti-mouse antibody-gold showed that epitope T3511 was intracellular both in laboratory strains and environmental isolates. The minimum level of detection of the ELISA was 0.10 microgram/ml.  相似文献   

15.
Enrichment cultures for free-swimming microaerophilic bacteria were prepared from marine sulfidic sediment samples (Niv? Bay, Denmark). We observed nine different morphotypes; three of these morphotypes represented already-described species, i.e., Thiovulum majus, "Candidatus Ovobacter propellens," and an as-yet-unnamed large vibrioid bacterium. In addition, we observed several morphotypes of spirilla and one vibrioid morphotype. A common feature of all investigated bacteria was that they aggregated chemotactically at the oxic-anoxic interface, whereas preferred oxygen concentration were in the range of 1 to 10 muM. The motile behavior and flagellar dynamics are analyzed in detail with an emphasis on spirilla.  相似文献   

16.
Bacterial mats in sulfide aquatic systems of North Caucasus are basically composed by the species of genera Thiothrix and Sphaerotilus. Additionally, several non-filamentous sulfur-oxidizing bacteria were isolated from the mats and several minor 16S rRNA phylotypes were found in clone libraries from these mats. The minor components were affiliated with Proteobacteria, Chlorobia, Cyanobacteria and Firmicutes. Even in an individual mat population heterogeneity of Thiothrix spp. was revealed by analysis of 16S rRNA gene and RAPD-PCR. Five Thiothrix isolates were described as new species Thiothrix caldifontis sp. nov. and Thiothrix lacustris sp. nov. In the Thiothrix-Sphaerotilus type of bacterial mat the proportion of dominant organisms might be influenced by sulfide concentration in the spring water. The higher sulfide concentration (more than 10 mg/l) in the spring water is more favorable for the development of bacterial mats with dominant Thiothrix organisms than for Thiothrix-Sphaerotilus type of sulfur mat.  相似文献   

17.
A recently discovered bacterial/archaeal association, growing in a string-of-pearls-like structure, thrives in the cold (approximately 10 degrees C) sulfidic marsh water of the Sippenauer Moor near Regensburg, Bavaria, Germany. It forms characteristic, macroscopically visible globules, the pearls, containing microcolonies of novel euryarchaeota, which are surrounded by mainly filamentous bacteria (C. Rudolph, G. Wanner, and R. Huber, Appl. Environ. Microbiol. 67:2336-2344, 2001). Single pearls in series are connected by white threads. Here we report the first detailed molecular investigations of the taxonomic affiliation of the bacteria contributing to the strings of pearls. Phylogenetic analysis showed the dominance of a single phylotype (clone sipK4) within single pearls most closely related to Thiothrix unzii. The presence of Thiothrix sipK4 as a major constituent of single pearls and of the pearl-connecting white threads was verified by fluorescence in situ hybridization.  相似文献   

18.
Fifteen filamentous strains, morphologically classified as Eikelboom type 021N bacteria, were isolated from bulking activated sludges. Based on comparative 16S ribosomal DNA (rDNA) sequence analysis, all strains form a monophyletic cluster together with all recognized Thiothrix species (88.3 to 98.7% 16S rDNA sequence similarity) within the gamma-subclass of Proteobacteria. The investigated Eikelboom type 021N isolates were subdivided into three distinct groups (I to III) demonstrating a previously unrecognized genetic diversity hidden behind the uniform morphology of the filaments. For in situ detection of these bacteria, 16S rRNA-targeted oligonucleotide probes specific for the entire Eikelboom type 021N-Thiothrix cluster and the Eikelboom type 021N groups I, II, and III, respectively, were designed, evaluated, and successfully applied in activated sludge.  相似文献   

19.
Microbiological and biogeochemical measurements showed that the intensities of CO2 assimilation, methane oxidation, and sulfate reduction in the Lost City vent field (30 degrees N) reach 3.8 microg C/(1 day), 0.06 microg C/(1 day), and 117 microg S/(1 day), respectively. On the surface of the carbonate structures occurring in this field, two varieties of bacterial mats were found. The first variety, which is specific to the Lost City alkaline vent field, represents jelly bacterial mats dominated by slime-producing bacteria of several morphotypes. This mat variety also contains chemolithotrophic and heterotrophic microorganisms, either microaerobic or anaerobic. The intensities of CO2 assimilation, methane oxidation, and sulfate reduction in this variety reach 747 microg C/(dm3 day), 0.02 microg C/(dm3 day), and 28,000 microg S/(dm3 day), respectively. Bacterial mats of the second variety are formed by nonpigmented filamentous sulfur bacteria, which are close morphologically to Thiothrix. The intensities of CO2 assimilation, methane oxidation, and sulfate reduction in the second mat variety reach 8.2 microg C/(dm3 day), 5.8 microg C/(dm3 day), and 17,000 microg S/(dm3 day), respectively. These data suggest the existence of subsurface microflora in the Lost City vent field.  相似文献   

20.
Abstract. The gutless marine oligochaete, Olavius crassitunicatus finogenova 1986 (Tubificidae), from suboxic to sulfidic sediments off Peru, consistently harbored 3 structurally distinct types of extracellular bacterial symbionts. Large, oval bacteria were labeled immunocytochemically, proving their nature as autotrophs. Spectroscopical analysis documented storage of sulfur in this numerically dominant morphotype. Small, rod-shaped bacteria attained a more peripheral position adjacent to the cuticle. The third bacterial type was represented by long, filamentous forms which were often in close contact to the oval bacteria. With their curved or undulate cells, these filiform bacteria resembled spirochetes. They were clearly distinguishable and consistently found in all investigated host specimens.
While molecular analyses could not be performed, structural and immunocytochemical evidence indicated that the oval bacteria seemed equivalent to the γ-proteobacteria in related gutless oligochaetes. On the basis of morphological similarity and indications from closely related symbiotic tubificids, the possible relationship of the two other morphoptypes must remain unsolved and needs further molecular analysis. The three bacterial morphotypes live in a consistent, elaborate, and apparently obligate coexistence with a host that has completely reduced its digestive and excretory organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号