首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low protein diet has been shown to affect the levels and activities of several enzymes from pancreatic islets. To further extend the knowledge on how malnutrition affects insulin secretion pathway, we investigated in this work the insulin release induced by glucose or leucine, an insulin secretagogue, and the expression of insulin receptor (IR), insulin receptor substrate 1 (IRS1), phosphatidylinositol 3-kinase (PI3K), and p70S6K1 (S6K-1) proteins from pancreatic islets of rats fed a normal (17%; NP) or a low (6%; LP) protein diet for 8 weeks. Isolated islets were incubated for 1 h in Krebs-bicarbonate solution containing 16.7 mmol/L of glucose, or 2.8 mmol/L of glucose in the presence or absence of 20 mmol/L of leucine. Glucose- and leucine-induced insulin secretions were higher in NP than in LP islets. Western blotting analysis showed an increase in the expression of IR and PI3K protein levels whereas IRS1 and S6K-1 protein expression were lower in LP compared to NP islets. In addition, S6K-1 mRNA expression was also reduced in islets from LP rats. Our data indicate that a low protein diet modulates the levels of several proteins involved in the insulin secretion pathway. Particularly, the decrease in S6K-1 expression might be an important factor affecting either glucose- or leucine-induced insulin secretion.  相似文献   

2.
Cytokinesis in most eukaryotes requires the assembly and contraction of a ring of actin filaments and myosin II. The fission yeast Schizosaccharomyces pombe requires the formin Cdc12p and profilin (Cdc3p) early in the assembly of the contractile ring. The proline-rich formin homology (FH) 1 domain binds profilin, and the FH2 domain binds actin. Expression of a construct consisting of the Cdc12 FH1 and FH2 domains complements a conditional mutant of Cdc12 at the restrictive temperature, but arrests cells at the permissive temperature. Cells overexpressing Cdc12(FH1FH2)p stop growing with excessive actin cables but no contractile rings. Like capping protein, purified Cdc12(FH1FH2)p caps the barbed end of actin filaments, preventing subunit addition and dissociation, inhibits end to end annealing of filaments, and nucleates filaments that grow exclusively from their pointed ends. The maximum yield is one filament pointed end per six formin polypeptides. Profilins that bind both actin and poly-l-proline inhibit nucleation by Cdc12(FH1FH2)p, but polymerization of monomeric actin is faster, because the filaments grow from their barbed ends at the same rate as uncapped filaments. On the other hand, Cdc12(FH1FH2)p blocks annealing even in the presence of profilin. Thus, formins are profilin-gated barbed end capping proteins with the ability to initiate actin filaments from actin monomers bound to profilin. These properties explain why contractile ring assembly requires both formin and profilin and why viability depends on the ability of profilin to bind both actin and poly-l-proline.  相似文献   

3.
The profilin family consists of a group of ubiquitous highly conserved 12-15 kDa eukaryotic proteins that bind actin, phosphoinositides, poly-l-proline (PLP) and proteins with proline-rich motifs. Some proteins with proline-rich motifs form complexes that have been implicated in the dynamics of the actin cytoskeleton and processes such as vesicular trafficking. A major unanswered question in the field is how profilin achieves the required specificity to bind such an array of proteins. It is now becoming clear that profilin isoforms are subject to differential regulation and that they may play distinct roles within the cell. Considerable evidence suggests that these isoforms have different functional roles in the sorting of diverse proteins with proline-rich motifs. All profilins contain highly conserved aromatic residues involved in PLP binding which are presumably implicated in the interaction with proline-rich motif proteins. We have previously shown that profilin is phosphorylated on tyrosine residues. Here, we show that profilin can bind directly to Phaseolus vulgaris phosphoinositide 3-kinase (PI3K) type III. We demonstrate that a new region around Y72 of profilin, as well as the N- and C-terminal PLP-binding domain, recognizes and binds PLP and PI3K. In vitro binding assays indicate that PI3K type III forms a complex with profilin in a manner that depends on the tyrosine phosphorylation status within the proline-rich-binding domain in profilin. Profilin-PI3K type III interaction suggests that profilin may be involved in membrane trafficking and in linking the endocytic pathway with actin reorganization dynamics.  相似文献   

4.
Reaction center of chromatophores of Rhodospirillum rubrum consists of three kinds of protein, H-, M-, and L-subunit, and is bound with many other kinds of protein to form a larger protein complex (PRU; photoreaction unit), which contains all the bacteriochlorophyll. In the present study, purified PRU was dissociated in a stepwise manner in the presence of various mixtures of lithium dodecyl sulfate, sodium cholate and/or sodium deoxycholate, and separated into five, smaller protein complexes (PL1, PL2, PL3, PL4, and PL4') by high-speed molecular-sieve chromatography. The protein complexes were analyzed for molecular mass (Mm), protein composition, and molecular weights of the constituent proteins by the chromatography described above and by lithium or sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results suggest that PRU consisted of 1 molecule each of 40K, 39K, 31K (H-subunit), 25K (M-subunit), and 22K (L-subunit), about 12 molecules each of 12K (light-harvesting bacteriochlorophyll-protein) and 11K, and about 6 molecules each of 10K and 9K (the protein nomenclature refers to the apparent molecular weights); the measured and calculated Mm values were 650K and 547K, respectively. The compositions of the other protein complexes were as follows. PL1 = PRU-10K-9K (measured & calculated Mm, 520K & 409K); PL2 = PL1-39K (340K & 267K); PL3 = PL2-40K (160K & 147K); PL4 = PL3-31K-25K (90K & 82K); PL4' = 31K + 25K + 22K (inactivated reaction center) (90K & 78K). The molar ratios of 12K and 11K to 25K were lower in the dissociated protein complexes than in PRU, and they differed from one complex to another. The locations of the constituent proteins in PRU are discussed.  相似文献   

5.
The silkworm Bombyx mori possesses a 30K protein family of 3×10~4 Da,the biologicalfunctions of which have not been fully identified.The relationship between the 30K protein family and theembryonic development of temperature sensitive sex-linked mutant strain of silkworm was investigated bytwo dimensional polyacrylamide gel electrophoresis(2D-PAGE)and Matrix assisted laser desorption ionization-time of flight mass spectrometry(MALDI-TOF MS).The results show that protein spots 1-5 of the 30Kprotein family,mainly existing in normal strain,are possibly related to embryonic development.The earlyconsumption of a 30K protein named 6G1-30K-1 and the accumulation of 30K proteins named 6G1-30K-3and 6G1-30K-4 are likely caused by the destruction of physiological balance in normal embryonic development,which may lead to lower hatchability of the temperature sensitive strain.The results suggest that reasonablemetabolism of 30K proteins is a prerequisite for the embryo's normal development.  相似文献   

6.
Nitric oxide is an important precursor for peroxynitrite production under in vivo conditions leading to cell injury and cell death. In platelets, a number of cytosolic and actin binding proteins were shown to be nitrated [K.M. Naseem, S.Y. Low, M. Sabetkar, N.J. Bradley, J. Khan, M. Jacobs, K.R. Bruckdorfer, The nitration of platelet cytosolic proteins during agonist-induced activation of platelets. FEBS Lett. 473 (1) (2000) 199-122 and M. Sabetkar, S.Y. Low, K.M. Naseem, K.R. Bruckdorfer, The nitration of proteins in platelets: significance in platelet function, Free Radic. Biol. Med. 33 (6) (2002) 728-736]. We investigated the possible mechanism that regulates profilin (an actin binding protein) nitration in platelets. Activation of bovine platelets with arachidonic acid, thrombin, and phorbol 12,13-dibutyrate resulted in nitration of profilin on tyrosine residue. In vivo profilin nitration showed a four- and eight-fold increase in the presence of thrombin and phorbol 12,13-dibutyrate, respectively. Analysis of nitroprofilin levels in the presence of NOS inhibitors (1400W and EGTA), indicated that profilin nitration in phorbol 12,13-dibutyrate treated platelets is mediated by inducible nitric oxide synthase. Phorbol ester treated platelets exhibited higher levels by inducible nitric oxide synthase (491% over control), while total nitric oxide synthase activity increased by 5% over control. Higher levels of peroxynitrite in platelets treated with phorbol 12,13-dibutyrate indicated that profilin nitration is mediated by peroxynitrite. Increase in phosphatidylinositol 3-kinase (PI 3-kinase) activity in platelets treated with thrombin and phorbol 12,13-dibutyrate indicates that nitration of platelet profilin could be mediated by PI 3-kinase. A decrease in the level of nitroprofilin in PDBu treated platelets in the presence of inducible nitric oxide synthase inhibitor, 1400W, was observed suggesting that profilin nitration is mediated by PI 3-kinase dependent activation of inducible nitric oxide synthase.  相似文献   

7.
Staurosporine and K-252a, known inhibitors of several protein kinases, stimulated PGI2 production (measured as 6-keto-PGF in rat liver cells (the C-9 cell line). Preincubation of the rat liver cells with staurosporine or K-252a enhanced the PGI2 production stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), platelet activating factor (PAF) and the Ca2+-ionophore a-23187, but not the PGI2 synthesis stimulated by exogeneous arachidonic acid. These results suggest that phosphorylation of some proteins or certain amino acids on a protein can regulate arachidonic acid metabolism probably in the pathway leading to deesterification of phospholipids.  相似文献   

8.
9.
Abstract: The phosphorylation of surface proteins by ectoprotein kinase has been proposed to play a role in mechanisms underlying neuronal differentiation and their responsiveness to nerve growth factor (NGF). PC 12 clones represent an optimal model for investigating the mode of action of NGF in a homogeneous cell population. In the present study we obtained evidence that PC12 cells possess ectoprotein kinase and characterized the endogenous phosphorylation of its surface protein substrates. PC12 cells maintained in a chemically defined medium exhibited phosphorylation of proteins by [γ-32P]ATP added to the medium at time points preceding the intracellular phosphorylation of proteins in cells labeled with 32Pi. This activity was abolished by adding apyrase or trypsin to the medium but was not sensitive to addition of an excess of unlabeled Pi. As also expected from ecto-protein kinase activity, PC12 cells catalyzed the phosphorylation of an exogenous protein substrate added to the medium, dephospho-α-casein, and this activity competed with the endogenous phosphorylation for extracellular ATP. Based on these criteria, three protein components migrating in sodium dodecyl sulfate gels with apparent molecular weights of 105K, 39K, and 20K were identified as exclusive substrates of ecto-protein kinase in PC12 cells. Of the phosphate incorporated into these proteins from extracellular ATP, 75–87% was found in phosphothreonine. The phosphorylation of the 39K protein by ecto-protein kinase did not require Mg2+, implicating this activity in the previously demonstrated regulation of Ca2+-dependent, high-affinity norepinephrine uptake in PC12 cells by extracellular ATP. The protein kinase inhibitor K-252a inhibited both intra- and extracellular protein phosphorylation in intact PC12 cells. Its hydrophilic analogue K-252b, had only minimal effects on intracellular protein phosphorylation but readily inhibited the phosphorylation of specific substrates of ecto-protein kinase in PC12 cells incubated with extracellular ATP, suggesting the involvement of ecto-protein kinase in the reported inhibition of NGF-induced neurite extension by K-252b. Preincubation of PC12 cells with 50 ng/ml of NGF for 5 min stimulated the activity of ecto-protein kinase toward all its endogenous substrates. Exposure of PC12 cells to the same NGF concentration for 3 days revealed another substrate of ecto-protein kinase, a 53K protein, whose surface phosphorylation is expressed only after NGF-induced neuronal differentiation. In the concentration range (10–100 μM) at which 6-thioguanine blocked NGF-promoted neurite outgrowth in PC12 cells, 6-thioguanine effectively inhibited the phosphorylation of specific proteins by ecto-protein kinase. This study provides the basis for continued investigation of the involvement of ecto-protein kinase and its surface protein substrates in neuronal differentiation, neuritogenesis, and synaptogenesis.  相似文献   

10.
Endogenous protein phosphorylation of PC12 cells was investigated with the homogenate as well as intact cells. In the case of the homogenate, the major proteins that were phosphorylated in the presence of Ca2+ were found to be of Mr 95 K and Mr 50 K-55 K. Ca2+/calmodulin-dependent protein kinase appeared to be responsible for phosphorylation of Mr 50 K-55 K proteins and partly of Mr 95 K protein. The apparentK m's for Ca2+ of Mr 95 K and 50 K-55 K protein phosphorylation were 2.2×10–7 M and around 1.5×10–6 M, respectively. Since several cell lines of neuroblastoma exhibited Mr 95 K protein phosphorylation of similar type, the protein phosphorylation may be a common process shared by neuronal cells. Depolarization of intact PC12 cells by high K+ concentrations induced Mr 95 K protein phosphorylation. The results suggest that a physiological increase by excitation in the intracellular Ca2+ concentration triggers phosphorylation of Mr 95 K protein in neuronal cells and this phosphorylation may play a role in the regulation of transmitter release.  相似文献   

11.
A major factor in profilin regulation of actin cytoskeletal dynamics is its facilitation of G-actin nucleotide exchange. However, the mechanism of this facilitation is unknown. We studied the interaction of yeast (YPF) and human profilin 1 (HPF1) with yeast and mammalian skeletal muscle actins. Homologous pairs (YPF and yeast actin, HPF1 and muscle actin) bound more tightly to one another than heterologous pairs. However, with saturating profilin, HPF1 caused a faster etheno-ATP exchange with both yeast and muscle actins than did YPF. Based on the -fold change in ATP exchange rate/K(d), however, the homologous pairs are more efficient than the heterologous pairs. Thus, strength of binding of profilin to actin and nucleotide exchange rate are not tightly coupled. Actin/HPF interactions were entropically driven, whereas YPF interactions were enthalpically driven. Hybrid yeast actins containing subdomain 1 (sub1) or subdomain 1 and 2 (sub12) muscle actin residues bound more weakly to YPF than did yeast actin (K(d) = 2 microm versus 0.6 microm). These hybrids bound even more weakly to HPF than did yeast actin (K(d) = 5 microm versus 3.2 microm). sub1/YPF interactions were entropically driven, whereas the sub12/YPF binding was enthalpically driven. Compared with WT yeast actin, YPF binding to sub1 occurred with a 5 times faster k(off) and a 2 times faster k(on). sub12 bound with a 3 times faster k(off) and a 1.5 times slower k(on). Profilin controls the energetics of its interaction with nonhybrid actin, but interactions between actin subdomains 1 and 2 affect the topography of the profilin binding site.  相似文献   

12.
We examined the effects of newly exploited amiloride analogs on protein phosphorylation and serotonin secretion induced by various agonists in human platelets. 3', 4'-dichlorobenzamil (DCB) and to a lesser extent, 2', 4'-dimethylbenzamil (DMB), which in many cells highly specific inhibitors of Na+/Ca2+-pump, inhibited the phosphorylation of 47K- and 20K-dalton proteins and serotonin secretion in human platelets independently of the action on the pump. DCB also induced dephosphorylation of 47K and 20K after the phosphorylation of these proteins by thrombin and released serotonin by itself.  相似文献   

13.
Approximate molecular weights and the subunit structures of Na,K-ATPase from horse kidney were estimated by means of the combination of porous silica gel chromatography, laser light scattering (LS) and refractive index (RI) measurements in C12E8. When the enzymes were eluted with NaCl- or KCl-containing solution, 3 or 4 protein peaks, respectively were detected except that of low molecular weight range. These peaks were tentatively named Na-1, Na-2, Na-2', Na-3 (NaCl-containing eluents), K-1, K-2, K-3 (KCl-containing eluents), respectively. Na,K-ATPase and K-p-nitrophenylphosphatase activities were detected at all peaks. The activities were completely inhibited by ouabain. The ratios of the output from laser light scattering to that of differential refractive index intensity for reference proteins and these peaks were compared. Relative values of refractive index increments of BSA, thyroglobulin and C12E8 measured with the same RI detector under the same conditions were 0.144, 0.141, and 0.135 respectively. The size of the enzyme at the main peak (K-2) with K eluents (KCl 10 mM, 25 mM) was twice that at the main peak (Na-2') with Na eluents (1, 25, 50 mM NaCl) assuming that dn/dc of K-2 is similar to that of Na-2'. Na-3 and K-3 appeared at the same retention time and showed the same values of LS/RI. Provided that the dn/dc values of both peaks are similar to those of Na-2' and K-2, the sizes of Na-3 and K-3 are one-third of Na-2' and one-sixth of K-2, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Protein 1, a major protein of the outer membrane of Escherichia coli, has been shown to be the pore allowing the passage of small hydrophilic solutes across the outer membrane. In E. coli K-12 protein 1 consists of two subspecies, 1a and 1b, whereas in E. coli B it consists of a single species which has an electrophoretic mobility similar to that of 1a. K-12 strains mutant at the ompB locus lack both proteins 1a and 1b and exhibit multiple transport defects, resistance to toxic metal ions, and tolerance to a number of colicins. Mutation at the tolF locus results in the loss of 1a, in less severe transport defects, and more limited colicin tolerance. Mutation at the par locus causes the loss of protein 1b, but no transport defects or colicin tolerance. Lysogeny of E. coli by phage PA-2 results in the production of a new major protein, protein 2. Lysogeny of K-12 ompB mutants resulted in dramatic reversal of the transport defects and restoration of the sensitivity to colicins E2 and E3 but not to other colicins. This was shown to be due to the production of protein 2, since lysogeny by phage mutants lacking the ability to elicit protein 2 production did not show this effect. Thus, protein 2 can function as an effective pore. ompB mutations in E. coli B also resulted in loss of protein 1 and similar multiple transport defects, but these were only partially reversed by phage lysogeny and the resulting production of protein 2. When the ompB region from E. coli B was moved by transduction into an E. coli K-12 background, only small amounts of proteins 1a and 1b were found in the outer membrane. These results indicate that genes governing the synthesis of outer membrane proteins may not function interchangeably between K-12 and B strains, indicating differences in regulation or biosynthesis of these proteins between these strains.  相似文献   

15.
Acetylation is an important, highly conserved, and reversible post-translational modification of proteins. Previously, we showed by nano-HPLC/MS/MS that many nutrient storage proteins in the silkworm are acetylated. Among these proteins, most of the known 30K proteins were shown to be acetylated, including 23 acetylated 30K proteins containing 49 acetylated sites (Kac), indicating the importance of the acetylation of 30K proteins in silkworm. In this study, Bm30K-3, a 30K protein containing three Kac sites, was further assessed in functional studies of its acetylation. Increasing the level of Bm30K-3 acetylation by adding the deacetylase inhibitor trichostatin A (TSA) increased the levels of this protein and further inhibited cellular apoptosis induced by H2O2. In contrast, decreasing the level of acetylation by adding the acetylase inhibitor C646 could reduce the level of Bm30K-3 and increase H2O2-induced apoptosis. Subsequently, BmN cells were treated with CHX and MG132, and increasing the acetylation level using TSA was shown to inhibit protein degradation and improve the stability of Bm30K-3. Furthermore, the acetylation of Bm30K-3 could compete with its ability to be ubiquitinated, suggesting that acetylation could inhibit the ubiquitin-mediated proteasome degradation pathway, improving the stability and accumulation of proteins in cells. These results further indicate that acetylation might regulate nutrition storage and utilization in Bombyx mori, which requires further study.  相似文献   

16.
Assembly of Acanthamoeba actin, of which trace quantities had been labeled with 5-(iodoacetamido)-fluorescein, was quantified using the modulation detection method of fluorescence photobleaching recovery (FPR). This technique permits explicit determination of the fraction of labeled actin incorporated into filaments and the translational diffusion coefficients of the filaments, from which filament length can be calculated. Addition of Acanthamoeba profilin in molar ratios to actin of about 1.1:1 and 2.3:1 retarded the initial kinetics of assembly (induced by addition of 2mM Mg+2) and reduced the fraction of actin incorporated into filaments. The diffusion coefficients of filaments formed were greatly changed by the presence of profilin at short times, but the differences became increasingly smaller at longer times. After 26 hr. the filaments formed in 1.1:1 profilin were about 12% shorter and in 2.3:1 profilin were about 20% shorter than filaments formed by actin alone under the same conditions.  相似文献   

17.
The actin-regulatory protein profilin has been shown to regulate the actin cytoskeleton and the motility of nonmuscle cells. To test the hypothesis that profilin plays a role in regulating smooth muscle contraction, profilin antisense or sense oligodeoxynucleotides were introduced into the canine carotid smooth muscle by a method of reversible permeabilization, and these strips were incubated for 2 days for protein downregulation. The treatment of smooth muscle strips with profilin antisense oligodeoxynucleotides inhibited the expression of profilin; it did not influence the expression of actin, myosin heavy chain, and metavinculin/vinculin. Profilin sense did not affect the expression of these proteins in smooth muscle tissues. Force generation in response to stimulation with norepinephrine or KCl was significantly lower in profilin antisense-treated muscle strips than in profilin sense-treated strips or in muscle strips not treated with oligodeoxynucleotides. The depletion of profilin did not attenuate increases in phosphorylation of the 20-kDa regulatory light chain of myosin (MLC20) in response to stimulation with norepinephrine or KCl. The increase in F-actin/G-actin ratio during contractile stimulation was significantly inhibited in profilin-deficient smooth muscle strips. These results suggest that profilin is a necessary molecule of signaling cascades that regulate carotid smooth muscle contraction, but that it does not modulate MLC20 phosphorylation during contractile stimulation. Profilin may play a role in the regulation of actin polymerization or organization in response to contractile stimulation of smooth muscle.  相似文献   

18.
Two poly(L-proline)-binding proteins (PBP-1 and PBP-2) were purified from chick embryos by using a poly(L-proline)-agarose column. PBP-1 was composed of two different polypeptides (molecular masses of 42 kDa and 15 kDa). The molar ratio of the two proteins in the complex was 1:1. The other poly(L-proline)-binding protein, PBP-2, was the 15-kDa protein itself. The 42-kDa protein was confirmed to be an actin from the amino acid composition, by immunochemical evidence and by its ability to self-polymerize. In addition, the 42 + 15-kDa protein complex (PBP-1) inhibited DNase I, just as a monomeric actin did. The amino acid composition of the 15-kDa protein was similar to that of mammalian profilin and it inhibited the salt-induced polymerization of rabbit skeletal muscle actin. Therefore, we conclude that the two poly(L-proline)-binding proteins from the chick embryo are a profilactin and a profilin in chick embryo. The ability of profilactin to bind poly(L-proline) must be due to profilin itself, because the profilin has a greater affinity for poly(L-proline) than does profilactin. Additionally, both the monomeric and filamentous actin from rabbit skeletal muscle have no affinity for poly(L-proline).  相似文献   

19.

Background

Profilins are actin-modulating proteins regulating many intracellular functions based on their multiple and diverse ligand interactions. They have been implicated to play a role in many pathological conditions such as allergies, cardiovascular diseases, muscular atrophy, diabetes, dementia and cancer. Post-translational modifications of profilin 1 can alter its properties and subsequently its function in a cell. In the present study, we identify the importance of phosphorylation of profilin 1 at serine 137 (S137) residue in breast cancer progression.

Methods/Principal Findings

We found elevated profilin 1 (PFN) in human breast cancer tissues when compared to adjacent normal tissues. Overexpression of wild-type profilin 1 (PFN-WT) in breast cancer MCF7 cells made them more migratory, invasive and adherent independent in comparison to empty vector transfected cells. Mutation in serine phosphorylation site (S137) of profilin 1 (PFN-S137A) significantly abrogated these properties. Mutation affecting actin-binding ability (PFN-R74E) of profilin 1 enhanced its tumorigenic function whereas mutation affecting its poly-L-proline binding function (PFN-H133S) alleviated these mechanisms in breast cancer cells. PFN-WT was found to activate matrix metalloproteinases by zymography, MMP2 and MMP9 in presence of PDBu (phorbol 12, 13 dibutyrate, PI3K agonist) to enhance migration and invasion in MCF7 cells while PFN-S137A did not. Phosphorylation increased migration and invasion in other mutants of profilin 1. Nuclear profilin levels also increased in the presence of PDBu.

Conclusions

Previous studies show that profilin could be executing a dual role in cancer by either suppressing or promoting tumorigenesis in a context dependent manner. In this study we demonstrate for the first time that phosphorylation of profilin 1 at serine 137 enhances oncogenic properties in breast cancer cells. Inhibitors targeting profilin 1 phosphorylation directly or indirectly through inhibition of kinases that phosphorylate profilin could be valuable therapeutic agents that can alter its activity and thereby control the progression of cancer.  相似文献   

20.
The adenovirus type 2 L1 region, which is located at 30.7 to 39.2 map units on the viral genome, is transcribed from the major late promoter during both early and late stages of virus replication, and a 52,000-Mr (52K) protein-55K protein doublet has been translated in vitro on L1-specific RNA. To investigate the biosynthesis and properties of the L1 52K and 55K proteins, we prepared antibody against a synthetic peptide encoded near the predicted N terminus. As determined by immunoprecipitation and immunoblot analysis, the antipeptide antibody recognized major 52K and 55K proteins synthesized in adenovirus type 2-infected cells that appeared to be identical to the 52K-55K doublet translated in vitro. The immunoprecipitated 52K and 55K proteins were very closely related, as shown by a peptide map analysis. Both L1 proteins were phosphorylated, and they were phosphorylated at similar sites. No precursor-product relationship was detected between the 52K and 55K proteins by a pulse-chase analysis. Biosynthesis of the L1 52K and 55K proteins began about 6 to 7 h postinfection, after biosynthesis of the early region 1A and early region 1B 19K (175R) T antigens, and reached a maximum rate at about 15 h; the maximum rate was maintained until at least 25 h postinfection. At all times, the 55K protein appeared to be synthesized at a severalfold-higher level than the 52K protein. Both proteins were quite stable and accumulated until late times after infection. Viral DNA replication was not essential for formation of the L1 proteins. Thus, the L1 52K-55K gene appears to be regulated in a manner different from the classical early and late viral genes but similar to the protein encoded by the i-leader (Symington et al., J. Virol. 57:849-856, 1986). The L1 proteins were detected in the cell nucleus by immunofluorescence microscopy with antipeptide antibody and were found to be primarily associated with the nuclear membrane by an immunoblot analysis of subcellular fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号